
Computability of the étale Euler-Poincaré characteristic
Jin, J.

Citation
Jin, J. (2017, January 18). Computability of the étale Euler-Poincaré characteristic. Retrieved
from https://hdl.handle.net/1887/45208

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/45208

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/45208

Cover Page

The handle http://hdl.handle.net/1887/45208 holds various files of this Leiden University
dissertation.

Author: Jin, J.
Title: Computability of the étale Euler-Poincaré characteristic
Issue Date: 2017-01-18

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/45208
https://openaccess.leidenuniv.nl/handle/1887/1�

Computability of the étale
Euler-Poincaré characteristic

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden

op gezag van Rector Magnificus prof. mr. C. J. J. M. Stolker
volgens besluit van het College voor Promoties

te verdedigen op woensdag 18 januari 2017
klokke 13:45 uur

door

Jinbi Jin

geboren op zondag 4 december 1988 te Almelo

Promotoren:
prof. dr. S. J. Edixhoven Universiteit Leiden
prof. dr. L. D. J. Taelman Universiteit van Amsterdam

Commissie:
prof. dr. C. Diem Universität Leipzig
prof. dr. H. W. Lenstra Universiteit Leiden

dr. F. Orgogozo Université Paris-Saclay
prof. dr. B. de Smit Universiteit Leiden
prof. dr. A. W. van der Vaart Universiteit Leiden

Het werk in dit proefschrift is gefinancieerd door de Nederlandse Organisatie voor
Wetenschappelijk Onderzoek (NWO), projectnr. 613.001.110.

0Table of contents

Table of contents i

Introduction iii

Chapter 1: Effective algebraic geometry 1
1.1. Primitive recursive functions and computability 1
1.2. Explicitly given sets and maps 3
1.3. Explicitly given fields and factorial fields 4
1.4. Remarks on “algorithms” and “complexity” 5
1.5. Algebra over explicitly given fields 5
1.6. Curves over explicitly given fields 9
1.7. Commutative algebra over explicitly given fields 11
1.8. Schemes of finite type over a field 13

Chapter 2: Euler-Poincaré characteristic of varieties 19
2.1. Generic computations on families 20
2.2. The (relative) 0-dimensional case 25
2.3. Higher derived images along relative curves 27
2.4. The algorithm 29
2.5. Application: Counting points on varieties 30

Chapter 3: Cohomology of smooth curves 35
3.1. Category schemes 36
3.2. The category scheme of standard modules 39
3.3. The category scheme of standard algebras 45
3.4. Group actions 47
3.5. Category schemes of free modules and algebras 48
3.6. The slice category scheme 50
3.7. Torsors over smooth projective curves 50
3.8. Fibre functors 50
3.9. Finite flat covers 51
3.10. Finite étale covers 52
3.11. Torsors 54

i

Table of contents

3.12. The stack of G-torsors 56
3.13. Torsors over smooth affine curves 58
3.14. The differential morphism 58
3.15. Finite flat covers 59
3.16. Torsors 61
3.17. Computation of cohomology 63
3.18. Computation of R0 f∗ 64
3.19. Computation of R1 f∗ 65
3.20. Poincaré duality 67

Bibliography 69

Samenvatting 71

Nawoord 73

Curriculum vitae 75

Index 77

ii

0Introduction

A motivating question for this dissertation is the following open question, which
is stated e.g. in the preface of Serre [36].

Question. Given a finite type scheme X, does there exist an algorithm that takes as input a
prime power q and outputs #X(Fq) in time polynomial in log q?

If one fixes the prime p of which q is a power (or in other words, if one restricts
to those finite type schemes of which the image in Spec Z is a proper closed sub-
scheme), then algorithms based on p-adic cohomology give a positive answer to this
question. To name some results: in 2001, Kedlaya [24] gave an algorithm comput-
ing the number #X(Fpn) in time polynomial in n in the case that X is a hyperelliptic
curve over Fp, and in 2008, Lauder and Wan [27] gave an algorithm for general vari-
eties over Fp. Neither of these are polynomial in log q if the characteristic is allowed
to vary (or in other words, if X has an open dense image in Spec Z).

There is some recent progress in this area by Harvey [21] in 2014, who gave an
algorithm computing #X(Fq) for X such that XQ is a hyperelliptic curve in average
polynomial time in log q; more precisely, he gives an algorithm computing the zeta
function of X over all “good” p up to some positive integer N in time N times a
polynomial in log N; as the number of primes up to N is proportional to N

log N by the
prime number theorem, the average time per prime p is polynomial in log N. How-
ever, if one is only interested in #X(Fq) for a specific prime power q, the complexity
of this algorithm is still exponential in log q.

Algorithms based on étale cohomology give a positive answer for a different class
of finite type schemes. In 1985, Schoof [35] gave an algorithm computing #X(Fq) for
X such that XQ is an elliptic curve, in time polynomial in log q, and Pila [33] extended
this in 1990 to the case of general curves. Both algorithms do this by computing the
trace of the Frobenius endomorphism on the first étale cohomology of X.

To generalise these algorithms, one would like to have, for a finite type scheme X,
an algorithm computing the Euler-Poincaré characteristic with compact support mod-
ulo the prime `, denoted by χ!(XQ, Z/`Z), in time polynomial in `. This is the
alternating sum of the étale cohomology groups with compact support, denoted
by Hq

c (XQsep,ét, Z/`Z), in the Grothendieck group K0
(
Z/`Z[Gal(Q/Q)]

)
of finite

Gal(Q/Q)-modules annihilated by `. We explain at the end of Chapter 2 that the
existence of such an algorithm is sufficient for a positive answer to the question.

In 2015, Poonen et al. [34] showed that the étale cohomology groups are com-
putable if X is a smooth, projective, and geometrically irreducible variety over a

iii

Introduction

field k of characteristic 0. Later that year, Madore and Orgogozo [29] showed that the
étale cohomology groups are computable for any variety X. However, both methods
rely on an enumeration along an infinite set – in the case of Poonen et al. [34] it is the
set of Čech cocycles that is enumerated along; in Madore and Orgogozo [29] the set
enumerated along is a set of suitable coverings of the variety – and no upper bound
on the complexities of the given algorithms is known.

In this dissertation, we will partially improve these results. The fields we will
work over will be fields in which we can compute addition, multiplication, the ad-
ditive and multiplicative inverses, and factorisations of univariate polynomials; we
call such fields factorial fields; we will use the number of field operations as a measure
of complexity. We defer the description of the in- and output to Chapter 1.

In general, we show that we can compute the Euler-Poincaré characteristic in ef-
fectively bounded time, i.e. in time bounded by a primitive recursive function in terms
of the input; we recall the notion of a primitive recursive function in Chapter 1. More
precisely, we have the following main theorem.

Theorem I. There exists an algorithm that takes as input a factorial field k, a scheme X of
finite type over k, and an integer n invertible in k, and outputs χ!(X, Z/nZ) as an element
of K0

(
Z/nZ[Gal(ksep/k)]

)
in an effectively bounded number of field operations.

We state and prove a more general version in Chapter 2. The strategy we use there
is to compute a stratification of the scheme X of finite type over k into locally closed
subschemes that are compositions of “sufficiently nice” relative curves, which are a
variant of the “fibrations élémentaires” that appear in SGA4.3 [1, Exp. XI, Sec. 3] for
example. This will allow us to reduce to the following main theorem.

Theorem II. There exists an algorithm that takes as input a factorial field k, a smooth
curve f : X → Spec k factoring through a finite locally free morphism X → U with U ⊆ P1

k
an open subscheme, and an integer n coprime to the characteristic of k, and outputs the sets

H0(Xksep,ét, Z/nZ), H1(Xksep,ét, Z/nZ), H2(Xksep,ét, Z/nZ),

H0
c (Xksep,ét, Z/nZ), H1

c (Xksep,ét, Z/nZ), H2
c (Xksep,ét, Z/nZ)

in an effectively bounded number of field operations.

We state and prove a more general version in Chapter 3. This computation is
done by first computing H0(Xksep,ét, Z/nZ), H1(Xksep,ét, Z/nZ), using the geometric
interpretations of their elements. More precisely, for the first cohomology we con-
struct a moduli space of Z/nZ-torsors on X with some additional structure, such
that its connected components correspond bijectively to the isomorphism classes
of Z/nZ-torsors on Xksep . After that, we use Poincaré duality to compute the re-
maining groups.

iv

1Effective algebraic geometry

In this chapter we describe the basics of computations in algebraic geometry. We
start by explaining in Sections 1.1 to 1.4 the view on computability taken in this
dissertation, before treating the basic constructions in algebraic geometry that we
will need for the algorithm described in the later chapters.

1.1 Primitive recursive functions and computability
In order to algorithmically compute with mathematical objects, one first needs to be
able to present these objects into some computational model. There are a number of
classical such models, e.g. that of the Turing machine, the random-access machine (or
RAM), and that of the recursive functions. We wish to be able to describe a theory
of algorithms that are “bounded” in some way; this can be done the most naturally
in the theory of recursive functions, in which we have a class of primitive recursive
functions.

A modern treatment on (primitive) recursive functions can be found in most books
on computability; the following treatment is based on that of Moret [31].

We will define the set of primitive recursive functions as a subset of ä∞
n=0 NNn

;
note that NN0

= N.

Definition 1.1. The base functions are the following:
• the constant 0 ∈N;
• the successor function S : N→N, x 7→ x + 1;
• for positive integers n, i such that i ≤ n, the projection function Pn

i : Nn → N

on the i-th coordinate.

Next, we define the two operations under which we want the set of primitive
recursive functions to be closed.

Definition 1.2. Let m, n ≥ 0 be integers, and let g : Nm → N, h1, . . . , hm : Nn →N

be functions. Then the function σm,n(g, h1, . . . , hm) : Nn →N given by

(x1, . . . , xn) 7→ g
(
h1(x1, . . . , xn), . . . , hm(x1, . . . , xn)

)
is said to be obtained from g, h1, . . . , hn by substitution.

Note that in the edge case m = 0, the function σ0,n(g) is the constant function
(from Nn) with value g; in the other edge case n = 0, the function σm,0(g, h1, . . . , hm)
is g(h1, . . . , hm) ∈N.

1

Chapter 1 Effective algebraic geometry

Definition 1.3. Let n be a positive integer, and let g : Nn−1 →N and h : Nn+1 →N

be functions. Then the function ρn(g, h) : Nn →N given recursively by

(x1, . . . , xn) 7→
{

g(x2, x3, . . . , xn) if x1 = 0
h
(

x1 − 1, ρn(g, h)(x1 − 1, x2, . . . , xn), x2, . . . , xn
)

if x1 > 0

is said to be obtained from g, h by primitive recursion.

Now we can define the set of primitive recursive functions.

Definition 1.4. The set Rp of primitive recursive functions is the smallest subset of the
set ä∞

n=0 NNn
that contains the base functions, and such that

• for all non-negative integers m, n, and all g : Nm → N, h1, . . . , hm : Nn → N

such that g, h1, . . . , hm ∈ Rp, we have σm,n(g, h1, . . . , hm) ∈ Rp;
• for all positive integers n, and all functions g : Nn−1 → N, h : Nn+1 → N

such that g, h ∈ Rp, we have ρn(g, h) ∈ Rp.

An algorithm computing a certain primitive recursive function f is in this context
an explicit expression of f in terms of the base functions, substitution, and primitive
recursion.

Example 1.5. The function d : N→N given by x 7→ max(x− 1, 0) is primitive recur-
sive. An algorithm computing it is

ρ1(0, P2
1).

For any primitive recursive function f : N→N (together with an algorithm com-
puting it), the function i f : N ×N → N defined by (n, x) 7→ f n(x) is primitive
recursive, and an algorithm computing i f is given by

ρ2
(

P1
1 , σ1,3(f , P3

2)
)
.

Note that iS is the addition map on N.

Note that the primitive recursive functions form a strictly smaller class of func-
tions than what are typically called recursive or computable functions. We get the
usual notion back once we add the unbounded minimisation operator, and temporarily
also consider partial functions Nn →N.

Definition 1.6. Let f : Nn+1 → N be a partial function. Then µ f : Nn → N is the
partial function such that µ f (x1, . . . , xn) is undefined whenever f (y, x1, . . . , xn) 6= 0
for all y ∈ N, and such that µ f (x1, . . . , xn) = y if y ∈ N is the minimal number such
that f (y, x1, . . . , xn) = 0. We say that µ f is obtained from f by unbounded minimisa-
tion.

This allows us to define the set of recursive functions.

Definition 1.7. The set R′ of partial recursive functions is the smallest set of partial
functions Nn →N (with varying n) that contains the base functions, and such that

• for all integers m, n ≥ 0, and all partial functions g : Nm → N and all par-
tial functions h1, . . . , hm : Nn → N with g, h1, . . . , hm ∈ R′, the partial func-
tion σm,n(g, h1, . . . , hm) lies in R′;

2

1.3 Explicitly given fields and factorial fields

• for all integers n > 0, and all partial functions g : Nn−1 →N, h : Nn+1 →N

with g, h ∈ R′, we have ρn(g, h) ∈ R′;
• for all integers n ≥ 0, and all partial functions g : Nn+1 → N with g ∈ R′,

we have µg ∈ R′.
The set R of recursive functions is the subset of R′ of total functions.

1.2 Explicitly given sets and maps
The following is essentially the theory of (primitive) recursive sets, as can be found
in most books on computability, e.g. Moret [31]. We will view N as a pointed set
with base point 0 in what follows; we will think of 0 as an “error code”.

Definition 1.8. A presentation of a set X consists of an injective presentation map
π : X →N− {0} together with an algorithm computing the characteristic function
χπ(X) of π(X). An explicitly given set is a pair (X, πX) of a set and a presentation πX
of X.

Definition 1.9. Let (X, πX), (Y, πY) be explicitly given sets. A presentation of a map
f : Y → X is an algorithm computing the unique function ϕ : N → N such that
ϕ(y) = 0 for all y 6∈ πY(Y), and such that the following diagram commutes.

Y N

X N

f

πY

ϕ

πX

An explicitly given map Y → X is a map Y → X together with a presentation.

We obtain a collection Set! of explicitly given sets and explicitly given maps, which
only becomes a category after we identify algorithms defining the same map (in
other words, we forget the algorithm). There is a forgetful functor Set! → Set, which
is faithful by definition, but not full (as not every function is primitive recursive).

Example 1.10. Let, for any non-empty set X and any x ∈ X, the set Seq∞,x(X) denote
the set of sequences (xi)

∞
i=0 such that xi = x for all but finitely many i. We first give

the Gödel encoding of Seq∞,0(N). Let p0 = 2, p1, . . . denote the increasing enumera-
tion of the prime numbers. Then the Gödel encoding π : Seq∞,0(N) → N sending
(a0, a1, . . .) to pa0

0 pa1
1 · · · is a presentation of Seq∞,0(N).

Now let X be a non-empty explicitly given set, and x ∈ X an element such
that πX(x) = 1. The map X → N, x 7→ πX(x) − 1 then induces a presentation
Seq∞,x(X) → Seq∞,0(N) → N, which sends the constant sequence x to 1. This al-
lows us to iterate this process, obtaining presentations for e.g. Seq∞,x

(
Seq∞,x(X)

)
,

etc.
Moreover, let, for any non-empty set X, the set Seq(X) denote the set of finite

sequences in X. We then have an injective map Seq(N) → Seq∞,0(N) sending
(a1, . . . , an) to (n, a1, . . . , an), which induces a presentation of Seq(N). If X is an
explicitly given set, then as before, the map X → N, x 7→ πX(x) − 1 induces a
presentation Seq(X)→ Seq(N)→N.

3

Chapter 1 Effective algebraic geometry

1.3 Explicitly given fields and factorial fields

In this section we will give a definition of a factorial field, cf. e.g. Ayoub [2]. We first
give a definition of explicitly given rings and fields.

Definition 1.11. An explicitly given ring is an explicitly given set R that is a ring,
together with elements 0, 1 ∈ R, the characteristic of R, and encodings of the maps
+, · : R× R → R, − : R → R. An explicitly given morphism R → S of explicitly given
rings is an explicitly given map that is also a morphism of rings. An explicitly given
field is an explicitly given ring k that is a field, together with a presentation of the
map ·−1 : k− {0} → k− {0}.

Remark 1.12. Note that at times, elements of fields are more naturally given as equiv-
alence classes of elements of some set, e.g. the case of a fraction field of an integral
domain. Therefore it may be more desirable to accommodate for this and define an
explicitly given ring or field as an explicitly given set R together with a primitive
recursive equivalence relation on R and the usual operations (which are to satisfy
the usual relations only up to equivalence). However, since bounded minimisation
is primitive recursive, so is the (characteristic function of the) set of minimal rep-
resentatives of each equivalence class and the map R → R sending each x to its
corresponding minimal representative. Therefore we can construct from such R an
explicitly given ring or field in the sense of the definition above, and we lose no
generality.

Example 1.13. The fields Fq (for q a prime power) and Q can be given the structure
of an explicitly given field. Suppose that k is an explicitly given field. Any finitely
generated extension of k can be given the structure of an explicitly given field. The
field k(x1, x2, . . .) can be given the structure of an explicitly given field.

For an explicitly given ring R, we will give R[x] the structure of an explicitly given
ring. First, identify R[x] with Seq∞,0(R) by identifying a polynomial f = ∑∞

i=0 aixi

with the sequence (ai)
∞
i=0. Since we have obvious algorithms to compute addition,

multiplication, and additive inverse, we get the structure of an explicitly given ring
on R[x]. By iterating this process, one gets a structure of an explicitly given ring on
the polynomial ring R[x1, . . . , xn] as well.

Since we now have a presentation of polynomials and therefore also of finite se-
quences thereof, we can now introduce the notion of a polynomial factorisation al-
gorithm.

Definition 1.14. A factorial field is an explicitly given field k, together with a presen-
tation of a map k[x] − {0} → Seq(k[x]) sending f to a tuple (f1, . . . , fn) such that
f = f1 · · · fn and every fi is irreducible.

Example 1.15. Any finitely generated extension of Fq (for q a prime power) or Q can
be given the structure of a factorial field.

There exist explicitly given fields for which polynomial factorisation is not com-
putable, see Fröhlich and Shepherdson [12].

4

1.5 Algebra over explicitly given fields

1.4 Remarks on “algorithms” and “complexity”
First note that the notion of algorithm given above is not a very convenient notion
to work with. However, there is a different way of describing primitive recursive
functions which may be a bit more amenable, namely as so-called loop programs (see
e.g. Handley and Wainer [20, Sec. 1]). Roughly speaking, these are algorithms using
only finite loops of precomputed length (so no recursion is allowed a priori). Of
course, as many algorithms use recursion, this is still a bit too restrictive in practice.
In practice, we will also allow recursion if the total number of recursive calls for a
single instance can be bounded by a precomputed number; it is possible to rewrite
such recursively defined functions as a loop of a precomputed length. This allows
us to discuss algorithms much more informally, and we will usually do so.

Note moreover that while the notion of explicitly given (or factorial) field de-
scribed above is suitable for a notion of computability, it doesn’t admit a good notion
of arithmetic complexity, i.e. the number of field operations needed to compute a func-
tion (as a function in the input); as the field operations are assumed to be primitive
recursive, they can be described in terms of base functions, the notion of a number
of field operations isn’t even well-defined! While the notion of an arithmetic com-
plexity can be formalised, see e.g. Diem [10, Sec. 1.6.4] for RAMs, we will use the
term informally, viewing the field operations of an explicitly given or factorial field
as primitive operations.

Finally, note that in the definition of a factorial field, we have included a primi-
tive recursive univariate factorisation algorithm, but in practice, some efficient such
algorithms use randomisation, but halt with probability 1 and with the correct out-
put, i.e. they are Las Vegas algorithms. Therefore algorithms involving factorisation
should be viewed as Las Vegas algorithms in general. Other than that, we will usu-
ally ignore the difference between Las Vegas and deterministic algorithms.

1.5 Algebra over explicitly given fields
As stated in the previous section, we will be a lot less formal with algorithms from
now on.

1.5.1 Vector spaces

We present a finite-dimensional vector space over k (with given basis) by its dimen-
sion, and a k-linear map from a vector space of dimension m to a vector space of
dimension n by its n×m-matrix with respect to the given bases.

If vector spaces V and V′ have bases (e1, e2, . . . , em) and (e′1, e′2, . . . , e′m′), respec-
tively, then we will assume their direct sum V ⊕ V′ to be equipped with the basis
(e1, e2, . . . , em, e′1, e′2, . . . , e′m′), and their tensor product V⊗V′ to be equipped with the

basis (ei⊗ e′i′)
m,m′
i=1,i′=1, with the lexicographical order on the indices. This has the addi-

tional advantage that if we have three vector spaces V, V′, V′′ with given bases, that
then the natural isomorphisms (V⊗V′)⊗V′′ ∼= V⊗ (V′⊗V′′), k⊗V ∼= V ∼= V⊗ k,
and (V ⊕V′)⊗V′′ ∼= (V ⊗V′′)⊕ (V′ ⊗V′′) preserve the induced bases.

We present a subspace of dimension m of a given vector space of dimension n by
an n×m-matrix in reduced row echelon form. Therefore, by Gaussian elimination,

5

Chapter 1 Effective algebraic geometry

we can compute kernels and images of linear maps, in a number of field operations
polynomially bounded by the dimensions of the source and target. Moreover, we can
compute the quotient of a vector space by a subspace, and therefore we can compute
cokernels of linear maps as well, also in a number of field operations polynomially
bounded by the dimensions of the source and target.

1.5.2 Finitely generated algebras

We present an ideal I of k[x1, . . . , xm] by a finite set of generators f1, . . . , fs. An alge-
bra of finite type over k then is given by a non-negative integer m, and an ideal of
k[x1, . . . , xm].

We present an element f of k[x1, . . . , xm]/I by an element of f + I in k[x1, . . . , xm];
note that sums and products of elements can be computed, and that equality of
two elements can be tested using Gröbner basis algorithms. A k-algebra morphism
k[x1, . . . , xm]/I → k[y1, . . . , yn]/J is given by the images of the xi, under the condi-
tion that the generators of I map to 0 (which can be tested by the above). Moreover,
compositions of morphisms can be computed, and equality of two morphisms can
be tested using Gröbner basis algorithms.

We will consider more properties in Section 1.7.

1.5.3 Finite algebras

We describe two ways to present a finite k-algebra.
One way to present a finite k-algebra A is the vector space presentation, namely by

its underlying vector space over k, together with the inclusion ι : k → A and the
multiplication map µ : A⊗ A→ A; these are to be such that the following diagrams
commute:

A⊗ A⊗ A A⊗ A A A⊗ A

A⊗ A A A⊗ A A

µ⊗idA

idA ⊗µ µ

µ

ι⊗idA

idA ⊗ι µ

µ

and we present a morphism A → B of finite k-algebras by its underlying k-linear
map; this map must be such that the following diagrams commute.

A⊗ A B⊗ B k

A B A B

f⊗ f

µ µ

f

ι ι

f

One other way to present a finite k-algebra is by the quotient of k[x1, . . . , xm] by a
zero-dimensional ideal; in this case the morphisms are presented by morphisms of
k-algebras. We claim that these two ways are equivalent; i.e. that we can transform
one presentation into the other primitive recursively. We will only work this out for
the objects, leaving the morphisms to the reader.

First suppose that we are given A as a vector space together with maps ι : k → A
and µ : A⊗ A→ A, and let (t1, . . . , tm) be the given basis of A. Then A is isomorphic

6

1.5 Algebra over explicitly given fields

to k[t1, . . . , tm]/I, where I is generated by titj − µ(ti ⊗ tj) and 1− ι(1). Note that this
is done in a number of field operations polynomially bounded in dimk A.

Conversely, assume that we are given a zero-dimensional ideal I ⊆ k[x1, . . . , xm]
such that A = k[x1, . . . , xm]/I. Then we can compute from a Gröbner basis of I
a k-basis for A consisting of monomials, and we can compute the multiplication
and inclusion maps with respect to this basis using division with remainder with
respect to the Gröbner basis. Note that this involves computing Gröbner basis of
zero-dimensional ideals, which can theoretically be done in a number of field op-
erations exponentially bounded in the number of given generators of the ideal, see
Dickenstein et al. [9].

We now list a number of properties that can be decided algorithmically. We start
with the property of being étale over k.

Proposition 1.16. There exists an algorithm that takes as input an explicitly given field k
and a finite k-algebra A, and decides whether A is étale over k, in a number of field operations
polynomially bounded in dimk A.

Proof. Note that A is étale over k if and only if the trace form A → Homk(A, k) given
by a 7→

(
b 7→ Tr(ab)

)
is invertible. Since we can compute the trace form and the de-

terminant thereof in a number of field operations bounded polynomially in dimk A,
we get the desired result. �

To decide whether a finite k-algebra A is local, we use the following result.

Proposition 1.17 (Khuri-Makdisi [25, Sect. 7]). There exists an algorithm that takes as
input a factorial field k and a finite k-algebra A, and returns an isomorphism ∏i Ai

∼= A
with all Ai finite local k-algebras, in a number of field operations polynomially bounded in
dimk A.

Corollary 1.18. There exists an algorithm that takes as input a factorial field k and a finite
k-algebra A, and decides whether A is local, in a number of field operations polynomially
bounded in dimk A.

Since for a finite k-algebra, being étale and local is equivalent to being a finite
separable field extension of k, we also get the following.

Corollary 1.19. There exists an algorithm that takes as input a factorial field k and a finite
k-algebra A, and decides whether A is a finite separable field extension of k, in a number of
field operations polynomially bounded in dimk A.

Finally, we can decide whether a finite k-algebra is a finite Galois (field) extension
of k.

Proposition 1.20. There exists an algorithm that takes as input a factorial field k and a finite
separable field extension l over k, and outputs the Galois closure of l over k, in a number of
field operations exponentially bounded in dimk l.

Proof. Decompose l ⊗ l = ∏i li. Then note that each li is a separable field extension
of l, and that l is Galois if and only if every li is equal to l. Therefore replacing l
iteratively by an li with maximal dimension (and using that the Galois closure of l
over k has degree at most [l : k]! over k) computes the Galois closure of l over k in a
number of field operations exponentially bounded in dimk l. �

7

Chapter 1 Effective algebraic geometry

Corollary 1.21. There exists an algorithm that takes as input a factorial field k and a finite
k-algebra A, and decides whether A is a finite Galois (field) extension of k, in a number of
field operations polynomially bounded in dimk A.

Next, we compute the Galois group of a finite Galois extension of k.

Proposition 1.22. There exists an algorithm that takes as input a factorial field k and a finite
Galois extension l of k, and outputs Gal(l/k).

Proof. We note that Gal(l/k) is the set of k-rational points of a finite algebraic sub-
group of GLdimk l,k, which we can compute using Gröbner bases. �

Finally, given a finite Galois extension l of k with Galois group G, we can make
Galois theory effective: given a subgroup H of G, we can compute lH (as the inter-
section of the kernels of the k-linear maps 1− h for h ∈ H), and vice versa, given a
subextension l′ of l over k, we can compute Gal(l/l′).

1.5.4 Galois sets

The following treatment is essentially that of Couveignes and Edixhoven [5, p.69–
70].

Let G be the absolute Galois group of k; recall that it is a profinite group. There
are two natural ways of presenting a finite continuous G-set. For the first one, note
that the category of finite continuous G-sets is equivalent to the opposite of that of
finite separable k-algebras; so we present a finite continuous G-set by a finite sepa-
rable k-algebra, and we present a morphism Y → X of finite continuous G-sets by a
morphism of finite separable k-algebras (in the opposite direction).

Alternatively, note that a finite continuous G-set is given by a finite set X, to-
gether with a continuous group morphism G → S(X), where S(X) is the permuta-
tion group on X. Its kernel N is a closed subgroup of finite index, which corresponds
to a finite Galois extension l over k, and the Galois set X is determined by the action
of Gal(l/k) on X. This shows that we can present a finite continuous G-set by a tuple
(l, X, α) of a finite Galois extension l over k, a finite set X, and an action α of Gal(l/k)
on X.

We can extend the above to any finite number of finite continuous G-sets, to see
that we can present a finite number of finite continuous G-sets by a tuple

(
l, (Xi, αi)i

)
,

such that every (l, Xi, αi) presents a finite continuous G-set. In particular, we see
that we can present a morphism of finite continuous G-sets by a finite Galois exten-
sion l over k, finite sets X, Y, actions αX , αY of Gal(l/k) on X, Y, respectively, and a
Gal(l/k)-equivariant map f : Y → X.

Using Section 1.5.3, we see that these two presentations can be converted into one
another in a straightforward way; if A is a finite separable k-algebra, and A = ∏i li
is a decomposition of A into fields, then a corresponding triple is (l, X, α) where
l is the Galois closure of the compositum of the li and the set X is äi Homk(li, l)
together with the natural Gal(l/k)-action on the Homk(li, l); conversely, if (l, X, α) is
a presentation of a finite continuous G-set, then decompose X into Gal(l/k)-orbits
Xi, compute for each i a stabiliser Gi of a point of Xi (which is well-defined up to
inner automorphisms), and set A = ∏i lGi .

8

1.6 Curves over explicitly given fields

1.5.5 Multivariate and absolute factorisation

Recall that a factorial field is an explicitly given field together with an algorithm for
univariate polynomial factorisation. However, using a trick attributed to Kronecker
in van der Waerden [37, Sec. 42], one can easily reduce multivariate polynomial fac-
torisation to univariate polynomial factorisation; this uses an number of field opera-
tions exponential in the degree of the polynomial to be factored.

Next, we consider absolute factorisation, i.e. given a polynomial f ∈ k[x1, . . . , xm],
find the factorisation of f over the algebraic closure of k. Note that this factorisation
is defined over a finite extension l of k. By Chistov [4, Sec. 1.3], absolute factorisation
can be reduced to ordinary multivariate polynomial factorisation in a number of field
operations which is polynomial in the degree of the polynomial to be factored.

It follows that any factorial field admits an algorithm computing absolute factori-
sations of polynomials in k[x1, . . . , xm].

1.6 Curves over explicitly given fields
Let k be an explicitly given field. In this section we describe two ways to describe
P1

k-vector bundles, one of which is more or less classical, essentially going back to
Dedekind and Weber [6] (another reference is Diem [10]), and an alternative one
better suited for our purposes. We can then describe curves together with a finite
locally free morphism to P1

k as vector bundles on P1
k with an algebra structure.

1.6.1 Vector bundles via function fields

The following is a slight generalisation and alteration of the idea described in Diem
[10, Sect. 2.5.4.2].

The basic idea here is to describe a vector bundle E on P1
k by

(
Eη , E(U0), E(U1)

)
,

where η ∈ P1
k is the generic point, and U0, U1 are the standard affine open subsets of

P1
k . Here we view the E(Ui) as subsets of Eη . The rule attaching to E a triple as above

is a functor, the target category of which we describe below. There, we will identify
OP1

k ,η ,OP1
k
(U0),OP1

k
(U1) with k(x), k[x], k[x−1], respectively.

Consider the category L(k) defined as follows. The objects of L(k) are tuples
(V, V0, V1), where V is a finite dimensional vector space over k(x), say of dimension
m, and V0 (resp. V1) is a free k[x]-submodule (resp. k[x−1]-submodule) of V of rank
m, such that V0 and V1 generate the same k[x, x−1]-submodule of V. The morphisms
(V, V0, V1) → (W, W0, W1) in L(k) are the morphisms V → W that map Vi into Wi
for i ∈ {0, 1}.

Note that the functor from the category of vector bundles on P1 to L(k) defined
by

E 7→
(
Eη , E(U0), E(U1)

)
.

is an equivalence of categories.
By expanding the definition of the objects and morphisms of L(k) in terms of ma-

trices, we see that L(k) (hence also the category of vector bundles on P1
k) is equiv-

alent to the category P ′(k) (of presentations of finite locally free OP1
k
-modules) de-

fined below.

9

Chapter 1 Effective algebraic geometry

The objects of P ′(k) are tuples (m, B0, B1), where m is a non-negative integer and
B0, B1 : k(x)m → k(x)m are k(x)-linear isomorphisms, the columns of the matrices of
which generate the same k[x, x−1]-submodules of k(x)m, i.e. the matrix of B0B−1

1 has
entries in k[x, x−1]. (Matrices are always taken with respect to the standard bases.)

Now consider two objects (m, B0, B1) and (n, C0, C1) of P ′1(k). The morphisms in
P ′(k) from (m, B0, B1) to (n, C0, C1) are the k(x)-linear maps f : k(x)m → k(x)n, such
that the k[x]-submodule generated by the columns of the matrix of B0 is mapped
into that of C0, and such that the k[x−1]-submodule generated by the columns of the
matrix of B1 is mapped into that of C1. In other words, we have that the matrices of
C−1

0 f B0, resp. C−1
1 f B1 have entries in k[x], resp. k[x−1].

Note that the tensor product (m, B0, B1) ⊗ (m′, B′0, B′1) of two objects in P ′(k) is
given by (mm′, B0 ⊗ B′0, B1 ⊗ B′1), and that the tensor product of two morphisms
f : (m, B0, B1) → (n, C0, C1) and f ′ : (m′, B′0, B′1) → (n′, C′0, C′1) is given by f ⊗ f ′ (as
k(x)-linear map k(x)mm′ → k(x)nn′). Moreover, ⊗ is associative and the (identity
morphism on) the object (0, 0, 0) is neutral for ⊗.

1.6.2 Vector bundles via Dedekind-Weber splitting

There is an alternative way to present vector bundles on P1
k . The following theorem

(commonly attributed to Grothendieck) describes all isomorphism classes of vector
bundles on P1

k .

Theorem 1.23 (Dedekind and Weber [6]). Let k be a field, and let E be a finite locally
free OP1

k
-module. Then there exists a (up to permutation unique) finite sequence of integers

(ai)
s
i=1 such that E ∼=

⊕s
i=1OP1

k
(ai).

Write, for a finite sequence a = (ai)
s
i=1 of integers, OP1

k
(a) for the OP1

k
-module⊕s

i=1OP1
k
(ai). We will use the “linear algebra” of such objects to describe the cate-

gory of finite locally free OP1
k
-algebras. Since for all finite sequences a, b of integers,

we have

HomO
P1

k

(
OP1

k
(a),OP1

k
(b)
)
=
⊕
i,j

HomO
P1

k

(
OP1

k
(ai),OP1

k
(bj)

)
=
⊕
i,j
OP1

k
(bj − ai)(P

1
k),

we see that giving a morphism OP1
k
(a) → OP1

k
(b) is the same as giving an element

of
Matb,a(k) = {M ∈ Matt×s

(
k[x, y]

)
: Mji ∈ k[x, y]bj−ai

},
where s and t are the respective lengths of the sequences a and b.

Therefore the category of vector bundles on P1
k is equivalent to the category P(k)

of which the objects are finite sequences of integers, and in which the set of mor-
phisms from a finite sequence a to a finite sequence b is given by Matb,a(k) (with
composition given by matrix multiplication).

Next, we describe tensor products in P(k). For two finite sequences a, a′ of inte-
gers the sequence a⊕ a′ is the set {ai + a′i′}i,i′ together with the order on the index

10

1.7 Commutative algebra over explicitly given fields

set given by the lexicographical order on pairs (i, i′), so that there is an isomorphism
OP1

k
(a⊕ a′) ∼= OP1

k
(a)⊗OP1

k
(a′). Moreover, the tensor product of two morphisms

can be computed by viewing morphisms as matrices with entries in k(x, y).

1.6.3 Converting presentations

We now describe explicit quasi-inverse equivalences between P(k) and P ′(k).
First we describe the functor F : P(k)→ P ′(k). For an object a of P(k), i.e. a finite

sequence of integers, we set F(a) to be the triple(⊕
i
OP1

k
(ai)η , B0, B1

)
,

where we identify OP1
k
(ai)η with k(x) by identifying y with 1, and where B0 is the

identity matrix, and where B1 is the diagonal matrix of which the i-th entry is xai .
The given identification of OP1

k
(ai)η with k(x) also immediately gives a description

of F on morphisms.
Next, we describe its quasi-inverse G : P ′(k) → P(k). Suppose that we have

an object (m, B0, B1) of P ′(k). Then the method of e.g. Görtz and Wedhorn [16,
Lem. 11.50], see also Hess [22, Sec. 4], gives an algorithm to compute a basis C = {Ci}
of k(x)m over k such that C generates the same k[x]-submodule as B0, and a sequence
of integers a of length s such that xai Ci spans the same k[x−1]-submodule of k(x)m as
B1. In this case, we set G(m, B1, B2) = a.

Next, if we have a morphism ϕ : (m, B0, B1) → (n, C0, C1) in P ′(k), we consider
their corresponding sequences of integers a, b, and the matrix M of the correspond-
ing k-linear map k(x)m → k(x)n with respect to the k(x)-bases given above. By
definition of a morphism, the entries of this matrix lie in k[x], and in fact, the degree
of the (j, i)-entry is at most bj − ai. Let M′ be the matrix in k[x, y] obtained from M
by replacing each entry Mji(x) by aji(x/y)ybj−ai . Then G(ϕ) is given by M′.

By construction, the following is now clear.

Proposition 1.24. The functors F and G defined above are quasi-inverse equivalences.

1.7 Commutative algebra over explicitly given fields

In this section, we consider certain constructions in commutative algebra. We present
k-algebras of finite type as in Section 1.5.2.

1.7.1 Localisations

For an element f ∈ k[x1, . . . , xm] and an ideal I of k[x1, . . . , xm], the localisation(
k[x1, . . . , xm]/I

)
f of k[x1, . . . , xm] is given by the morphism

k[x1, . . . , xm]/I → k[x1, . . . , xm, xm+1]/
(

I + (xm+1 f − 1)
)

sending xi to xi (for i = 1, 2, . . . , m).

11

Chapter 1 Effective algebraic geometry

1.7.2 Equality of radicals of ideals

Given two ideals I, J of k[x1, . . . , xm], we can test algorithmically whether their radi-
cals are equal using an effective Nullstellensatz, like the following theorem by Kollár.

Theorem 1.25 (Kollár [26, Cor. 1.7]). Let k be a field, and let f1, . . . , fs ∈ k[x1, . . . , xm]

and let d be the maximum of 3 and their degrees. Then for all h ∈
√
(f1, . . . , fs) there exist

a positive integer t ≤ 2dm and g1, . . . , gs ∈ k[x1, . . . , xm] such that

ht = g1 f1 + · · ·+ gs fs

with deg gi fi ≤ (1 + deg h)2dm.

In fact, if we weaken the condition in the last line to deg gi fi ≤ (1+ 2dm deg h)2dm,
then we can take t = 2dm. Therefore checking whether a polynomial lies in the
radical of some ideal of k[x1, . . . , xm] boils down to solving a large system of linear
equations.

1.7.3 Tensor products

Let A = k[x1, . . . , xm]/I, B = k[y1, . . . , yn]/J, C = k[z1, . . . , zp]/K. Let ϕ : A→ B and
ψ : A→ C be morphisms of k-algebras. Then the tensor product B⊗A C is given by

k[x1, . . . , xm, y1, . . . , yn, z1, . . . , zp]

I + J + K +
(

ϕ(x1)− x1, . . . , ϕ(xm)− xm, ψ(x1)− x1, . . . , ψ(xm)− xm
)

together with the obvious morphisms B→ B⊗A C and C → B⊗A C.

1.7.4 Other algorithms

We list some more algorithms we will make use of, namely those for Noether normal-
isation and primary decomposition.

Theorem 1.26 (Nagata [32]). There exists an algorithm that takes as input an explicitly
given field k and a k-algebra A of finite type, and outputs an injective integral morphism
k[x1, . . . , xm]→ A in an effectively bounded number of field operations.

Theorem 1.27 (Gianni et al. [15]). There exists an algorithm that takes as input a factorial
field k and an ideal I ⊆ k[x1, . . . , xm], and outputs a primary decomposition of I in an
effectively bounded number of field operations.

Remark 1.28. We remark that the algorithm by Gianni et al. [15] a priori is not prim-
itive recursive because of the use of an unbounded search at two points, namely
Proposition 3.7 and Proposition 8.2. Fortunately, in the case that we need, this can be
amended, as explained below.

First, the unbounded search in Proposition 3.7 collapses, as we only need the case
that p = 0. Moreover, we note that the crucial step in Proposition 8.2 in the case
that we need, is the following: given ideals I, J of k[x1, . . . , xn] and s ∈ k[x1, . . . , xn],
compute a positive integer m such that sm J ⊆ I if one exists. This can be done prim-
itive recursively by first computing I : J (using Gröbner bases) and then checking if
s ∈
√

I : J, using an effective Nullstellensatz like the one by Kollár [26] mentioned
above.

12

1.8 Schemes of finite type over a field

Moreover, replacing every occurrence of a factorisation in their algorithm by an
absolute factorisation will give an algorithm computing an absolute primary decom-
position (i.e. a primary decomposition over k) instead.

1.8 Schemes of finite type over a field

1.8.1 Affine schemes

The category of affine schemes of finite type over a field k is just the opposite of the
category of k-algebras of finite type, so we present an affine scheme X of finite type
over k by its ring O(X) of global sections, and a morphism Y → X of affine schemes
of finite type over k by the morphism O(X) → O(Y) of k-algebras. For an affine
scheme X and s ∈ O(X), we will denote by DX(s) the standard open subscheme of
X defined by s.

Note that we can compute fibre products of affine schemes.

1.8.2 Quasi-affine schemes

We present a quasi-affine scheme U of finite type over k by an affine scheme X of
finite type over k, together with a finite sequence s1, . . . , sm ∈ O(X) of elements gen-
erating an ideal defining the complement of U in X. Note that we can view an affine
scheme X as a quasi-affine scheme presented by (X, 1). We can test algorithmically
whether two such presentations define the same open subscheme of a fixed scheme
X, since this boils down to checking that two ideals have the same radical.

Suppose the quasi-affine schemes U and V are presented by tuples (X, s1, . . . , sm)
and (Y, t1, . . . , tn), respectively. A morphism V → U with respect to the given
presentations is then given by a map α : {1, . . . , n} → {1, . . . , m} and morphisms
DY(tj) → DX(sα(j)) such that the following diagram commutes for all j and j′ in
{1, . . . , n}.

DY(tj) DX(sα(j))

DY(tjtj′) X

DY(tj′) DX(sα(j′))

Note that for any morphism f : V → U where U ⊆ X and V ⊆ Y are open
subschemes with X and Y affine and of finite type over k, there exist presentations
of U and V such that f can be given with respect to those presentations.

We want to be able to compute compositions of composable morphisms and test
whether two morphisms are equal. To this end, we first explain how to compute the
fibre product of two quasi-affine schemes.

Suppose that the quasi-affine schemes U, V, W are given by tuples (X, s1, . . . , sm),
(Y, t1, . . . , tn), (Z, u1, . . . , up), respectively, and let V → U and W → U be morphisms
with respect to the given presentations. Then by the classical construction of fibre

13

Chapter 1 Effective algebraic geometry

products of schemes, we see that V ×U W is given by

(Y×X Z, tjuk)

(with (j, k) running through all pairs such that the images of j and k in {1, . . . , m} are
the same). We have obvious projection morphisms V ×U W → V and V ×U W →W
with respect to the given presentations.

Now let U, V, W be quasi-affine schemes, and let f : V → U and g : W → V be
morphisms. Suppose that V is given as an open subscheme of the affine scheme Y,
and view the presentations of V used for f and g as morphisms V → Y of quasi-
affine schemes. We can then compute the composition f g using the following di-
agram, in which we do not simplify the expression V ×Y V as both factors are in
general given by distinct presentations.

W ×V (V ×Y V) V ×Y V

W V V U

Y

The composition f g then is the morphism W ×V (V ×Y V) → U in the diagram
above.

In a similar vein, if U and V are quasi-affine schemes, given as open subschemes,
of the affine schemes X and Y, respectively, and f , g : V → U are morphisms, then
we can test whether f = g since this is the case if and only if the following diagram
commutes.

V U

V ×Y V Y X

V U

f

g

Finally, suppose that U, U′ are both open subschemes of an affine scheme X, that
V is an open subscheme of an affine scheme Y, and that f : V → U is a morphism of
schemes. We can test whether the image of f is contained in U′ by considering the
diagram

V ×U (U ×X U′) U ×X U′

V U U′

X

14

1.8 Schemes of finite type over a field

and testing that V×U (U×X U′) (which is given as an open subscheme of the scheme
Y ×X X = Y) is the same as V. Moreover, we see that if the image of f is contained
in U′, then the diagram above gives a way to compute a presentation of the induced
morphism V → U′.

1.8.3 Presentations of schemes

A scheme of finite type over k is presented by gluing data:

• affine schemes X1, . . . , Xm of finite type over k;
• for all i, j ∈ {1, . . . , m} an open subscheme Xij ⊆ Xi such that Xii = Xi for all

i ∈ {1, . . . , m};
• for all i, j ∈ {1, . . . , m} a morphism ϕji : Xij → Xji of quasi-affine schemes,

such that ϕii is the identity on Xi for all i ∈ {1, . . . , m}, and such that the
cocycle condition holds, i.e.:

for all i, j, k ∈ {1, . . . , m}, the image of Xij ×Xi Xik under ϕji is contained in
Xjk, and the diagram

Xij ×Xi Xik Xji ×Xj Xjk

Xki ×Xk Xkj

ϕji

ϕki ϕkj

is commutative.

We will denote such a presentation by the shorthand (X1, . . . , Xm).
Note that the cocycle condition for i = k implies that ϕji = ϕ−1

ij for all i, j in
{1, . . . , m} and that the induced morphism ϕji : Xij ×Xi Xik → Xji ×Xj Xjk is an iso-
morphism for all i, j, k ∈ {1, . . . , m}.

A morphism (Y1, . . . , Yn) → (X1, . . . , Xm) of presentations of schemes of finite
type over k is given by a map α : {1, . . . , n} → {1, . . . , m}, morphisms f j : Yj → Xα(j),
and morphisms f jj′ : Yjj′ → Xα(j)α(j′) compatible with gluing data. More precisely,
the following diagrams commute for all j, j′ ∈ {1, . . . , n}.

Yjj′ Xα(j)α(j′) Yjj′ Xα(j)α(j′)

Yj Xα(j) Yj′ j Xα(j′)α(j)

f jj′ f jj′

ϕj′ j ϕα(j′)α(j)

f j f j′ j

First note that we can algorithmically determine whether two morphisms of pre-
sentations of schemes define the same morphism between the schemes that they
present, by the following.

Lemma 1.29. Let f , g : (Y1, . . . , Yn)→ (X1, . . . , Xm) be morphisms between presentations
of schemes (with α, β the corresponding maps on indices). Then they define the same mor-
phism of schemes if and only if the following holds: for all j ∈ {1, . . . , n}, the projections

15

Chapter 1 Effective algebraic geometry

Yj ×Xα(j)
Xα(j)β(j) → Yj and Yj ×Xβ(j)

Xα(j)β(j) → Yj are isomorphisms and the composi-
tions Yj → Yj ×Xα(j)

Xα(j)β(j) → Xα(j)β(j) and Yj → Yj ×Xβ(j)
Xα(j)β(j) → Xα(j)β(j) of the

respective inverses and the projections are equal.

Proof. In this proof, we will identify the Xi, Xii′ , Yj, Yjj′ with the open subschemes of
the schemes they define.

First suppose that f , g define the same morphism of schemes. Then, for all j, the
image of Yj lies in Xα(j) and Xβ(j), and therefore in Xα(j)β(j). Hence the projections
Yj ×Xα(j)

Xα(j)β(j) → Yj and Yj ×Xβ(j)
Xα(j)β(j) → Yj are isomorphisms. Moreover, the

morphism Yj → Xα(j)β(j) induced by f j now is the composition

Yj → Yj ×Xα(j)
Xα(j)β(j) → Xα(j)β(j),

and the one induced by gj is the composition

Yj → Yj ×Xβ(j)
Xα(j)β(j) → Xα(j)β(j),

so these two must be equal.
Conversely, suppose that the projection morphisms Yj ×Xα(j)

Xα(j)β(j) → Yj and
Yj ×Xβ(j)

Xα(j)β(j) → Yj are isomorphisms for all j ∈ {1, . . . , n}, and that the compo-
sitions

Yj → Yj ×Xα(j)
Xα(j)β(j) → Xα(j)β(j)

and
Yj → Yj ×Xβ(j)

Xα(j)β(j) → Xα(j)β(j)

of the respective inverses and the projections are equal. The first condition implies
that the image of every Yj under both f and g lies in Xα(j)β(j), and the second condi-
tion then implies that the resulting morphisms Yj → Xα(j)β(j) are equal. Since the Yj
cover Y, it follows that f and g define the same morphism of schemes. �

Note that we can also compute algorithmically compositions of morphisms of
presentations of schemes. Moreover, if (X1, . . . , Xm), (Y1, . . . , Yn), (Z1, . . . , Zp) are
presentations of schemes X, Y, Z, respectively, and (Y1, . . . , Yn) → (X1, . . . , Xm) and
(Z1, . . . , Zp) → (X1, . . . , Xm) are morphisms of presentations, then the construction
of fibre products of schemes gives a way to compute a presentation of the fibre prod-
uct Y×X Z.

Next, we describe presentations of open subschemes of schemes. Let X be a
scheme, presented as (X1, . . . , Xm). Then an open subscheme U of X is presented
by a tuple (U1, . . . , Un) together with a map α : {1, . . . , n} → {1, . . . , m} and stan-
dard open subschemes Uj → Xα(j) for all j ∈ {1, . . . , n}.

The corresponding description of U as a scheme is then given by the additional
data of the intersections, which can be computed as the open subscheme

Ujj′ = (Uj ×Xα(j)
Xα(j)α(j′))×Uj ϕ−1

j′ j (Uj′ ×Xα(j′)
Xα(j′)α(j))

of Uj, together with the isomorphisms Ujj′ → Uj′ j induced by ϕ−1
j′ j . We then have an

obvious morphism U → X given with respect to the given presentations.

16

1.8 Schemes of finite type over a field

Note that we can test algorithmically whether U = X by testing that for all i
in {1, . . . , m}, the union in the affine scheme Xi over all j ∈ {1, . . . , n} of the open
subschemes ϕ−1

α(j)i(Uj ×Xα(j)
Xα(j)i) is Xi itself.

Let us call a presentation of such an open subscheme U = X of X a refinement;
these present the identity morphism on X. Now note that with the same methods
as in the case of quasi-affine schemes, if two morphisms Z → Y and Y → X are
given, together with a chain of refinements connecting the target of the former to
the source of the latter, one can compute the composition Z → X. Moreover, again
with the same methods as in the case of quasi-affine schemes, if two morphisms
Y → X are given, together with a chain of refinements connecting the targets, and
one connecting the sources, one can test whether these two morphisms are equal.

1.8.4 Finite étale morphisms of schemes
Let (X1, . . . , Xm) be a presentation of a scheme X. Then we present a finite étale
X-scheme (or equivalently, a finite locally constant sheaf on Xét) by a descent datum
w.r.t. the open cover {Xi → X}; more precisely, by the following data:

• for all i ∈ {1, . . . , m} a finite étale morphism Yi → Xi;
• for all i, j ∈ {1, . . . , m} a morphism ψji : Yi ×Xi Xij → Yj ×Xj Xji lying over

the morphism ϕji : Xij → Xji,
such that ψii is the identity on Yi for all i and such that the cocycle condition holds,
i.e. for all i, j, k ∈ {1, . . . , m} the following diagram commutes

Yi ×Xi Xij ×Xi Xik Yj ×Xj Xji ×Xj Xjk

Yk ×Xk Xki ×Xk Xkj

ψji

ψkjψki

Note that a presentation as above in particular defines a (presentation) of a scheme
Y, and a morphism Y → X with respect to the given presentations. A morphism
Z → Y of finite étale X-schemes is therefore simply a commutative triangle

Z Y

X

17

2Euler-Poincaré characteristic of varieties

Let Λ be a finite ring that is injective as a Λ-module; the conditions here are used
to apply Poincaré duality, at the end of Chapter 3. The main example we are in-
terested in is Λ = Z/nZ. For a scheme X, let Λ- Mod(Xét) denote the category of
sheaves of (left) Λ-modules on Xét, and let Λ- Modc(Xét) denote the full subcate-
gory of Λ- Mod(Xét) of constructible sheaves of (left) Λ-modules. Let DΛ(Xét) and
DΛ,c(Xét) denote the corresponding bounded derived categories.

For each morphism f : Y → X of separated schemes of finite type over a field,
we have a triangulated morphism R f! : DΛ,c(Yét) → DΛ,c(Xét), and therefore an
induced group morphism χ f !(Y,−) : K0

(
Λ- Modc(Yét)

)
→ K0

(
Λ- Modc(Xét)

)
be-

tween their Grothendieck groups, called the (relative) Euler-Poincaré characteristic. If
X is the spectrum of the (context-dependent) base field, we will usually omit the
morphism f from the notation; note that in this case χ!(Y,M) is the alternating sum
of the Hq

c (Yksep ,M).
In this chapter and the next, we prove the following.

Theorem 2.1. There exists an algorithm that takes as input a morphism f : X → S of
finite type, with S the spectrum of a factorial field k, a finite ring Λ of order coprime to the
characteristic of k that is injective as a Λ-module, and a finite locally constant sheaf M of
(left) Λ-modules, and outputs χ!(X,M) ∈ K0

(
Λ- Modc(Sét)

)
in an effectively bounded

number of field operations.

In this chapter we will reduce to the case of a curve. More precisely, we assume
for now the existence of the following algorithm (and that it is correct and halts in
effectively bounded time), and come back to it in Chapter 3. (In fact, in Chapter 3 we
will consider a slightly more general situation.)

Algorithm 2.2. Suppose that given as input is a diagram

X U

P1
k Spec k

g

j

π

where g is finite étale, j is a standard open immersion, k is an absolutely factorial field,
together with a finite ring Λ of order coprime to the characteristic of k that is injective as a
Λ-module, and a finite locally constant sheafM of Λ-modules on Xét. Write f = π jg.

Output: R0 f!M, R1 f!M, R2 f!M.

19

Chapter 2 Euler-Poincaré characteristic of varieties

The main idea of the reduction to the case of curves is to make the following
classical results explicit.

(1) Topological invariance of the small étale site (SGA1 [19, Exp. IX, 4.10]): If the
morphism f : X′ → X is a universal homeomorphism (e.g. a finite locally
free purely inseparable morphism), then the pullback functor

f−1 : Λ- Mod(Xét)→ Λ- Mod(X′ét)

and the pushforward functor

f∗ : Λ- Mod(X′ét)→ Λ- Mod(Xét)

are quasi-inverse equivalences.
(2) If i : Z → X is a closed immersion into X with complement j : U → X, then

χ!(X,M) = χ!(U, j−1M) + χ!(Z, i−1M).

(3) If g : Z → Y and f : Y → X are morphisms of schemes, then we have
R f!Rg! = R(f g)! as functors from DΛ,c(Zét)→ DΛ,c(Xét).

Let us first make some remarks on how we plan to use these results.
The intended usage of (2) should be clear; though we do remark that (2) guar-

antees that the computation can be done using only finite locally constant sheaves,
since every constructible sheafM ∈ Λ- Modc(Xét) on a scheme X admits a stratifica-
tion of X into locally closed subschemes, on all of whichM is finite locally constant.
This also allows us to extend the definition of χ!(X,M) to all finite type schemes
over k, in a well-defined way.

A consequence of (1) is that if f : X′ → X is a finite locally free purely inseparable
morphism and X, X′ are separated schemes of finite type over a field, then we have

χ!(X,M) = χ!(X′, f−1M) χ!(X′,M′) = χ!(X, f∗M′)

for all M ∈ Λ- Modc(Xét) and M′ ∈ Λ- Modc(X′ét). This allows us to perform
computations “up to universal homeomorphisms”.

The Grothendieck spectral sequence applied to (3) gives us, for all morphisms
g : Z → Y, f : Y → X between separated schemes of finite type over a field and
M ∈ Λ- Modc(Zét), the identity

χ f g!(Z,M) = χ f !
(
Y, χg!(Z,M)

)
.

We will use this to inductively compute the Euler-Poincaré characteristic, using fi-
brations similar to that in Artin [1, Exp. XI, Sec. 3].

Finally, if we are to utilise Algorithm 2.2, we want to have a sufficient condition
for a relative curve f : X → S between schemes of finite type over a field and a finite
locally constant sheafM to have finite locally constant Rp f!M; this is the subject of
Section 2.3.

2.1 Generic computations on families
In this section, we consider several problems of the following form; given a mor-
phism f : Y → X of affine schemes of finite type over a factorial field k with X in-
tegral, say with generic point η, such that Yη → η has some property P, compute a

20

2.1 Generic computations on families

non-empty open subscheme U of X and a closed subscheme Z of X with complement
U such that f−1(U)→ U has property P.

A simple example that will be useful for us is the following. Given a generically
smooth morphism f : Y → X of affine schemes of finite type over a factorial field k
with X integral, compute a non-empty open subscheme U ⊆ X such that f−1(U) is
smooth over U, and a complement Z of U in X.

In this case this computation is straightforward; we compute the inverse image
in O(X) of the Jacobian ideal in O(Y), pick a non-zero element h of it, and we set
U = DX(h) and Z = VX(h).

2.1.1 Decompositions of finite morphisms

Recall that any reduced finite algebra A over a field k is isomorphic to one of the
form l1 × · · · × ln with the li finite field extensions of k, and that for all li we have a
factorisation k→ ki → li with ki the separable closure of k in li.

We want to replicate this generically in a relative setting, i.e. given a generically
finite morphism f : Y → X from an affine reduced scheme Y to an affine integral
scheme X of finite type over a factorial field k, we want to compute a non-empty
open affine subscheme U ⊆ X for which f−1(U) decomposes as V1 t . . . tVn where
each Vi is integral and admits a factorisation Vi → Ui → U with Vi finite locally free
and purely inseparable over Ui and Ui finite étale over U. In fact, the computation
will also give an O(Ui)-basis of O(Vi) and a O(U)-basis of O(Ui).

We start by computing generically an O(X)-basis of O(Y); for convenience, say
that an explicitly free morphism is a finite locally free morphism Y → X (between
affine schemes of finite type over k) such that O(Y) is free as an O(X)-module, to-
gether with an O(X)-basis for O(Y).

Algorithm 2.3. Suppose that given as input is a generically finite morphism f : Y → X of
affine schemes of finite type over k with X integral and Y reduced. We assume that O(Y) is
given as O(X)[y1, . . . , yn]/(g1, . . . , gt).

Output:
(

f−1(U) → U, f−1(Z)
)
, where U ⊆ X is a non-empty standard open sub-

scheme such that f−1(U) → U is explicitly free, and where Z is a closed subscheme of X
with complement U.

• Compute a reduced Gröbner basis (g′1, . . . , g′t′) of (g1, . . . , gt) in the polyno-
mial ring K(X)[y1, . . . , yn] together with identities g′i′ = ∑i ai′igi with ai′i in
K(X)[y1, . . . , yn], such that every g′i′ is monic.

• Using division with remainder, compute identities gi = ∑i′ bii′g′i′ with bii′ in
K(X)[y1, . . . , yn].

• Let K(Y) = O(Y)⊗O(X) K(X); let B ⊆ K(Y) be the set of monomials in the
yi that are not divisible by any leading monomial of a g′i′ ; this is a K(X)-basis
of K(Y).
• Let h be a non-zero element in O(X) that is a multiple of every denominator

occurring in some ai′i or bii′ .
• Set U = DX(h) and Z = VX(h).
• Output f−1(U) → U (together with the K(X)-basis B), the scheme f−1(Z),

and halt.

21

Chapter 2 Euler-Poincaré characteristic of varieties

Proposition 2.4. Algorithm 2.3 is correct and halts in an effectively bounded number of
field operations.

Proof. By construction of h we have (g′1, . . . , g′t′) = (g1, . . . , gt) in O(U)[y1, . . . , yn],
and since we have chosen the g′i′ to be monic, it follows that the K(X)-basis of
O(Y)⊗O(X) K(X) that is computed is an O(U)-basis of O

(
f−1(U)

)
. �

We also have the following (one-dimensional) variant of this step.

Algorithm 2.5. Suppose that given as input is a morphism X → A1
S of affine schemes of

finite type over k with S integral and X reduced. We assume that X is generically over S
finite locally free over A1

S, and that O(X) is given as O(S)[x][y1, . . . , yn]/(g1, . . . , gt).
Output:

(
f−1(U)→ A1

U , f−1(Z)
)
, where f : X → S is the structure morphism, U ⊆ S

is a non-empty standard open subscheme such that f−1(U) → A1
U is explicitly free, and

where Z is a closed subscheme of X with complement U.
• Compute a reduced Gröbner basis (g′1, . . . , g′t′) of (g1, . . . , gt) in the poly-

nomial ring K(S)[x][y1, . . . , yn] together with identities g′i′ = ∑i ai′igi with
ai′i ∈ K(S)[x][y1, . . . , yn], such that every g′i′ has leading term (with respect
to the yi) of the form h′i′y

e1
1 · · · y

en
n with h′i′ ∈ K(S)[x] monic. This can be

done with respect to any monomial ordering for which y1, . . . , yn > xe for all
positive integers e.
• Let h′ be a non-zero element of K(X)[x] that is a multiple of every h′i′ .
• Using division with remainder, compute identities gi = ∑i′ a′ii′g

′
i′ with a′ii′ in

K(S)[x][y1, . . . , yn].
• Let K(X) = O(X)⊗O(S)[x] K(S)[x]; let B ⊆ K(X) be the set of monomials in

the yi that are not divisible by any leading term of a g′i′ ; let Bh′ ⊆ K(X) be the
set of monomials in the yi that are not divisible by any leading monomial of a
g′i′ ; then Bh′ is linearly independent over K(S)[x], and Bh′ ·K(S)[x] ⊇ h′K(X).

• Compute a K(S)[x]-basis of the image of the multiplication-by-h′-map from
K(X) to Bh′ · K(S)[x], and therefore a K(S)[x]-basis c1, . . . , cs of K(X).

• Write B = {b1, . . . , br} and compute for all j an identity bj = ∑j′ a′′jj′cj′ with
a′′jj′ ∈ K(S)[x].

• Let h be a non-zero element in O(S) that is a multiple of every denominator
occurring in some ai′i, a′ii′ , a′′jj′ , h′i′ , or cj′ .
• Set U = DS(h) and Z = VS(h).
• Output f−1(U)→ U (together with the K(S)[x]-basis C), the scheme f−1(Z),

and halt.

Proposition 2.6. Algorithm 2.5 is correct and halts in an effectively bounded number of
field operations.

Proof. By construction of h we have that (g′1, . . . , g′t′) = (g1, . . . , gt) in the polynomial
ring O(U)[x][y1, . . . , yn], that c1, . . . , cs is defined over O(U), and that c1, . . . , cs is a
O(U)[x]-basis O

(
f−1(U)

)
. �

Now we can perform the construction of the decomposition.

22

2.1 Generic computations on families

Algorithm 2.7. Suppose that given as input is an explicitly free morphism f : Y → X of
affine schemes of finite type over k with X integral and Y reduced.

Output:
(
(Vi → Ui → U)i, f−1(Z)

)
, where U ⊆ X is a standard open subscheme

such that f−1(U) = äi Vi, such that Vi → Ui is finite purely inseparable and explicitly
free, Ui → U is finite étale and explicitly free, and where Z is a closed subscheme of X with
complement U.

• Compute, in terms of the given basis, a K(X)-basis B of K(Y) subordinate to
a decomposition K(Y) = ∏i Li together with factorisations K(X)→ Ki → Li,
where the Li are finite field extensions of K(X), and Ki is the separable closure
of K(X) in Li.
• Let d be the determinant of B and let ∆i be the discriminant of Ki/K(X).
• Let h ∈ O(X) be an element that is a multiple of:

– every denominator occurring in B;
– the numerator and the denominator of d;
– the numerator and the denominator of every ∆i.

• Set U = DX(h) and Z = VX(h)
• Output the decomposition over U induced by the basis B of K(Y), the scheme

f−1(Z), and halt.

Proposition 2.8. Algorithm 2.7 is correct and halts in an effectively bounded number of
field operations.

Proof. By construction. �

2.1.2 Smooth completions of curves

Another construction that we want to perform generically in a relative setting, is the
following one.

Given a finite étale and explicitly free morphism X → U, with U a standard affine
non-empty open subscheme of A1

k , compute a finite purely inseparable extension l
over k and a smooth curve X, finite locally free over P1

l , such that Xl = Ul ×P1
l

X;

note that X is necessarily the normal completion of Xl over l (i.e. the unique proper
normal curve over l with function field that of Xl). In general we cannot take l = k,
as the following standard example (see e.g. Görtz and Wedhorn [16, Ex. 6.22]) shows.

Example 2.9. Let k be a non-perfect field of odd characteristic p, and let α ∈ k be
an element that is not a p-th power in k. Let U = Spec k[x, 1/(xp − α)] and let
X = Spec k[x, y, 1/(xp − α)]/(y2 − xp + α). Then X → U is finite étale, and induces
a finite locally free morphism from the normal completion X of X to P1

k . Above A1
k ,

the curve X is Spec k[x, y]/(y2− xp + α), which is not smooth at the point (y, xp− α).
So X is not smooth.

We explain how to perform this construction, simultaneously for the absolute and
the relative setting. The situation is the following. We are given the right half of the
following diagram.

23

Chapter 2 Euler-Poincaré characteristic of varieties

X X′ X

An−1
l ×l P1

l U′ U An−1
k ×k A1

k

An−1
l An−1

k

j

Here, X is finite étale and explicitly free over U, and j is a standard open immer-
sion. We wish to complete the diagram in such a way that all squares are cartesian,
that X → An−1

l ×l P1
l is generically over An−1

l finite locally free, that X → An−1
l is

generically smooth, that the complement of X′ in X is generically finite over An−1
l ,

and that An−1
l → An−1

k is finite locally free purely inseparable.
We remark that we work here with open subschemes of An

k as base schemes; this
is motivated by the future use of Noether normalisation in the computation.

Note we that we can perform computations over the perfect closure kperf of a field
k within the field k itself, using the fact that the Frobenius automorphism kperf → kperf

induces an isomorphism k1/p → k; any finite set of elements of kperf lies in some
k1/pe

, and we can keep track of this by keeping track of the integer e.
As an example, we describe the computation of radicals over kperf using only

computations in k, using the method of Matsumoto [30].

Example 2.10. Suppose that an ideal I of k[x1, . . . , xm] is given, and assume that k has
characteristic p. We wish to compute the radical J of k⊗ I in k[x1, . . . , xm]. Note that
by Theorem 1.25 (which is Kollár [26, Cor. 1.7]), we can compute a positive integer e
such that if h ∈ J, then hpe ∈ k⊗ I. This also shows that J is defined over k1/pe

.
Denote by ϕ : kperf[x1, . . . , xm] → kperf[x1, . . . , xm] the morphism that raises all co-

efficients to the p-th power. Then note that by the above, ϕe(J) ∩ k[x1, . . . , xm] is the
radical of ϕe|k[x1,...,xm](I), which we compute in the usual way.

Returning to the problem at hand, note that a normal proper curve over a perfect
field is automatically smooth, and it is defined by a finite number of elements of
kperf. Therefore we are done if we have a normalisation algorithm for proper curves
over perfect fields, and in which each step commutes with taking the Frobenius au-
tomorphism on kperf. Roughly speaking, any deterministic algorithm proceeding
constructively should suffice; a more specific example would be that of Diem [10,
Sect. 2.7]. Therefore we have the following.

Corollary 2.11. There exists an algorithm that takes as input a proper curve X over a fac-
torial field k together with a finite locally free morphism X → P1

k , computes a finite purely
inseparable extension l over k, a smooth proper curve Y over k, and the normalisation map
Y → Xl (over P1

l), in an effectively bounded number of field operations.

In case of a function field of the form k(x1, . . . , xn−1), we can even take the exten-
sion to be of the form l(x1/q

1 , . . . , x1/q
n−1) with l a finite purely inseparable extension of

k. This gives rise to the following.

24

2.2 The (relative) 0-dimensional case

Algorithm 2.12. Suppose that given as input is a finite étale and explicitly free morphism
X → U of affine schemes of finite type over k with U ⊆ An

k a non-empty standard affine
open subscheme.

Output: (V → An−1
k , X0 → A1

V , X1 → A1
V , Z → X), where:

• V → An−1
k factors as V → S → An−1

k with V → S a standard open immersion
and S → An−1

k finite locally free purely inseparable, such that S → Spec k factors
through a smooth morphism S → Spec l with l a finite purely inseparable field
extension of k;
• X0, X1 are schemes, finite locally free over the standard open cover of P1

V that coin-
cide with X on U ×An

k
A1

V and that define a scheme smooth over V;
• Z is a complement of X×

An−1
k

V in X×
An−1

k
S.

(So Z → X is the composition of a finite locally free purely inseparable morphism and a
closed immersion.)

• Compute a field extension of k(x1, . . . , xn−1) of the form L = l(x1/q
1 , . . . , x1/q

n−1)
with l a finite purely inseparable extension of k, such that the normal com-
pletion of the fibre of X above Spec L is smooth, using Corollary 2.11; let A0
denote the resulting finite free L[xn]-algebra with basis u1, . . . , us, and let A1
denote the resulting finite free L[x−1

n]-algebra with basis v1, . . . , vs.
• Compute a multiple h ∈ l[x1/q

1 , . . . , x1/q
n−1] of every denominator occurring:

– in a coefficient of 1 and the uiuj as linear combinations of u1, . . . , us;
– in a coefficient of 1 and the vivj as linear combinations of v1, . . . , vs

(in other words, the equations defining A0 and A1 over L).
• Let S be the An−1

k -scheme Spec l[x1/q
1 , . . . , x1/q

n−1], and let V′ be DS(h).

• Let A′0 be the finite free l[x1/q
1 , . . . , x1/q

n−1, 1/h, xn]-algebra defined by the same
equations as A0.
• Similarly, let A′1 be the finite free l[x1/q

1 , . . . , x1/q
n−1, 1/h, x−1

n]-algebra defined
by the same equations as A1.
• Let V be the intersection of the open subschemes of V′ obtained by applying

Algorithm 2.5 to the subschemes of Spec A′0 (resp. Spec A′1) defined by the
Jacobian ideals.
• Compute the complement Z of X×

An−1
k

V in X×
An−1

k
S.

• Output V → An−1
k , Spec A′0 ×A1

S
A1

V → A1
V , Spec A′1 ×A1

S
A1

V → A1
V , and

Z → X, and halt.

Proposition 2.13. Algorithm 2.12 is correct and halts in an effectively bounded number of
field operations.

Proof. Note that as A0 and A1 are smooth over L, the function field of V′, it follows
that the Jacobian ideals of A′0 and A′1 over l[x1/q

1 , . . . , x1/q
n−1, 1/h] generically define

the empty scheme, so the locus V computed is the locus in V′ where both Spec A′0
and Spec A′1 are smooth. The rest follows by construction. �

25

Chapter 2 Euler-Poincaré characteristic of varieties

2.2 The (relative) 0-dimensional case
Let us now consider the computation of the Euler-Poincaré characteristic in the rel-
ative zero-dimensional case. First, we relate pushforwards of sheaves along a finite
locally free morphism f to Weil restrictions (see e.g. Bosch et al. [3, Sec. 7.6]) along f .

Lemma 2.14. Let f : Y → X be a finite locally free morphism of schemes, and let F be a
finite locally constant sheaf on Yét, viewed as its representing finite étale Y-scheme. Then
f∗F is represented by the Weil restriction ResY

X F of F to X.

Proof. Using the functor of points, it is easy to see that ResY
X F is formally étale and

locally of finite presentation over X, therefore étale. It follows that it also represents
the functor Xop

ét → Set given by U 7→ HomY(Y×X U,F), i.e. it represents f∗F . �

So the computation of pushforwards of sheaves along a finite locally free mor-
phism f : Y → X amounts to a computation of a Weil restriction along f ; in the case
that we are also given a O(X)-basis of O(Y), this computation is well-known in our
situation, but we include it here for completeness.

Algorithm 2.15. Suppose that given on input is an effective field k, a finite type k-algebra
A, a finite free A-algebra B, together with an A-basis t1, . . . , tn of B, and let X = Spec A,
Y = Spec B. Moreover, suppose that given on input is a finite locally constant sheaf F on
Yét, given as a finite locally free B-algebra by B[x1, . . . , xm]/(f1, . . . , fs).

Output: the pushforward of F along Y → X.
• Let xij be variables for i ∈ {1, . . . , m}, j ∈ {1, . . . , n}.
• Compute the set I of coefficients of all

fk

(
∑

j
x1jtj, . . . , ∑

j
xmjtj

)
with respect to the A-basis t1, . . . , tj of B.
• Return (the spectrum of) A[xij]/I.

From the given construction of ResY
X F , it is also clear how to construct, given a

morphism S→ ResY
X F of X-schemes, the corresponding morphism S×X Y → F .

Remark 2.16. If f : Y → X is finite étale, then ResY
X F is finite étale over X; this is

Bosch et al. [3, Prop. 7.6.5(f)], but can now also be seen as a consequence of proper
smooth base change. If f : Y → X is a universal homeomorphism, then by topologi-
cal invariance of the small étale site, ResY

X F is finite étale over X.
Note that ResY

X in general does not send finite Y-schemes to finite X-schemes;
an example is given by X = Spec F3[t], Y = Spec F3[t

1
3], Z = Spec F3[t

1
6]; then

we obtain ResY
X Z = Spec F3[t, t−

1
2] using Algorithm 2.15 applied to the F3[t]-basis

1, t
1
3 , t

2
3 of F3[t

1
3], and the functorial bijection

HomF3[t]
(
F3[t, t−

1
2], A

)
→ Hom

F3[t
1
3]

(
F3[t

1
6], A⊗F3[t] F3[t

1
3]
)

is given by f 7→ (t
1
6 7→ f (t−

1
2)t

2
3).

26

2.3 Higher derived images along relative curves

2.3 Higher derived images along relative curves

We show that under certain circumstances, the higher derived images of finite lo-
cally constant sheaves of Λ-modules are finite locally constant. We first define the
condition needed, this is a variant of the notion of a fibration élémentaire of SGA4.3
[1, Exp. XI, Sec. 3].

Definition 2.17. Let f : X → S be a smooth curve between separated schemes of
finite type over a field k, and letM ∈ Λ- Modc(Xét) be finite locally constant. Then
f is said to be anM-elementary fibration if there exists a commutative diagram

Y Y Z

X Z′

S

g

j

f g

i

f

such that:

• j is an open immersion,
• i is a closed immersion with complement j,
• g is finite étale Galois (with respect to some finite group Γ),
• f g is smooth and proper,
• Z → Z′ is finite locally free purely inseparable,
• Z′ → S is finite étale,
• g−1M is constant.

We can now state this section’s main result precisely, as follows; we say that an
object M of DΛ,c(Xét) (for a scheme X) has finite locally constant cohomology if Hi(M)
is finite locally constant for all i.

Theorem 2.18. Let f : X → S be a smooth morphism of separated schemes of finite type
over a field k, and letM ∈ Λ- Modc(Xét) be finite locally constant. Suppose that f is an
M-elementary fibration. Then R f!M has finite locally constant cohomology.

We first include the following homological algebra lemma.

Lemma 2.19. Let X be a scheme, and let

M1 M2 M3 M4 M5

be an exact sequence in Λ- Mod(Xét) Suppose that M1,M2,M4,M5 are finite locally
constant. Then so isM3.

Proof. By SGA4.3 [1, Prop. IX.2.1], M ∈ Λ- Mod(Xét) is finite locally constant if
and only if for all geometric points x0, x1 of X with x0 a specialisation of x1, the
specialisation mapMx0 → Mx1 is an isomorphism. Considering for all geometric

27

Chapter 2 Euler-Poincaré characteristic of varieties

points x0, x1 of X with x0 a specialisation of x1, the diagram

M1,x0 M2,x0 M3,x0 M4,x0 M5,x0

M1,x1 M2,x1 M3,x1 M4,x1 M5,x1 ,

shows that we are done by the Five Lemma. �

Corollary 2.20. Let X be a scheme, and let M, N, P ∈ DΛ,c(Xét) be vertices of a triangle

M N P M[1].

If M and N have finite locally constant cohomology, then so does P.

Corollary 2.21. Let X be a scheme, and let Ep,q
r≥r0

be a first-quadrant spectral sequence in
Λ- Mod(Xét) converging to Hp+q. If all Ep,q

r0 are finite locally constant, then so are all Hi.

Now the proof of Theorem 2.18 follows from the following two lemmas.

Lemma 2.22. Consider the following commutative diagram of schemes

X X Z

S
f

j

f

i

where f is proper and smooth, j is an open immersion, and i is a closed immersion. Suppose
moreover that f i is a composition Z → Z′ → S with Z → Z′ finite locally free purely
inseparable, and Z′ → S finite étale. Let M be a finite Λ-module. Then R f! M has finite
locally constant cohomology.

Proof. Note that we have a canonical exact sequence

0 j! M M i∗M 0.

Applying R f ∗ to it gives the triangle

R f! M R f ∗M R(f i)∗M (R f! M)[1].

As f is proper and smooth, it follows that R f ∗M has finite locally constant cohomol-
ogy, and as f i is the composition of a finite étale morphism and a universal home-
omorphism, it follows that R(f i)∗M has finite locally constant cohomology. So by
Corollary 2.20, it follows that R f! M has finite locally constant cohomology as well,
as desired. �

Lemma 2.23. Let g : Y → X be a finite étale Galois morphism of schemes with Galois group
Γ, and let f : X → S be a morphism of separated schemes of finite type over a field k. Let
M ∈ Λ- Modc(Xét) such that R(f g)!g−1M has finite locally constant cohomology. Then
R f!M has finite locally constant cohomology.

28

2.4 The algorithm

Proof. We employ some abuse of notation. Let iΓ denote both the functor from
Λ[Γ]- Modc(Xét) to Λ- Modc(Xét) and the one from Λ[Γ]- Modc(Sét) to Λ- Modc(Sét)
sending M to the sheaf MΓ of Γ-invariants. Note that RiΓM has finite locally
constant cohomology for any finite locally constant sheaf M, and that we have
RiΓRg!g−1M = R(iΓg∗g−1)M (see e.g. Fu [13, Sec. 9.1]). Moreover, we have the
identity RiΓR f! = R f!RiΓ, so

RiΓR(f g)!g−1 = RiΓR f!Rg∗g−1 = R f!R(iΓg∗g−1) = R f!.

The corresponding Grothendieck spectral sequence is the Hochschild-Serre spectral
sequence

Ep,q
2 = Hp(Γ, Rq f!g!g−1M)⇒ Rp+q f!M,

so by Corollary 2.21 it follows that R f!M has finite locally constant cohomology. �

As a corollary, we give an algorithm computing the pushforward along a smooth
curve admitting an elementary fibration.

Algorithm 2.24. Suppose that given as input is a curve f : X → S with S irreducible,
smooth, and affine andM ∈ Λ- Modc(Xét) on X. Assume that f admits anM-elementary
fibration.

Output: a non-empty open standard subscheme U ⊆ S, a complement Z of f−1U, and
Ri f!A|U for i = 0, 1, 2.

• Compute the generic fibre Yi of Ri f!A over S as (the spectrum of) a finite free
K(S)-algebra with basis t1, . . . , ts.

• Compute a multiple h ∈ O(S) of every denominator occurring in the equa-
tions defining Yi, and of the discriminant of Yi over K(S).
• Output U = DS(h), and for each i the finite étale U-scheme defined by the

same equations as Yi, together with the Λ-module structure, and halt.

Proposition 2.25. Algorithm 2.24 is correct.

Proof. We have established above that Ri f!A over is S is finite locally constant, hence
representable by a finite étale S-scheme. So once we have computed the generic fibre,
the scheme is just the normalisation of S in K(Yi); which shows that there is a unique
finite étale S-scheme with generic fibre Yi. As the algorithm computes a finite étale
U-scheme with generic fibre Yi, it must be the finite étale U-scheme representing
Ri f!A|U . �

2.4 The algorithm
The main idea of the algorithm that follows will be to factor any finite type k-scheme
(locally in the constructible topology, and up to universal homeomorphisms) into
elementary fibrations, when given a finite locally constant sheaf on it. Note that we
can (locally) compute pushforwards along universal homeomorphisms using Algo-
rithm 2.15, and that we can compute higher direct images along elementary fibra-
tions using Algorithm 2.24.

We will formulate the algorithm recursively. For clarity of exposition, we will not
explicitly write out the partitioning of X into an open and a closed subscheme and

29

Chapter 2 Euler-Poincaré characteristic of varieties

the recursive calls corresponding to them; instead we will indicate them by the word
“generic” (or variations thereof).

Algorithm 2.26 (EPC). Suppose that given as input is a finite type k-scheme X, a finite
ring Λ of order coprime to the characteristic of k that is injective as a Λ-module, and a finite
locally constant sheafM on X of Λ-modules.

Output: χ!(X,M).

• If X is not given as an affine scheme, say given by (X1, . . . , Xm) with m ≥ 2,
then output EPC(X1,M|X1) + EPC(X− X1,M|X−X1) and halt.
• If X is not reduced, then output EPC(Xred,M|Xred) and halt.
• Compute a finite morphism X → An

k by Noether normalisation.
• If n = 0, output the pushforward of A using Section 2.2, and halt.
• Compute generically a decomposition X → X′ → An

k with X′ → An
k finite

étale, X → X′ is finite locally free purely inseparable using Section 2.1.1.
• If n = 1, let f be the structure morphism X → Spec k, output the alternating

sum R0 f!M− R1 f!M+ R2 f!M using the black box Algorithm 2.2, and halt.
• Compute a finite étale Galois morphism g : Y → X such that Y is connected

and g−1M is constant, say with value M.
• Compute generically a finite purely inseparable extension l over k, a finite

locally free purely inseparable morphism An−1
l → An−1

k , and a smooth com-
pletion Y of Y×

An−1
k

S as in Algorithm 2.12, with complement a composition
of a finite étale morphism and a finite locally free purely inseparable mor-
phism using Section 2.1.1.
• Compute the pullbackM′ ofM along the projection X×

An−1
k

An−1
l → X.

• Compute generically the higher direct images N0,N1,N2 of M′ along the
morphism X×

An−1
k

An−1
l → An−1

l using Algorithm 2.24.
• Compute the pushforward P0,P1,P2 of N0,N1,N2, respectively along the

morphism An−1
l → An−1

k using Section 2.1.1.
• Output EPC(An−1

k ,P0)− EPC(An−1
k ,P1) + EPC(An−1

k ,P2) and halt.

Proposition 2.27. Algorithm 2.26 is correct and halts in effectively bounded time.

Proof. Correctness follows by construction, taking into account the dévissage tech-
niques mentioned in the beginning of this chapter, and Section 2.3. Moreover, it
halts in effectively bounded time, as each step does, and as the total number of
steps is bounded exponentially in the dimension of X; each recursive call reduces
the dimension of X by 1, and the number of such calls per loop is bounded by a
constant. �

2.5 Application: Counting points on varieties

In this section, we describe how to reduce the computation of the number #X(Fq) of
Fq-points of a finite type scheme X to the computation of χ!(XQ, Z/`Z) for primes
`. More precisely, we prove the following proposition.

30

2.5 Application: Counting points on varieties

Proposition 2.28. Let X be a finite type scheme. There exists an algorithm that takes as
input a prime power q and a prime ` coprime to q, and outputs #X(Fq) mod ` in effectively
bounded time, which for fixed ` is polynomial in log q.

If there exists an algorithm that takes as input a prime `, and computes χ!(XQ, Z/`Z)
in time polynomial in `, then there exists an algorithm as above with complexity polynomial
in ` and log q.

Corollary 2.29. Let X be a finite type scheme. If there exists an algorithm that takes as
input a prime `, and computes χ!(XQ, Z/`Z) in time polynomial in `, then there exists an
algorithm that takes as input a prime power q and outputs #X(Fq) in time polynomial in
log q.

Proof. We use the same trick that is used also in Schoof [35] to compute the number
of Fq-points of elliptic curves in time polynomial in log q. Note that we have a triv-
ial upper bound for #X(Fq) that is polynomial in q; we assume that X is given by
gluing data, so that we have an open cover {X1, . . . , Xm} of affine schemes, given
as closed subschemes of An for some fixed n. Hence we have a trivial upper bound
#X(Fq) ≤ mqn. Therefore we can apply the aforementioned trick of computing the
number #X(Fq) modulo mqn + 1, by using the Chinese Remainder Theorem and
computing #X(Fq) modulo ` for a finite set of primes such that ∏` ` ≥ mqn + 1; by
the prime number theorem, we can take a set of primes that are bounded polynomi-
ally in log q. �

We will mainly focus on the proof of the second part of Proposition 2.28. So let
X be a finite type scheme, and suppose that there exists an algorithm that takes as
input a prime `, and outputs χ!(XQ, Z/`Z) in time polynomial in `. We describe
how to compute in time polynomial in log q the number #X(Fq) of Fq-points of X
under this assumption.

Note that X itself is not part of the input of the algorithm to be constructed, so we
can allow ourselves any amount of extra data that only depends on X. We start by
describing this data.

Recall that the Grothendieck group of finite type schemes is the quotient of the free
abelian group generated by the isomorphism classes of finite type schemes by the
subgroup generated by the following:

• [X′]− [X] for every universal homeomorphism X′ → X;
• [X]− [U]− [Z] for every closed subscheme Z ⊆ X with complement U.

By the standard dévissage techniques for étale cohomology, we see that the étale
Euler-Poincaré characteristic χ!(XQ, Z/`Z) only depends on the class of X in the
Grothendieck group.

By generically factoring finite type schemes into relative curves, using the same
techniques as in the previous sections, we see that the following holds.

Proposition 2.30. Let X be a finite type scheme. Then there exist finite type schemes Xi that
either are proper smooth over Spec Fp for some prime p, or proper smooth over Spec Z[1/N]
for some N squarefree, and integers ai such that [X] = ∑i ai[Xi].

Let SX denote the set of primes that either occur in some Fp, or as a divisor of
some N. We will assume that an expression of the form [X] = ∑i ai[Xi] for X as in

31

Chapter 2 Euler-Poincaré characteristic of varieties

Proposition 2.30 is given, and let fi : Xi → Spec Z be the structure morphism; the
finite set SX can then be easily computed from it.

We will now use the Lefschetz trace formula to compute #X(Fq) modulo ` in time
polynomial in `. First, note that we have the following.

Proposition 2.31. For all primes p 6= ` such that p 6∈ SX , we have

χ!(XFp , Z/`Z)(F
sep
p) = χ!(XQ, Z/`Z)(Qsep)

in K0(Z/`Z).

Proof. Let N be the product of ` and all primes in SX . Note that

χ!(XZ[1/N], Z/`Z) = ∑
i

aiχ!(Xi,Z[1/N], Z/`Z)

= ∑
i

ai ∑
q
(−1)qRq(fi,Z[1/N])!(Z/`Z)

is a sum of finite locally constant sheaves of Z/`Z-modules on Spec Z[1/N] by
proper smooth base change, and the result follows. �

Next, we recall the definition of the trace.

Definition 2.32. Let k be a field, let Λ be a (not necessarily commutative) k-algebra,
let λ ∈ Λ, and let M be a Λ-module that is finite as a k-module. Then the trace
Tr(λ; M) ∈ k is the trace (as k-linear map) of the endomorphism M → M given by
multiplication by λ.

Note that for any short exact sequence

0 M N P 0

of Λ-modules that are finite over k, we have Tr(λ; N) = Tr(λ; M) + Tr(λ; P). There-
fore we have well-defined traces of elements of the corresponding Grothendieck
groups as well. Moreover, we have Tr(λµ; M) = Tr(µλ; M) for all λ, µ ∈ Λ and
Λ-modules M that are finite over k.

Theorem 2.33 (Lefschetz trace formula, SGA4.5 [7, Rapport, Thm. 4.10]). Let X be
a Fp-scheme of finite type, and let F ∈ Gal(Fsep

p /Fp) denote the Frobenius morphism
x 7→ xp. Then

#X(Fpn) = Tr
(

F−n; χ!(XFp , Z/`Z)
)
.

Remark 2.34. The theorem cited is more general; in the notation there, we take K and
Λ equal to Z/`Z. Moreover, the notion of trace used here is different from the notion
of trace used in SGA4.5 [7], but by the theory of Frobenii, the numbers are the same
(see also SGA4.5 [7, Rapport, Sec. 1.8]).

We now indicate, following the proof of Theorem 15.1.1 in Couveignes and Edix-
hoven [5] how to use this to compute #X(Fq) modulo `.

Let π denote the étale fundamental group of Spec Z[1/N] at some base point.
Then we have morphisms Gal(Fsep

p /Fp) → π and Gal(Qsep/Q) → π (correspond-
ing to the morphisms Spec Fp → Spec Z[1/N] and Spec Q → Spec Z[1/N], respec-
tively) that are well-defined up to inner automorphisms. Moreover, the latter mor-
phism is surjective, so the Frobenius morphism in Gal(Fsep

p /Fp) defines a conjugacy

32

2.5 Application: Counting points on varieties

class in Gal(Qsep/Q), and we find that for any element in this conjugacy class, its
trace on χ!(XQ, Z/`Z) (in K0

(
Z/`Z[Gal(Qsep/Q)]

)
) is equal to the trace of Frobe-

nius on χ!(XFp , Z/`Z) (in K0
(
Z/`Z[Gal(Fsep

p /Fp)]
)
).

Algorithm 2.35 (see also Couveignes and Edixhoven [5, Thm. 15.1.1]). Suppose that
given as input are primes p 6= ` such that p 6∈ SX , and a positive integer n.

Output: #X(Fpn) mod `

• Compute χ!(XQ, Z/`Z) as a finite sum ∑i ai Mi with ai ∈ Z and Mi a finite
Z/`Z[Gal(Qsep/Q)]-module.
• For each Mi, let Ki be a finite Galois extension of Q over which Mi is given

as a finite Gal(Ki/Q)-module on which Gal(Ki/Q) acts faithfully.
• Let Ai be the ring of integers of Ki, let Ai = Ai/pAi, and compute a decom-

position Ai = ∏j Aij of Ai into finite field extensions Aij of Fp.
• By enumerating all elements of Gal(Ki/Q), find an element Fi ∈ Gal(Ki/Q)

acting on some Aij as Frobenius.
• Output ∑i ai Tr

(
F−n

i ; Mi
)
, and halt.

Proposition 2.36. If Algorithm 2.35 uses in its first step an algorithm that takes as input a
prime ` and outputs χ!(XQ, Z/`Z) in time polynomial in `, then Algorithm 2.35 is correct
and halts in time polynomial in `, log p, and n.

Proof. Correctness follows by construction.
For the bound on the complexity, note that the assumption that χ!(XQ, Z/`Z) can

be computed in time polynomial in ` implies that the number of Mi, their dimensions
over Z/`Z, the size (i.e. the logarithm of the absolute value) of the coefficients of
Ai over Z, and the orders of the groups Gal(Ki/Q) are all polynomially bounded
in `. Moreover, the reduction of the Ai modulo p can be done in time polynomial
over log p, so we see that the endomorphism Fn

i of Mi can be computed in time
polynomial in `, log p, and n, and therefore its trace as well. �

As a corollary, we obtain a proof of Proposition 2.28, and therefore, under the
assumption that there exists an algorithm that takes as input a prime ` and outputs
χ!(X, Z/`Z) in time polynomial in `, a positive answer to the question stated in the
introduction.

33

3Cohomology of smooth curves

The goal of this chapter is to describe an algorithm for Algorithm 2.2. A key
ingredient is the fact that, for a finite étale Galois morphism g : X′ → X of smooth
curves with Galois group Γ, we can make the equivalence between the category of
finite étale Γ-schemes over X′ and the category of finite étale schemes over X explicit.
Note that under this equivalence, a finite étale group scheme on X corresponds to
a Γ-equivariant group scheme on X′. We will use this to reduce to the following
situation.

Let f : X → Spec k be a smooth connected curve, let Γ, G be finite groups such
that Γ acts on X and on G by automorphisms. Consider the stack T = T G

Γ,X over k of
Γ-equivariant G-torsors on X over k. We then construct a groupoid scheme R ⇒ U ,
together with a morphism of the corresponding fppf prestack [U/R]→ T such that
U (k) → T (k) induces a Gal(ksep/k)-equivariant bijection π0(Uksep) → T (ksep)/∼=.
To this end, we only require a few properties.

Proposition 3.1. Let T be a separated étale algebraic stack over a field k. Let R ⇒ U be
a groupoid scheme such that R and U are affine and of finite type over k. Let [U/R] → T
be a morphism of fppf prestacks such that for all perfect field extensions l of k, the functor
[U/R](l) → T (l) is an equivalence, and such that the isomorphism classes in U (k) are
connected.

Then the map U (k)→ Ob T (ksep)/∼= is a Gal(ksep/k)-equivariant map that is surjec-
tive, and factors through a Gal(ksep/k)-equivariant bijection π0(Uksep)→ Ob T (k)/∼=.

If in addition the isomorphism classes in U (k) are irreducible, then the connected compo-
nents of Uksep are irreducible.

Proof. The surjectivity of the map U (k) → Ob T (ksep)/∼= and its compatibility with
the Galois action is clear from the identity Gal(ksep/k) = Gal(k/kperf) and the as-
sumption that [U/R](l)→ T (l) is an equivalence for every perfect field extension l
of k, so let us show that the map factors through π0(Uk).

Let x ∈ U (k) and let j : U → Uk be the open immersion of the connected com-
ponent U containing x into Uk. Moreover, let f : U → Spec k denote the structure
morphism, and let i : Uk → U be the projection morphism. Let Y ∈ U (U) denote the
“universal object”; i.e. the object corresponding to the identity map on U .

Define Y1 = j−1i−1Y , Y2 = f−1x−1Y ∈ U (U), and consider their images in
Ob T (U). Then the Hom-sheaf HomT (U)(Y1, Y2) is representable by a finite étale
U-scheme as T is separated and étale over k.

35

Chapter 3 Cohomology of smooth curves

Moreover, it is surjective as by construction HomT (U)(Y1, Y2)(x) is non-empty
and U is connected. Hence for any point x′ ∈ U (k), the set HomT (U)(Y1, Y2)(x′) is
non-empty as well. Therefore the morphism U (k) → Ob T (k)/∼= factors through a
surjective Gal(ksep/k)-equivariant map π0(Uk)→ Ob T (k)/∼=. Note that the source
of this map is equal to π0(Uksep) as Spec k → Spec ksep is a universal homeomor-
phism, and that the target of this map is Ob T (ksep)/∼= as T is étale over k.

As the map π0(Uksep) → Ob T (ksep)/∼= is surjective and isomorphism classes in
U (ksep) are connected (and therefore are disjoint unions of connected components
of U (ksep)), it follows that map π0(Uksep) → Ob T (ksep)/ ∼= is bijective. Finally,
if the isomorphism classes in U (ksep) are irreducible, then it follows from this that
connected components of Uksep must be irreducible as well. �

In particular, since in our case T is a separated étale algebraic stack over k, we
see that as soon as we construct an explicit groupoid scheme R ⇒ U satisfying the
conditions of Proposition 3.1, we have a proof of the finiteness of Ob T (ksep)/∼= as
π0(ObXksep) is finite.

We give a rough description of the construction of such a groupoid scheme in the
case in which X is projective; the affine case is then reduced to this one. We fix a
finite locally free morphism π : X → P1

k (such that Γ acts on X/P1
k), and we note that

for a k-scheme S, giving a Γ-equivariant G-torsor on XS is equivalent to giving
• a finite locally free OP1

S
-algebra OY, together with compatible actions of the

finite groups Γ and G,
• a morphism ϕ : π∗OX → OY that is Γ-equivariant and G-equivariant for the

trivial action of G on π∗OX ,
such that ϕ corresponds to a G-torsor on X; in particular, OY is finite, étale, and of
constant rank #G as an π∗OX-algebra. The desired groupoid schemeR⇒ U then is
one in which U has a moduli interpretation in terms of the objects above.

This chapter is roughly divided into four parts. In the first part, we set up a
language for “universal linear algebra over P1”. In the second part (starting from
Section 3.7) and the third part (starting from Section 3.13), we use this in order to
describe a groupoid scheme with the desired properties, in the projective and affine
case, respectively. Finally, we then use this description in the last part (starting from
Section 3.17) to compute Rq f∗ and Rq f! for q = 0, 1, 2.

3.1 Category schemes
In our construction of the desired groupoid scheme, categories that are not groupoids
will arise naturally. Therefore we will need the notion of a category scheme, which is
(for the cognoscenti) an internal category (see e.g. Johnstone [23, Sec. B.2.3]) in the
category of schemes over a fixed base scheme. We work out what this means below.

Definition 3.2. Let S be a scheme. A category scheme C over S consists of:
• S-schemesRC ,UC (the scheme of morphisms, resp. scheme of objects);
• S-morphisms α, ω : RC → UC (the source, resp. target morphisms);
• an S-morphism 1: UC → RC (the unit morphism);
• an S-morphism ◦ : RC ×α,ω RC → RC (the composition morphism),

36

3.1 Category schemes

such that the following diagrams commute.
• (source and target of unit)

UC

RC RC

UC

1 1

ω α

• (source and target of composition)

RC RC ×α,ω RC RC

UC RC UC

ω

π1

◦

π2

α

ω α

• (unit)

RC RC ×α,ω RC RC

RC

(1ω,id)

id
◦

(id,1α)

id

• (associativity)

RC ×α,ω RC ×α,ω RC RC ×α,ω RC

RC ×α,ω RC RC

(◦,id)

(id,◦) ◦
◦

We will use the notation Ob C instead of UC if we view it as a scheme of objects.
We also define the corresponding notion of a functor.

Definition 3.3. Let S be a scheme, and let C and D be category schemes. A functor
F : C → D consists of S-morphisms RF : RC → RD and UF : UD → UD such that
the following diagrams (representing respectively the compatibility of F with source
and target, unit, and composition) commute.

RC RD RC RD

UC UD UC UD

RF

ω ω

RF

α α

UF UF

UC UD

RC RD

UF

1 1
RF

37

Chapter 3 Cohomology of smooth curves

RC ×α,ω RC RD ×α,ω RD

RC RD

RF×RF

◦ ◦

RF

An equivalent way to describe a category scheme is as follows; this uses the alter-
native description of a category given in e.g. Gelfand and Manin [14, Ex. II.1.1].

Definition 3.4. Let S be a scheme. A single-sorted category scheme consists of:

• an S-scheme C;
• S-morphisms α, ω : C → C (the source, resp. target morphisms);
• an S-morphism ◦ : C ×α,ω C → C (the composition morphism),

such that the following diagrams (representing respectively the relations regarding
the source and target of the unit, the source and target of the composition, the unit
morphism, and associativity) commute.

C C

C C C C

C C

ωω

ω

αα

α

ω α ω α

C C ×α,ω C C

C C C

ω

π1

◦

π2

α

ω α

C C ×α,ω C C

C

(ω,id)

id
◦

(id,α)

id

C ×α,ω C ×α,ω C C ×α,ω C

C ×α,ω C C

(◦,id)

(id,◦) ◦
◦

The term single-sorted refers to the fact that this notion of a category uses only
one “type”, namely that of morphisms. We now define functors for this notion of
category scheme.

38

3.2 The category scheme of standard modules

Definition 3.5. Let S be a scheme, and let C andD be single-sorted category schemes
over S. A functor F : C → D is a morphism of schemes such that the following dia-
grams (representing the compatibility of F with source and target, and with compo-
sition, respectively) commute.

C D C D

C D C D

F

ω ω

F

α α

F F

C ×α,ω C D ×α,ω D

C D

F×F

◦ ◦

F

Note that we obtain a category CatS of category schemes over S, as well as a
category Cat′S of single-sorted category schemes over S. In order to avoid confusion
with the category Cat of small categories, we will never drop the base scheme S from
the notation. By construction, we have the following.

Proposition 3.6. The functor CatS → Cat′S sending an object (U ,R, α, ω, 1, ◦) to the
object (R, 1α, 1ω, ◦) is an equivalence and has as quasi-inverse the functor Cat′S → CatS
sending an object (C, α, ω, ◦) to (E, C, α, ω, i, ◦), where i : E → C is the equaliser of α and
ω.

Proof. By construction. �

Finally, using the Yoneda lemma, one also has descriptions of category schemes in
terms of the functor(s) of points. We will use all of these descriptions interchangably
from now on.

3.2 The category scheme of standard modules
We start to carry out the program outlined in the introduction of this chapter by
constructing an affine category scheme of finite type over k modeling the category of
vector bundles on P1

k , presented as in Section 1.6.2. Its objects over a k-scheme S will
be of the following kind. Let Seq = Seq(Z) denote the set of all finite sequences of
integers.

Definition 3.7. Let S be a scheme, and let a = (ai)
s
i=1 ∈ Seq be a finite sequence of

integers. The standard module of type a over S is the OP1
S
-module

OP1
S
(a) =

s⊕
i=1

OP1
S
(ai).

Let S ⊆ Seq. A locally standard module of type in S is an OP1
S
-module E such that

there exists a locally constant map q : S → S such that E|q−1(a) = OP1
q−1(a)

(a) for all

a ∈ S .

39

Chapter 3 Cohomology of smooth curves

So, as mentioned before, Theorem 1.23 states that every vector bundle over OP1
k

for a field k is isomorphic to a locally standard module over k. In the remainder of
this section, we define the category scheme of locally standard modules, together
with some additional (“linear algebraic”) structure we will be using in later con-
structions. Our choice of base scheme will be Spec Z; this doesn’t cause any loss of
generality, and will be easier on the notation.

3.2.1 Construction
We construct the category scheme of locally standard modules over k as a disjoint
union of affine schemes of finite type over k, which we describe first. To this end, we
identify, for a scheme S, the scheme P1

S with ProjSOS[x, y], and for all integers n, the
OS-module OP1

S
(n)(P1

S) with OS[x, y]n, the degree n part of OS[x, y].

Definition 3.8. Let S ⊆ Seq. The category scheme Modst
S of locally standard modules of

type in S is the functor Schop → Cat that sends a scheme S to the category of locally
standard modules of type in S .

We show that this functor is representable, so that it indeed is a category scheme.
To this end, we introduce an auxiliary functor.

Definition 3.9. Let a, b ∈ Seq. The functor Modst
b,a is the functor Schop → Set that

sends a scheme S to the set of OP1
S
-linear maps OP1

S
(a)→ OP1

S
(b).

Lemma 3.10. Let a, b ∈ Seq. The functor Modst
b,a is representable by A

N(b,a)
k where

N(b, a) = ∑σ,τ max(0, bτ − aσ + 1).

The proof of Lemma 3.10 follows from the following. Note that for all schemes S,
we have

HomO
P1

S

(
OP1

S
(a),OP1

S
(b)
)
=
⊕
i,j

HomO
P1

S

(
OP1

S
(ai),OP1

S
(bj)

)
,

=
⊕
i,j
OP1

S
(bj − ai)(P

1
S);

so therefore we obtain an identification

HomO
P1

S

(
OP1

S
(a),OP1

S
(b)
)
=
{

M ∈ Matt,s
(
OS(S)[x, y]

)
: Mji ∈ OS(S)[x, y]bj−ai

}
,

where s and t are the lengths of a and b, respectively.
Note that this is anO(S)-module admitting anO(S)-basis given by, for all i, j, and

λ ∈
{

0, 1, . . . , bj − ai
}

, the t× s-matrix Ejiλ that has zeroes everywhere except for the
(j, i) entry, which is xλybj−ai−λ (taking the lexicographical order for triples (j, i, λ)).
The result follows.

We therefore get the representability of Modst
S as a consequence.

Proposition 3.11. Let S ⊆ Seq. The functor Modst
S is representable by the category scheme

(Modst
S , α, ω, ◦), where
• Modst

S = äa,b∈S Modst
b,a;

40

3.2 The category scheme of standard modules

• α : Modst
S → Modst

S is the morphism such that

αb,a = α|Modst
b,a

: Modst
b,a → Modst

a,a

is the constant morphism with value the identity matrix;
• ω : Modst

S → Modst
S is the morphism such that

ωb,a = ω|Modst
b,a

: Modst
b,a → Modst

b,b

is the constant morphism with value the identity matrix;
• ◦ : Modst

S ×α,ω Modst
S is the morphism such that

◦c,b,a = ◦|Modst
c,b ×Modst

b,a
: Modst

c,b×Modst
b,a → Modst

c,a

is the morphism given by matrix multiplication.

If S is finite, then Modst
S is affine and of finite type.

Proof. By definition, the functor Modst
S is the Zariski sheafification of the functor

äb,a∈S Modst
b,a. It follows that Modst

S is representable by äb,a∈S Modst
b,a. Moreover,

for all schemes S we have by construction that the maps α(S), ω(S), and ◦(S) coin-
cide with the source, target, and composition maps on the category of locally stan-
dard modules of type in S .

Finally, if S is finite, then Modst
S is a finite disjoint union of affine schemes of finite

type, therefore affine and of finite type itself. �

Corollary 3.12. For all a ∈ Seq, the scheme Ob Modst
{a} is representable by Spec Z.

Let S ⊆ Seq. The functor Ob Modst
S is representable by äa∈S Ob Modst

{a}.

Note that by construction, for any field k, the category of k-points of Modst is equal
to the category P(k) of Section 1.6.2.

Expanding everything in terms of the basis {Ejiλ} of Matb,a described above, we
find that the following an explicit description of Modst

1 .

Formulary 3.13. Let a, b, c ∈ Seq be of lengths s, t, u, respectively. Then

Modst
b,a = Spec Z[xjiλ : 1 ≤ j ≤ t, 1 ≤ i ≤ s, 0 ≤ λ ≤ bj − ai].

The morphisms αb,a : Modst
b,a → Modst

a,a and ωb,a : Modst
b,a → Modst

b,b are given in
terms of the coordinate rings by

xjiλ 7→
{

1 if i = j (so λ = 0);
0 otherwise.

The morphism ◦c,b,a : Modst
c,b×Modst

b,a → Modst
c,a is given in terms of the coordinate

rings by

xkiλ 7→
t

∑
j=1

∑
(λ1,λ2)

xkjλ1 ⊗ xjiλ2 ,

where (λ1, λ2) runs through all pairs of integers with the properties λ1 + λ2 = λ,
0 ≤ λ1 ≤ ck − bj, and 0 ≤ λ2 ≤ bj − ai.

41

Chapter 3 Cohomology of smooth curves

3.2.2 Direct sums

We describe direct sums in Modst. For a scheme S, and a, a′ ∈ Seq of lengths s, s′,
respectively, we identify the direct sum OP1

S
(a) ⊕ OP1

S
(a′) with OP1

S
(aa′), where

aa′ is the concatenation of a and a′. Using this identification, we obtain a func-
tor ⊕ : Modst×Modst → Modst of categories, sending for all schemes S a pair
(M, M′) ∈ Modst(S)×Modst(S) to M⊕M′.

Lemma 3.14. The functor ⊕ : Modst×Modst → Modst is the morphism such that

⊕b,b′ ,a,a′ = ⊕|Modst
b,a ×Modst

b′ ,a′
: Modst

b,a×Modst
b′ ,a′ → Modst

bb′ ,aa′

sends, for any scheme S, the pair (M, M′) ∈ Modst
b,a(S)×Modst

b′ ,a′(S) to the direct sum
M⊕M′ : OP1

S
(b)⊕OP1

S
(b′)→ OP1

S
(a)⊕OP1

S
(a′).

Expanding this in the same way as in Formulary 3.13, we find the following.

Formulary 3.15. Let a, b, a′, b′ ∈ Seq, of lengths s, t, s′, t′, respectively. Notation is as
in Formulary 3.13. The morphism ⊕b,b′ ,a,a′ : Modst

b,a×Modst
b′ ,a′ → Modst

bb′ ,aa′ is given
in terms of the coordinate rings by

xj,i,λ 7→

xj,i,λ ⊗ 1 if 1 ≤ i ≤ s and 1 ≤ j ≤ t;
1⊗ xj−t,i−s,λ if s + 1 ≤ i ≤ s + s′ and t + 1 ≤ j ≤ t + t′;
0 otherwise.

3.2.3 Tensor products and duals

We describe tensor products in Modst. If S is a scheme, a, a′ ∈ Seq, then we identify
the tensor product OP1

S
(a)⊗O

P1
S
OP1

S
(a′) with

⊕
i,i′ OP1

S
(ai + a′i′), together with the

lexicographical ordering on the pairs (i, i′).
Let us therefore introduce the notation a⊕ a′ for the finite sequence (ai + a′i′)i,i′ to-

gether with the lexicographical ordering on the pairs (i, i′). The identification above
now gives us a functor ⊗ : Modst×Modst → Modst of category schemes, sending
for all schemes S a pair (M, M′) ∈ Modst(S)×Modst(S) to M⊗M′.

Lemma 3.16. The functor ⊗ : Modst×Modst → Modst is the morphism such that

⊗b,b′ ,a,a′ = ⊗|Modst
b,a ×Modst

b′ ,a′
: Modst

b,a×Modst
b′ ,a′ → Modst

b⊕b′ ,a⊕a′

sends, for any scheme S, the pair (M, M′) ∈ Modst
b,a(S)×Modst

b′ ,a′(S) to the tensor product
M⊗M′ : OP1

S
(b)⊗OP1

S
(b′)→ OP1

S
(a)⊗OP1

S
(a′).

Note that the tensor product is associative, and that the neutral element with re-
spect to the tensor product isOP1

S
= OP1

S
(01), where 01 is the zero sequence of length

1.
Next, note that for any scheme S and any objects E , E ′ ∈ Ob Modst(S), we have

an isomorphism Σ(E , E ′) : E ⊗ E ′ → E ′ ⊗ E . This defines a morphism Σ from the
scheme Ob Modst×Ob Modst to Modst.

42

3.2 The category scheme of standard modules

Lemma 3.17. The morphism Σ : Ob Modst×Ob Modst → Modst is the morphism such
that

Σa,a′ = Σ|Ob Modst
{a} ×Ob Modst

{a′}
: Spec Z→ Modst

a′⊕a,a⊕a′

is given by the isomorphism OP1(a)⊗OP1(a′) → OP1(a′)⊗OP1(a) switching the two
factors.

Finally, for a scheme S and a ∈ Seq, we write OP1
S
(a)∨ = HomO

P1
S

(
OP1

S
(a),OP1

S

)
,

which we identify with OP1
S
(−a), where −a is the sequence (−ai)i. Using this iden-

tification, we get a dualisation functor ∨ : (Modst)op → Modst sending, for a scheme
S, a morphism M ∈ Modst(S) to M∨. This dualisation is compatible with tensor
products.

Lemma 3.18. The functor ∨ : (Modst)op → Modst is the morphism such that
∨

b,a =
∨|(Modst)

op
b,a

: Modst
b,a → Modst

−a,−b

sends, for any scheme S, the morphism M ∈ Modst
b,a(S) to its dual M∨.

Remark 3.19. We have, for every scheme S and for all a, b, c ∈ Seq, identifications

HomO
P1

S

(
OP1

S
(b)⊗O

P1
S
OP1

S
(c),OP1

S
(a)
)
=
⊕
i,j,k

OP1
S
(ai − bj − ck)(P

1
S)

= HomO
P1

S

(
OP1

S
(c),OP1

S
(a)⊗OP1

S
(b)∨

)
,

that preserve matrices (as tuples with the lexicographical order on the index set).
This identification identifies the trace map OP1

S
(a) ⊗O

P1
S
OP1

S
(a)∨ → OP1

S
with the

identity map OP1
S
(a)∨ → OP1

S
(a)∨.

Consider the tuple1 (Modst,⊗, ∨, Σ,OP1). Expanding everything in the same way
as in Formulary 3.13, we find the following.

Formulary 3.20. Let a, b, a′, b′ ∈ Seq be of lengths s, t, s′, t′, respectively. Notation is
as in Formulary 3.13. Write for convenience

Modst
b⊕b′ ,a⊕a′ = Spec Z[x(j,j′)(i,i′)λ : 1 ≤ j ≤ t, 1 ≤ j′ ≤ t′, 1 ≤ i ≤ s,

1 ≤ i′ ≤ s′, 0 ≤ λ ≤ bj + b′j′ − ai − a′i′].

The morphism ⊗b,b′ ,a,a′ : Modst
b,a×Modst

b′ ,a′ → Modst
b⊕b′ ,a⊕a′ is given in terms of the

algebras by
x(j,j′)(i,i′)λ 7→ ∑

(λ1,λ2)

xjiλ1 ⊗ xj′i′λ2
,

where (λ1, λ2) runs through all integers such that λ1 + λ2 = λ, 0 ≤ λ1 ≤ bj − ai, and
0 ≤ λ2 ≤ b′j′ − a′i′ . The morphism ∨

b,a : Modst
b,a → Modst

−a,−b is given in terms of the
algebras by

xjiλ 7→ xijλ.

1This tuple, together with Remark 3.19, gives Modst(S) the structure of a strict rigid symmetric
monoidal category for all schemes S.

43

Chapter 3 Cohomology of smooth curves

The morphism Σa,a′ ∈ Modst
a′⊕a,a⊕a′(Spec Z) is given by

xi′2i2i1i′1
7→
{

1 if i1 = i2 and i′1 = i′2;
0 otherwise.

The object OP1 ∈ Modst
1,01,01

(Spec Z) (where 01 is the zero sequence of length 1) is
given by

x000 7→ 1.

3.2.4 Exterior powers

Fix a positive integer n. We describe the n-th exterior power on Modst, using the
following.

Lemma 3.21. Let S be a scheme, let a, b ∈ Seq be of lengths s, t, respectively, and let n be a
positive integer. Then the multilinear alternating map∧

: OP1
S
(a)n → ∑

I⊆{1,2,...,s},#I=n
OP1

S

(
∑
i∈I

ai

)
mapping, locally on sections,

e 7→
(

∑
π

sgn(ι−1π)
n

∏
k=1

ekπ(k)

)
I⊆{1,2,...,s},#I=n

is the n-th exterior power of OP1
S
(a). Here, π runs through the set of bijections from

{1, 2, . . . , n} to I and ι : {1, 2, . . . , n} → I is the unique order-preserving bijection.
Moreover, the n-th exterior power

∧n ϕ :
∧nOP1

S
(a) → ∧nOP1

S
(b) of a OP1

S
-linear

map ϕ : OP1
S
(a) → OP1

S
(b), is given by the matrix indexed by subsets I ⊆ {1, 2, . . . , s}

and J ⊆ {1, 2, . . . , t} of size n of which the (J, I)-entry is the n× n-minor of ϕ (viewed as a
t× s-matrix with entries in OS(S)[x, y]) corresponding to I and J.

Therefore, if we, for a ∈ Seq of length s, write
∧n a = (∑i∈I ai)I⊆{1,2,...,s},#I=n,

where we take the lexicographical order on the set of subsets I of {1, 2, . . . , s}, then
we can identify

∧nOP1
S
(a) with OP1

S
(
∧n a). This defines a morphism of schemes∧n : Modst → Modst sending for any scheme S the morphism M ∈ Modst(S) to∧n M.

Lemma 3.22. The functor
∧n : Modst → Modst is the morphism of schemes such that∧n

b,a
=
∧n |Modst

b,a
: Modst

b,a → Modst∧n b,
∧n a

sends, for any scheme S, the morphism M ∈ Modst
b,a(S) to its n-th exterior power

∧n M.

Working this out as in Formulary 3.13, we get the following.

Formulary 3.23. Let n be a positive integer, and let a, b ∈ Seq be of lengths s, t,
respectively. Notation is as in Formulary 3.13. Write for convenience

Modst∧n b,
∧n a = Spec Z

[
xJ Iλ : I ⊆ {1, 2, . . . , s}, J ⊆ {1, 2, . . . , t}, #I = #J = n,

0 ≤ λ ≤∑j∈J bj −∑i∈I ai

]
.

44

3.3 The category scheme of standard algebras

Then the morphism
∧n

b,a : Modst
b,a → Modst∧n b,

∧n a is given by

xJ Iλ 7→∑
π

sgn(ι−1π) ∑
∑i λi=λ

∏
i∈I

xπ(i)iλi
,

where π runs through the set of bijections I → J, and ι : I → J is the unique order-
preserving bijection.

3.3 The category scheme of standard algebras

Definition 3.24. Let S be a scheme, let a ∈ Seq, and let S ⊆ Seq. An standard algebra
of type a (resp. locally standard algebra of type in S) over S is an OP1

S
-algebra of which

the underlying OP1
S
-module is standard of type a (resp. locally standard of type in

S).

Equivalently, for a ∈ Seq, a standard algebra of type a is given by a multiplication
map µ : OP1

S
(a)⊗O

P1
S
OP1

S
(a)→ OP1

S
(a) and a unit map ι : OP1

S
→ OP1

S
(a), such that

the following diagrams commute.

• (associativity)

OP1
S
(a)⊗O

P1
S
OP1

S
(a)⊗O

P1
S
OP1

S
(a) OP1

S
(a)⊗O

P1
S
OP1

S
(a)

OP1
S
(a)⊗O

P1
S
OP1

S
(a) OP1

S
(a)

µ⊗id

µid⊗µ

µ

• (commutativity)

OP1
S
(a)⊗O

P1
S
OP1

S
(a) OP1

S
(a)⊗O

P1
S
OP1

S
(a)

OP1
S
(a)

Σ

µµ

• (unit)

OP1
S
(a) OP1

S
(a)⊗O

P1
S
OP1

S
(a)

OP1
S
(a)

ι⊗id

µid

With this description, we see that a morphism ϕ : OP1
S
(a) → OP1

S
(b) of standard

algebras is a morphism ofOP1
S
-modules such that the following diagram commutes.

45

Chapter 3 Cohomology of smooth curves

OP1
S
(a)⊗O

P1
S
OP1

S
(a) OP1

S
(b)⊗O

P1
S
OP1

S
(b)

OP1
S
(a) OP1

S
(b)

OP1
S

OP1
S

ϕ⊗ϕ

µµ

ϕ

ι ι′

Definition 3.25. Let S ⊆ Seq. The category scheme Algst
S of locally standard algebras with

type in S is the functor Schop → Cat sending a scheme S to the category of locally
standard algebras over S with type in S .

We show that this functor is indeed representable, again using an auxiliary func-
tor.

Definition 3.26. Let a, b ∈ Seq. The functor Algst
b,a is the functor Schop → Set sending

a scheme S to the set of tuples (µb, ιb, ϕ, µa, ιa) such that (µa, ιa) defines a structure of
an OP1

S
-algebra on OP1

S
(a), (µb, ιb) defines a structure of an algebra on OP1

S
(b), and

ϕ : OP1
S
(a)→ OP1

S
(b) is a morphism of OP1

S
-algebras.

Lemma 3.27. Let a, b ∈ Seq. The functor Algst
b,a is representable by an affine scheme of

finite type.

Proof. In fact, it is clear from the description of the category of standard algebras
given above that Algst

b,a is a subscheme of A
N(b,b⊗b)+N(b,0)+N(b,a)+N(a,a⊗a)+N(a,0)
k . �

Corollary 3.28. Let S ⊆ Seq. Then Algst
S is representable by the tuple

(
Algst

S , α, ω, ◦
)
,

where
• Algst

S = äa,b∈S Algst
b,a;

• α : Algst
S → Algst

S is the morphism such that

αb,a = α|Algst
b,a

: Algst
b,a → Algst

a,a

is given by (µb, ιb, ϕ, µa, ιa) 7→ (µa, ιa, id, µa, ιa);
• ω : Algst

S → Algst
S is the morphism such that

ωb,a = ω|Algst
b,a

: Algst
b,a → Algst

b,b

is given by (µb, ιb, ϕ, µa, ιa) 7→ (µb, ιb, id, µb, ιb);
• ◦ : Algst

S ×α,ω Algst
S → Algst

S is the morphism such that

◦c,b,a = ◦|Algst
c,b ×α,ω Algst

b,a
: Algst

c,b×α,ω Algst
b,a → Algst

c,a

is given by

(µc, ιc, ψ, µb, ιb) ◦ (µb, ιb, ϕ, µa, ιa) = (µc, ιc, ψ ◦ ϕ, µa, ιa).

If S is finite, then Algst
S is affine and of finite type.

46

3.4 Group actions

Proof. By definition, the functor Algst
S is the Zariski sheafification of the disjoint

union of the representable functors Algst
b,a for a, b ∈ S . Therefore it is representable

by äa,b∈S Algst
b,a. Moreover, for all schemes S we have by construction that the mor-

phisms α(S), ω(S), ◦(S) coincide with the source, target, and composition on the
category of locally standard algebras of type in S over S.

If S is finite, then Algst
S is a finite disjoint union of affine schemes of finite type

and therefore is itself affine and of finite type. �

Note that the relative spectrum functor over P1 embeds, for all k-schemes S, the
category Algst(S) contravariantly and fully faithfully in the category of finite locally
free P1

S-schemes. We will call the objects in the essential image standard schemes.

3.4 Group actions
We present finite groups by their multiplication tables.

Let Γ and G be multiplicatively written finite groups, with Γ acting by automor-
phisms on G. Then recall that a Γ-equivariant G-action on a set X consists of an ac-
tion of Γ and of G on X, such that for all γ ∈ Γ, g ∈ G, and x ∈ X, we have
(γg)x = γ

(
g(γ−1x)

)
. By the Yoneda lemma, this extends to arbitrary categories.

Example 3.29. The smallest example with non-trivial Γ-action on G and non-trivial
action of G on X is the following; let G = Z/3Z, and let Γ = {±1} act on G via the
unique non-trivial automorphism of G. Let X = G, together with the Γ-action. Then
the regular action of G on X is Γ-equivariant.

One other way to describe this action is as G = X = µ3,R(C), and Γ = Gal(C/R)
acting on G and X by complex conjugation.

Definition 3.30. Let S be a scheme, let a ∈ Seq, and let S ⊆ Seq. A standard
Γ-equivariant G-algebra of type a (resp. locally standard Γ-equivariant G-algebra of type in
S) over S is a Γ-equivariant G-algebra overOP1

S
which is standard of type a (resp. lo-

cally standard of type in S) as an OP1
S
-module.

An equivalent description is the following.
Note that an action of Γ on a standard algebra is given by a set {ργ} of endomor-

phisms such that
• ρ1 = id;
• ργργ′ = ργγ′ for all γ, γ′ ∈ Γ.

A morphism ϕ : OP1
S
(a) → OP1

S
(b) between standard algebras that have a Γ-action

is Γ-equivariant if and only if for all γ ∈ Γ the following diagram commutes.

OP1
S
(a) OP1

S
(b)

OP1
S
(a) OP1

S
(b)

ϕ

ργργ

ϕ

Now a Γ-equivariant G-action on a standard Γ-algebra is given by a set {rg} of
endomorphisms such that

47

Chapter 3 Cohomology of smooth curves

• r1 = id;
• rgrg′ = rgg′ for all g, g′ ∈ G;
• rγg = ργrgρ−1

γ for all γ ∈ Γ, g ∈ G.
A Γ-equivariant morphism ϕ : OP1

S
(a) → OP1

S
(b) between standard Γ-equivariant

G-algebras is G-equivariant if and only if for all g ∈ G the following diagram com-
mutes.

OP1
S
(a) OP1

S
(b)

OP1
S
(a) OP1

S
(b)

ϕ

rgrg

ϕ

Definition 3.31. Let S ⊆ Seq. The category scheme (Γ, G)- Algst
S of locally standard

Γ-equivariant G-algebras of type in S is the functor Schop → Cat sending a scheme S to
the category of locally standard Γ-equivariant G-algebras over S of type in S .

As usual, we define the corresponding auxiliary functor in order to show that
(Γ, G)- Algst

S is representable.

Definition 3.32. Let a, b ∈ Seq. The functor (Γ, G)- Algst
b,a is the functor from Schop to

Set sending a scheme S to the set of
(
(r′g), (ρ′γ), ϕ, (rg), (ργ)

)
such that ϕ ∈ Algst

b,a(S),
the tuples (rg) and (ργ) define a Γ-equivariant G-action on the source of ϕ, and the
tuples (r′g) and (ρ′γ) define a Γ-equivariant G-action on the target of ϕ.

Lemma 3.33. Let a, b ∈ Seq. The functor (Γ, G)- Algst
b,a is representable by an affine

k-scheme of finite type.

Proof. By construction, it is representable by a closed subscheme of (Algst
b,a)

1+2e+2n.
�

Corollary 3.34. Let S ⊆ Seq. Then (Γ, G)- Algst
S is representable. If S is finite, then

(Γ, G)- Algst
S is affine and of finite type.

Note that for any finite group G we have (G, 1)- Algst
S = (1, G)- Algst

S ; in this case,
we will use the notation G- Algst

S instead. Moreover, we have 1- Algst
S = Algst

S .
As seen in the previous section, we have for every scheme S a fully faithful con-

travariant functor from (Γ, G)- Algst(S) into the category of Γ-equivariant G-schemes
finite locally over P1

S; let us call objects in its essential image standard Γ-equivariant
G-schemes.

3.5 Category schemes of free modules and algebras
We first consider the free modules over OS.

Definition 3.35. Let S be a scheme, let R ⊆ Z≥0. A component-locally free OS-module
of rank inR is anOS-module E such that there exists a locally constant map q : S→ R
such that E|q−1r = Or

q−1r for all r ∈ R. A component-locally free OS-module is a
component-locally free OS-module with rank in Z≥0.

48

3.6 The slice category scheme

We define the corresponding category scheme.

Definition 3.36. LetR ⊆ Z≥0. The category scheme Modfree
s,r of free modules of rank inR

is the functor Schop → Cat sending a scheme S to the category of component-locally
free OS-modules with rank inR.

In order to show that Modfree
R is indeed a category scheme, we could repeat the

same strategy as in Section 3.2. Alternatively, we note that if we have a free module
Or

S on S, it pulls back to a standard module Or
P1

S
over S, giving a natural transfor-

mation Modfree → Modst of functors Schop → Cat such that for all schemes S, the
functor Modfree(S) → Modst(S) is fully faithful, and has as essential image those
objects of Modst(S) that have as type a finite sequence of zeroes. Hence we have the
following.

Proposition 3.37. Let R ⊆ Z≥0. Then Modfree
R = Modst

S , where S is the set of finite
sequences of zeroes with length inR.

Recall that Modst, and therefore Modfree as well, is a disjoint union of affine
schemes. Let us introduce some notation for these affine schemes.

Definition 3.38. Let r, s ∈ Z≥0. Then the scheme Modfree
s,r is Modst

0s ,0r , where 0r, 0s
are the zero sequences of lengths r and s, respectively.

Proposition 3.39. LetR ⊆ Z≥0. Then Modfree
R = är,s∈RModfree

s,r .

We do the same for the category scheme (Γ, G)- Algst.

Definition 3.40. Let Γ, G be finite groups, together with an action of Γ on G by auto-
morphisms. A component-locally free Γ-equivariant G-algebra over OS of degree in D is a
Γ-equivariant G-algebra over OS that is component-locally free as a OS-module.

Definition 3.41. Let D ⊆ Z≥0. The category scheme (Γ, G)- Algfree
D of component-locally

free Γ-equivariant G-algebras of degree in D is the functor Schop → Cat sending a
scheme S to the category of component-locally free Γ-equivariant G-algebras over
OS of degree in D.

In the same way as before, we show the following.

Proposition 3.42. Let Γ, G be finite groups, together with an action of Γ on G by automor-
phisms. The functor (Γ, G)- Algfree

D is representable by (Γ, G)- Algst
S , where S is the set of

sequences of zeroes of length in D.

Finally, we describe (Γ, G)- Algfree as a disjoint union of affine schemes.

Definition 3.43. Let d, e ∈ Z≥0. Then the scheme (Γ, G)- Algfree
e,d is (Γ, G)- Algst

0e ,0d
,

where 0d, 0e ∈ Seq are the zero sequences of lengths d and e, respectively.

Proposition 3.44. Let D ⊆ Z≥0. Then (Γ, G)- Algfree
D = äd,e∈D(Γ, G)- Algfree

e,d .

As in the previous two sections, we have for all schemes S a fully faithful con-
travariant functor from (Γ, G)- Algfree(S) to the category of Γ-equivariant G-schemes
finite locally free over S. We call the objects of its essential image the component-locally
free Γ-equivariant G-schemes.

49

Chapter 3 Cohomology of smooth curves

3.6 The slice category scheme
We treat this construction in general for clarity, although we only need it for the
category schemes (Γ, G)- Algst

S and (Γ, G)- Algfree
D from the previous section.

Definition 3.45. Let C be a category scheme over a scheme S, and let X ∈ Ob C(S).
Then the slice category scheme CX of C over X is the functor Schop

S → Cat sending an
S-scheme T to the category C(T)X of objects in C(T) with a morphism to X (or rather
the image of X under C(S)→ C(T)).

Lemma 3.46. Let C be a category scheme over a scheme S, and let X ∈ Ob C(S). Then CX
is representable.

Proof. Note that for any S-scheme T, a morphism in CX(T) is given by a commutative
triangle

Z Y

X

of morphisms in C(T). Therefore CX is representable by a closed subscheme of C3.
�

Note that if X is the terminal object of C(S), then CX = C.

3.7 Torsors over smooth projective curves
Let k be a factorial field. Let Γ, G be finite groups, together with an action of Γ on G
by automorphisms. Let f : X → Spec k be a smooth projective curve, together with
a given finite locally free morphism X → P1

k , and an action of Γ on X over P1
k . Then

note that X is (isomorphic to) an object of (Γ, G)- Algst
k (k), say of type a. In the next

few sections, we will construct a category scheme over k of Γ-equivariant G-torsors
on X.

3.8 Fibre functors
Let p = (0 : 1) ∈ P1

k(k), and let N be a positive integer. What we describe below
will work for any p ∈ P1

k(k) with some fixed pre-computation per finite sequence of
integers – namely the expressions of a number of powers of x as linear combinations
of powers of x− a in k[x]. Since we do not need a lot of distinct points in the end (in
fact we will only need two), we will restrict to the case p = (0 : 1) (and by symmetry
the case p = (1 : 0) as well).

Denote for N ≥ 2 by p(N) the (N − 1)-th infinitesimal neighbourhood of p in P1
k ;

we set p(1) = p, although we will usually omit the superscript (1) from the notation.
Note that for any k-scheme S the pullback of the standard module of type a (with a
a sequence of length s) along the closed immersion p(N)

S → P1
S is as OS-module iso-

morphic to (ON
S)s. Therefore, for any k-scheme S, the pullback of a locally standard

module along p(N)
S → P1

S is component-locally free.

50

3.9 Finite flat covers

Definition 3.47. Let N be a positive integer. The fibre functors

Φp(N) : Modst → Modfree, Φp(N) : (Γ, G)- Algst → (Γ, G)- Algfree

are the functors sending, for any scheme S, an object to its pullback along p(N)
S → P1

S.

We have the following description of Φp(N) .

Proposition 3.48. Let N be a positive integer, and let a, b ∈ Seq be of lengths s and t,
respectively. Then Φp(N),b,a : Modst

b,a → Modfree
Nt,Ns sends, for any k-scheme S, the matrix

M ∈ Matb,a(S) to the Nt× Ns-matrix of which the
(
(j, j′), (i, i′)

)
-entry is the coefficient

of xj′−i′ in Mji(x, 1).

3.9 Finite flat covers

We now use the previous section to construct a category scheme of standard schemes
that are finite locally over X of constant rank. The following criterion guarantees that
any morphism Y → X of standard schemes is automatically finite locally free.

Lemma 3.49. Let S be a scheme, let X be a finite locally free P1
S-scheme that is smooth over

S. Let Y be an X-scheme that is finite locally free over P1
S. Then Y is a finite locally free

X-scheme.

Proof. As X and Y are finite and of finite presentation over P1
S, Y is also finite and

of finite presentation over X. Hence it suffices to show that Y is flat over X. By
the fibre-wise criterion for flatness (see e.g. Görtz and Wedhorn [16, Cor. 14.25]), it
suffices to prove that for all points s ∈ S, we have Ys flat over Xs. Hence we assume
without loss of generality that S is the spectrum of a field.

Let y ∈ Y be a point, and let x ∈ X and p ∈ P1
S be their images. As X is smooth

over S, the ring OX,x is a torsion-free OP1
S ,p-algebra, which is either a discrete valu-

ation ring, or a field. As OY,y is finite free, hence torsion-free, over OP1
S ,p, it follows

that OY,y is torsion-free over OX,x as well, hence flat. Hence Y is flat over X, as
desired. �

We want to be able to check when (or otherwise enforce that) a morphism Y → X
of standard schemes has constant rank. To this end, we use the following criterion.

Lemma 3.50. Let S be a scheme, let X be a finite locally free P1
S-scheme that is smooth over

S. Let Y be an X-scheme that is finite locally free over P1
S, such that Y(0:1) is finite locally

free over X(0:1) of constant rank n. Then Y is a finite locally free X-scheme of constant rank
n.

Proof. We can check fibrewise on S that X(0:1) intersects all components of X, from
which our claim follows. �

Finally, note that X(0:1) is finite over k, so any finite locally free OX(0:1)
-module is

in fact free. This motivates the following.

51

Chapter 3 Cohomology of smooth curves

Definition 3.51. Let S ⊆ Seq. The category scheme Flatproj
X,S of standard finite flat covers

of X of type in S is the functor Schop
k → Cat that sends a k-scheme S to the category

in which the objects are triples (OY, n, B), whereOY is an object of (Γ, G)- Algst
X,S (S),

n ≥ 0 is an integer, and B : On
X(0:1)

→ OY(0:1)
is an isomorphism of OX(0:1)

-modules.

The functor Flatproj
X,S is indeed a category scheme.

Proposition 3.52. Let S ⊆ Seq. Then Flatproj
X,S is representable. If S is finite, then Flatproj

X,S
is affine and of finite type over k.

Proof. Let S be a k-scheme, and let (OY, e, B) be an object of Flatproj
X,S (S). Note that

for B, being an isomorphism of OX(0:1)
-modules is equivalent to being an OS-linear

isomorphism such that the following diagram commutes.

OX(0:1)
⊗On

X(0:1)
OX(0:1)

⊗OY

On
X(0:1)

⊗On
X(0:1)

OY ⊗OY

On
X(0:1)

OY

id⊗B

µµ

B

This establishes Flatproj
X,S as a closed subscheme of (Γ, G)- Algst

X,S ×(Modfree)4 (as we
add the data of the isomorphism and its inverse of both the source and the target).

�

3.10 Finite étale covers
We now construct a category subscheme of Flatproj

X,S of those objects that are étale over
OX . The next criterion allows us to restrict our attention to non-positive sequences
of integers, as finite étale covers of a smooth projective curve are again smooth and
projective.

Lemma 3.53. Let S be a scheme, let a ∈ Seq, and let X be a standard scheme of type a,
and such that X has geometrically reduced fibres over S. Then a is non-positive (i.e. all of its
elements are non-positive).

Proof. By taking a geometric fibre if necessary, we assume without loss of generality
that S is the spectrum of an algebraically closed field k. Let X1, . . . , Xt be the compo-
nents of X. Then there exist finite sequences a1, . . . , at such that for all i, the algebra
OXi is of type ai. These have the property that their concatenation is equal to a up to
a permutation. Hence we assume without loss of generality that X is connected. In
this case X is a reduced curve over S, so OX(P

1
S) = OX(X) = OS(S) = k, where π

is the structure morphism of X, so we deduce that a is non-positive. �

Remark 3.54. Of course, the converse is not true; a counterexample is theOP1
k
-module

OP1
k
⊕OP1

k
(−1)ε with multiplication given by ε2 = 0.

52

3.10 Finite étale covers

Now we need a criterion for a morphism Y → X of constant rank of standard
schemes to be étale. To this end, we will use the transitivity of the discriminant.

First, we recall the definitions of the discriminant and the norm of a finite locally
free morphism Y → X. Recall that, for a finite locally free morphism Y → X of
schemes, we view OY as a (finite locally free) OX-algebra.

Definition 3.55. Let f : Y → X be a finite locally free morphism of schemes of con-
stant rank, and let µ be the multiplication map OY ⊗OX OY → OY. The trace form
τf of f is the morphism OY → HomOX (OY,OX) corresponding to the composition
Tr f µ : OY ⊗OX OY → OX . The discriminant ∆ f of f is the determinant (over OX) of
the trace form τf .

Definition 3.56 (cf. Ferrand [11]). Let f : Y → X be a finite locally free morphism of
schemes of constant rank, and let L be a line bundle on Y. The norm N f L of L is the
line bundleHomOX (detOX f∗OY, detOX f∗L).

Let f : Y → X be a finite locally free morphism of schemes of constant rank, and
let E and F be finite locally free OY-modules of the same constant rank. By Deligne
[8, Eq. 7.1.1] and the fact that norms (of line bundles) commute with tensor products
and duals (see EGA2 [17, Sec. 6.5] and Ferrand [11, Prop. 3.3]), we see that there is a
unique isomorphism

HomOX (detOX E , detOX F) = HomOX (N f detOY E , N f detOY F)

satisfying the following properties.
• It is compatible with base change by open immersions.
• For any isomorphism α : F → E , we have induced isomorphisms

HomOX (detOX E , detOX F)→ EndOX (detOX E)
and

HomOX (N f detOY E , N f detOY F)→ EndOX (N f detOY E).

Therefore they induce isomorphisms

IsomOX (detOX E , detOX F)→ AutOX (detOX E) = Gm,X

and

IsomOX (N f detOY E , N f detOY F)→ AutOX (N f detOY E) = Gm,X .

These isomorphisms are equal.
Therefore, we have the following.

Corollary 3.57. Let f : Y → X be a finite locally free morphism of schemes of constant rank,
and let E be a finite locally free OY-module of constant rank r. Then

detOX E = N f detOY E ⊗OX (detOX OY)
⊗r

HomOX (detOX E ,OX) = N f detOY HomOY (E ,OY)⊗OX

(
HomOX (detOX OY,OX)

)⊗r

Using the two identifications above, we may now state the transitivity of the dis-
criminant. A proof can be found in e.g. Lieblich [28, Sec. 4.1].

53

Chapter 3 Cohomology of smooth curves

Theorem 3.58 (Transitivity of the discriminant). Let f : Y → X and g : Z → Y be finite
locally free morphisms of schemes of constant rank, and suppose that g has rank r. Then

∆ f g = N f ∆g ⊗ ∆⊗r
f .

Corollary 3.59. Let f : Y → X and g : Z → Y be finite locally free morphisms of schemes
of constant rank, and suppose that g has rank r. Then g is étale if and only if we have
detOX OZ ∼= (detOX OY)

⊗r and ∆ f g and ∆⊗r
f differ by a unit.

Definition 3.60. Let R be a set of non-negative integers. The category scheme Etproj
X,D

of standard finite étale Γ-equivariant G-schemes over X with degree in D is the functor
Schop

k → Cat sending a k-scheme S to the subcategory of Flatproj
X (S) of finite étale

morphisms Y → X of standard schemes over S, with degree in D.

We show that Etproj
X,D is indeed a category scheme.

Proposition 3.61. Let D be a set of non-negative integers. Then Etproj
X,D is representable. If

D is finite, then Etproj
X,D is affine and of finite type over k.

Proof. Let S be the set of non-positive sequences b of integers (of length t) such that
t
s
=

∑τ bτ

∑σ aσ
∈ D.

Note that S is finite if D is finite. Then by Lemma 3.49, Lemma 3.53, and Corol-
lary 3.59, the desired category scheme is the category scheme in which the objects

are the objects OY of Flatproj
X,S such that ∆OY/O

P1 and ∆⊗
t
s
OX/O

P1
differ by a unit ε. This

establishes Etproj
X,D (explicitly if D is finite) as a closed subscheme of Flatproj

X,S ×A4
k (as

we add the data of the units and their inverses corresponding to the source and tar-
get). �

3.11 Torsors
We now identify the closed subscheme of Etproj

X,n consisting of (morphisms between)
G-torsors. To this end, we first prove the following lemmas, in order to show that
checking whether an object of Etproj

X,n is a G-torsor can essentially be done in the cate-
gory scheme (Γ, G)- Algst

X .

Lemma 3.62. Let f : Y → X be a morphism of schemes, and let G be a finite group acting
on Y/X. Then Y is a G-torsor on X if and only if f is flat, surjective, locally of finite
presentation, and G acts freely and transitively on geometric fibres.

Proof. The necessity of the condition is clear. Hence suppose that f is flat, surjective,
locally of finite presentation, and G acts freely and transitively on geometric fibres.
Then for any geometric point x of S, Yx is the trivial G-torsor, hence étale. As the
property of being étale is fpqc local on the base, it follows that all fibres of f are étale,
and since f is flat and locally of finite presentation, it follows that f is finite étale.

Now consider the morphism ϕ : GX ×X Y → Y ×X Y of finite étale Y-schemes
given on the functor of points by (g, y) 7→ (gy, y), where the occurring schemes are

54

3.11 Torsors

viewed as Y-schemes via the projection on the second coordinate. Then ϕ is itself
finite étale surjective, and as GX ×X Y and Y ×X Y have the same rank over Y, it
follows that ϕ is an isomorphism. After base change with itself, it admits a section,
so as f is finite étale, it also follows that Y is a G-torsor, as desired. �

Lemma 3.63. Let f : Y → X be a finite étale morphism of schemes of constant rank n, and
let G be a finite group of order n acting on Y/X. Then the locus in X where f is a G-torsor
is open and closed in X.

Proof. Consider the locus U in Y×X Y on which the morphism GX ×X Y → Y×X Y
given on the functor of points by (g, y) 7→ (gy, y) is an isomorphism (i.e. where the
rank is equal to 1). It is an open and closed subset of Y ×X Y as this morphism is
finite étale. As the rank of f is equal to n, the X-locus where the same morphism is
an isomorphism is the image of U in X, and hence is open and closed as well. This
locus equals the X-locus where f is a G-torsor, as desired. �

Corollary 3.64. Let S be a scheme, let f : Y → X be a finite étale morphism of P1
S-schemes,

and let G be a finite group of order n acting on Y/X. Then Y is a G-torsor on X if and only
if Y(0:1) is a G-torsor on X(0:1).

Proof. Note that by Lemma 3.62 we may assume that S is the spectrum of a field, in
which case it follows from Lemma 3.63 and the fact that X(0:1) intersects all compo-
nents of X. �

Recall that for a k-scheme S, objects of Etproj
X,n (S) are “locally” of the form (OY, n, B),

where OY is an object of (Γ, G)- Algst
X(S), and B is an isomorphism On

X0:1
→ OY0:1 of

OX(0:1)
-modules.

Definition 3.65. Let X be a smooth projective curve together with an action of a finite
group Γ that is a standard scheme over k, say of type a. Let G be a finite group of
order n on which Γ acts by automorphisms. The category scheme Torsproj

X of G-torsors
on X is the functor Schop

k → Cat sending a k-scheme S to the full subcategory of

Etproj
X,n (S) of G-torsors on X.

Proposition 3.66. The functor Torsproj
X is representable by an affine category scheme of finite

type over k.

Proof. It suffices to express explicitly the condition that an object (OY, n, B) of Etproj
X,n

is a G-torsor. By Corollary 3.64, this is equivalent to

OY(0:1)
⊗OX(0:1)

OY(0:1)
→ On

Y(0:1)
, y1 ⊗ y2 7→ (gy1y2)g∈G

being an isomorphism of OP1 -modules. Note that we can compute the morphism
from Ob Etproj

X,n to Algfree
X(0:1)

sending an object (OY, n, B) to the following composition

in Algfree
X(0:1)

.

55

Chapter 3 Cohomology of smooth curves

On2

X(0:1)

On
X0:1
⊗OX(0:1)

On
X(0:1)

OY(0:1)
⊗OX0:1

OY(0:1)

On
Y(0:1)

B⊗B

This establishes Torsproj
X explicitly as a closed subscheme of Etproj

X,n ×(Algfree
X(0:1)

)2, by
adding the data of the inverse of the morphism above for both the source and the
target. �

3.12 The stack of G-torsors
We show that the category scheme Torsproj

X over k defines a presentation of the stack
T = T G

Γ,X over k of Γ-equivariant G-torsors on X. More precisely, we show the fol-
lowing.

Theorem 3.67. Let [U
Torsproj

X
/R

Torsproj
X

] → T be the functor sending for any k-scheme

S, the object T ∈ Ob Torsproj
X (S) to the underlying Γ-equivariant G-torsor on X. For all

field extensions l of k, the functor [U
Torsproj

X
/R

Torsproj
X

](l) → T (l) is an equivalence. The

isomorphism classes in U
Torsproj

X
are irreducible. The stack T is the fppf stackification of

[U
Torsproj

X
/R

Torsproj
X

].

Therefore by Proposition 3.1 we have the following.

Corollary 3.68. The map Ob Torsproj
X (k) → Ob T (k)/ ∼= factors through a bijection

π0(Ob Torsproj
X,ksep) → Ob T (ksep)/∼= that is Gal(ksep/k)-equivariant, and the connected

components of Ob Torsproj
X,ksep are irreducible.

We will first show the following.

Theorem 3.69. Let k be a field, let G be a finite group, let X be a smooth projective curve
together with a finite locally free morphism X → P1. Then for all k-schemes S and all étale
G-torsors Y over XS, the OP1

S
-algebra OY is as an OP1

S
-module fppf locally isomorphic to a

standard module.

Proof. Let S be a k-scheme, and let Y be an étale G-torsor over XS. First note that we
can reduce to the case that S is affine, and since Y is smooth over S, we can further
reduce to the case that S is of finite type over k by Grothendieck [18, Prop. 17.7.8].

Let s : Spec κ(s)→ S be a closed point of S, so that κ(s) is finite over k. Let Ys/Xs
denote the pullback of Y/XS along s : Spec κ(s)→ S. As Ys is finite locally free over
P1

κ(s), we see that OYs is a standard module. Consider the base change Sκ(s) of S
along Spec κ(s)→ Spec k.

56

3.12 The stack of G-torsors

Let Y1/XSκ(s)
be the pullback of Y/XS along Sκ(s) → S, and let Y2/XSκ(s)

be the
pullback of Ys/Xs along Sκ(s) → Spec κ(s). Note that OY2 is isomorphic to a stan-
dard module by Theorem 1.23. Let ISκ(s)

(Y1, Y2) denote the functor sending T to
IsomXT ,G(Y1,T , Y2,T). By descent, it is representable by a finite étale Sκ(s)-scheme
and ISκ(s)

(Y1, Y2)(s) 6= ∅. Therefore (finite) étale locally around s in Sκ(s), we have
Y1
∼= Y2. As Sκ(s) → S is an fppf cover, we deduce that the OP1

S
-module OY is fppf

locally isomorphic to a standard module over S. �

Corollary 3.70. The stack T is the fppf stackification of [U
Torsproj

X
/R

Torsproj
X

].

Proof. We show that for any k-scheme S and any Γ-equivariant G-torsor Y on XS, the
torsor Y is fppf locally on S an object of Torsproj

X .
Let S be a k-scheme, and let Y be a Γ-equivariant G-torsor on XS. Then by The-

orem 3.69, fppf locally on S the OP1
S
-module OY is a standard module, and Y(0:1)

is a G-torsor on XS,(0:1), so étale locally on S the G-torsor Y(0:1) is isomorphic to

äg∈G XS,(0:1). Therefore by construction of Torsproj
X , it follows that T is the stackifi-

cation of [U
Torsproj

X
/R

Torsproj
X

], as desired. �

So in particular, the category scheme Torsproj
X defines a presentation of T . We now

show the following.

Proposition 3.71. The stack T is algebraic, and is presented by Torsproj
X .

Proof. We show that the maps α, ω : R
Torsproj

X
→ U

Torsproj
X

are smooth, so that T is

algebraic. Recall to this end that Torsproj
X is a disjoint union of category schemes

Torsproj
X,b,b, where b runs through some finite subset of Seq. These category schemes

are the category subschemes of Torsproj
X of those objects that are of type b. It therefore

suffices to show that the morphisms α, ω : Torsproj
X,b,b → Ob Torsproj

X,b,b are smooth for all
b. To this end, we construct for all b a group scheme A over k, as follows.

Let A1 be the OP1
k
-automorphism scheme over k of OP1

k
(b), and let A2 be the

OX(0:1)
-automorphism scheme over k of O#G

X(0:1)
. Let A = A1 ×k A2. We show that A

is smooth and geometrically irreducible. Of course, it suffices to show that both A1
and A2 are smooth and geometrically irreducible.

First consider A1. Using the description of Modst, we easily see that A1 is a prod-
uct of factors of the form GLi,ksep or Ga,ksep , and therefore smooth and geometrically
irreducible.

For A2, we first note that A2 is isomorphic to Homk(X(0:1), GLn,k). So we have an

open immersion A2 → Homk(X(0:1), An2
), and its target is as a scheme isomorphic to

Ad(#G)2
, where d is the degree of X(0:1) over k. Hence A2 is smooth and geometrically

irreducible. We deduce that A is smooth and geometrically irreducible.
Note that Ob Torsproj

X,b,b admits an obvious action of A, in other words, we have two

maps suggestively denoted α, ω : A×k Ob Torsproj
X,b,b → Ob Torsproj

X,b,b given on functors

57

Chapter 3 Cohomology of smooth curves

of points by α(g, t) = t and ω(g, t) = gt. In fact, the morphism from A×Ob Torsproj
X,b,b

to Torsproj
X,b,b sending (g, t) to the morphism t → gt induced by g is an isomorphism

of schemes compatible with α and ω. This shows that both α and ω are smooth, as A
is a smooth group scheme. �

We can now finish the proof of Theorem 3.67.

Proof of Theorem 3.67. By construction of Torsproj
X we see that it is fibred in groupoids

and that there is an obvious fully faithful functor Torsproj
X → T of fibred categories.

We show that for any field extension l of k, any Γ-equivariant étale G-torsor over
Xl is isomorphic to one arising from Torsproj

X (l). Recall that by construction, the
category Torsproj

X (l) is equivalent to the category of Γ-equivariant, G-invariant fi-
nite étale morphisms f : Y → Xl of constant rank n, together with an A-linear iso-
morphism ϕ : B → ⊕

g∈G A, and such that the G-equivariant A-algebra morphism
ψ : B⊗A B → ⊕

g∈G B, b⊗ b′ 7→ (gbb′)g∈G is an isomorphism. In the above, B and
A are the coordinate rings of the schemes Y(0:1) and Xl,(0:1), respectively. Note that
A and B are spectra of Artinian l-algebras. Hence it suffices to show that any such
f admits such ϕ if and only if it is an étale G-torsor over Xl . But this follows easily
from Corollary 3.64.

It remains to show that isomorphism classes in Ob Torsproj
X (ksep) are irreducible,

but as the isomorphism classes are precisely the A(ksep)-orbits by construction of
Torsproj

X , the result follows. �

3.13 Torsors over smooth affine curves

Let k be a factorial field. Let Γ, G be finite groups, together with an action of Γ on G by
automorphisms. Let f : X → Spec k be a smooth affine curve, together with a finite
locally free morphism X → A1

k and an action of Γ on X over A1
k . Let f : X → Spec k

be the normal completion of X, and let X → P1
k be the finite locally free morphism

induced by X → A1
k . Then X is (isomorphic to) an object of (Γ, G)- Algst(k). In the

next few sections, we construct a category scheme over k of torsors over X, or rather
their completions over X.

3.14 The differential morphism

First we find a criterion for a finite locally free P1
k-scheme to be smooth. We do this

by constructing for each component-locally free algebra over a fixed one, its module
of differentials, or rather a presentation thereof, functorially over the base. More
precisely, we construct a morphism from Ob Algst

X to a category scheme we define
below. This category scheme is a fibred version of Definition 3.35.

We first define its objects.

Definition 3.72. Let S be a k-scheme, and let OX be an object of Algfree(S). Let
R ⊆ Z≥0. A component-locally freeOX-module with rank inR is anOX-module E such

58

3.15 Finite flat covers

that there exists a locally constant map q : S → R such that Eq−1r = Or
q−1r×SX for all

r ∈ R.

We define the corresponding category scheme.

Definition 3.73. Let D,R ⊆ Z≥0. The category scheme Mod Algfree
k,R,D of finite free

modules of rank in R over finite free algebras of degree in D is the functor Schop
k → Cat

sending a k-scheme S to the fibred category of component-locally free modules over
component-locally free algebras over S.

Equivalently, for any k-scheme S, the category Mod Algfree
k,R,D(S) is the category

in which the objects are pairs (E ,OY) of a component-locally free algebra OY and
a component-locally free OY-module E , and in which the morphisms from (E ,OY)
to (F ,OZ) are pairs (ψ, ϕ) of a morphism ϕ : OY → OZ and a ϕ-linear morphism
ψ : E → F .

We show that Mod Algfree
k,R,D is representable, using an auxiliary functor.

Definition 3.74. Let d, e, r, s ∈ Z≥0. The functor Mod Algfree
k,s,r,e,d : Schop

k → Set is the
functor sending a k-scheme S to the set of pairs (ψ, ϕ) with ϕ : OY → OZ in Algfree

e,d
and ψ a ϕ-linear map Or

Y → Os
Z.

Lemma 3.75. Let d, e, r, s ∈ Z≥0. Then Mod Algfree
k,s,r,e,d is representable by an affine scheme

of finite type over k.

Proof. Let S be a k-scheme. Then note that given an element ϕ : Or
Y → Os

Z of
Mod Algfree

k,s,r,e,d is the same as giving r elements of
(
OZ(S)

)s, which is also the same
as giving r elements of

(
OS(S)

)es. Hence Mod Algfree
k,s,r,e,d is representable by the affine

scheme Algfree
k,e,d×kAers

k . �

Corollary 3.76. Let D,R ⊆ Z≥0. Then Mod Algfree
k,R,D is representable. If D and R are

finite, then it is affine and of finite type over k.

Now we are in a position to construct, a morphism Ω : Ob Algfree
k → Mod Algfree

k
that sends a free algebra to a presentation of its module of differentials.

Let S be a k-scheme, and let A = (µ, ε) be an object of Algfree
d (S). The idea is

to view A as OS[t1, t2, . . . , td]/I, where I is the ideal generated by titi′ − ∑j µjii′ tj
and 1 − ∑j ε jtj; so ΩA/OS is given as the A-module with generators dti and rela-
tions ti′ dti + ti dti′ − ∑j µjii′ dtj = 0 (for all i, i′ ∈ {1, 2, . . . , d}) and −∑j ε j dtj. Set

Ω(S)(A) to be the A-linear map Ad2+1 → Ad corresponding to these relations, so
that ΩA/OS is the cokernel of Ω(S)(A). This defines for all d ∈ Z a morphism
Ωd : Ob Algfree

k,d,d → Mod Algfree
k,d2+1,d,d,d, and hence a morphism Ω from Ob Algfree

k to

Mod Algfree
k that we call the differential morphism.

3.15 Finite flat covers
In this section, we construct from Flatproj

X
a category scheme such that for all field

extensions l of k, the category of l-points is the category of finite flat covers of Xl such

59

Chapter 3 Cohomology of smooth curves

that its normal completion Xl is smooth over l at points lying over (1 : 0) ∈ P1(l).
We do this by defining the following.

Definition 3.77. Let S be a k-scheme, and let Y be an object of (Γ, G)- Algst
X,b,b(S),

with b of length t. Smoothness data at ∞ on Y consists of

• a morphism i : OY
(1:0)(2)

→ O2tn
Y
(1:0)(2)

of OY
(1:0)(2)

-modules;

• a morphism j : O2tn
Y
(1:0)(2)

→ O(2tn)2+2
Y
(1:0)(2)

of OY
(1:0)(2)

-modules;

such that (
(ΩΦ(1:0)(2) F)(Y)⊕ i

)
j = idO2tn

Y
(1:0)(2)

.

We check that this is the right notion for our purposes.

Lemma 3.78. Let k be a field, let X be a finite locally free P1
k-scheme that is smooth over k,

and let Y be a finite locally free X-scheme that is of degree t over P1
k . Then smoothness data

at ∞ on Y exist if and only if Y is smooth at all points lying over (1 : 0) ∈ P1(k).

Proof. Write B for the ring of global sections of Y − Y(0:1), and note that it is a finite
locally free k[y]-algebra. Then Y(1:0)(2) = Spec B/y2B. First suppose that smoothness
data at ∞ on Y exist; i.e. there exist morphisms

i : (B/y2B)→ (B/y2B)2tn, j : (B/y2B)2tn → (B/y2B)(2tn)2+2

such that for the presentation ϕ : (B/y2B)(2tn)2+1 → (B/y2B)2tn of Ω(B/y2B)/k as a
(B/y2B)-module given in Section 3.14, we have (ϕ⊕ i)j = id. It then immediately
follows that Ω(B/y2B)/k is generated by one element as B/y2B-module.

Conversely, if Ω(B/y2B)/k is generated by one element, we let i be a morphism from
(B/y2B) to (B/y2B)2tn sending 1 to (a lift of) a generator of Ω(B/y2B)/k. Hence (ϕ⊕ i)
is a surjective morphism to a free B/y2B-module, so it has a section j, as desired.

It remains to show that Ω(B/y2B)/k is generated as a B/y2B-module by one element
if and only if Y is smooth over k at all points lying over (1 : 0) ∈ P1(k). Note that we
have an isomorphism

ΩB/k ⊗B (B/yB)→ Ω(B/y2B)/k ⊗B/y2B (B/yB),

and that by Nakayama’s lemma, the right hand side (and therefore the left hand side)
is generated as a B/yB-module by one element if and only if Ω(B/y2B)/k is generated
as a B/y2B-module by one element. Therefore, again by Nakayama’s lemma, there
exists some f ∈ 1 + yB such that ΩB/k ⊗B B f is generated as a B f -module by one
element. So the left hand side is a B/yB-module generated by one element if and
only if there exists a neighbourhood of Y(1:0) that is smooth over k, which holds if
and only if Y is smooth over k at all points lying over (1 : 0) ∈ P1(k). �

Definition 3.79. Let S ⊆ Seq. The category scheme Flataff
X,S of standard finite flat covers

of X of type in S is the functor Schop
k → Cat that sends a k-scheme S to the category

60

3.16 Torsors

in which the objects are triples (OY, i, j) with OY an object of Flatproj
X,S (S) and (i, j)

smoothness data on Y at ∞.

As before, we have the following by construction.

Proposition 3.80. Let S ⊆ Seq. Then Flataff
X,S is representable. If S is finite, then Flataff

X,S
is affine and of finite type over k.

3.16 Torsors
Definition 3.81. The category scheme Torsaff

X of finite étale Γ-equivariant G-torsors over X
is the functor Schop

k → Cat sending a k-scheme S to the subcategory of Flataff
X (S) of

objects Y (over P1
S) such that ∆Y/P1

S
and ∆⊗#G

XS/P1
S

differ by a unit times a power of y,

and such that Y−Y(1:0) is a G-torsor over X.

We show that Torsaff
X is a category scheme that is affine and of finite type over k.

We first note that the condition that ∆Y/P1
S

and ∆⊗#G
XS/P1

S
is sufficient for an object of

Flataff
X to be étale over X, and that over fields, it is also necessary. This follows from

the following lemma.

Lemma 3.82. Let S be a scheme, and let a and b be integers. Let A1
S ⊆ P1

S be the com-
plement of the section (1 : 0), let ϕ : OP1

S
(b) → OP1

S
(a) be a OP1

S
-linear map. If ϕ is

multiplication by sya−b with s ∈ OS(S)×, then ϕ defines an isomorphism of OA1
S
-modules.

If S is the spectrum of a field, then ϕ defines an isomorphism of OA1
S
-modules if and only if

it is multiplication by sya−b with s ∈ OS(S)×.

Proof. Since y becomes invertible after restricting to A1
S, it follows that if ϕ is mul-

tiplication by sya−b, then ϕ|A1
S

is an isomorphism. Conversely, if S is the spectrum
of a field l, then ϕ is multiplication by some f ∈ l[x, y]a−b, which after restriction
becomes the multiplication by f (x, 1) map l[x] → l[x]. Since this map is an iso-
morphism, f (x, 1) must be an invertible constant in l[x], i.e. f = sya−b for some
s ∈ l×. �

Next, we want to bound the fibre-wise (classical) Euler characteristic of torsors,
using the following lemmas.

Lemma 3.83. Let Y → X be a finite locally free morphism of schemes, and let G be a finite
group acting on Y over X. Then the locus on X where G acts transitively on Y over X is
closed.

Proof. Consider the morphism GX ×X Y → Y×X Y given on the functor of points by
(g, y) 7→ (gy, y). Let Z be the (topological) image of this morphism, and let V be its
complement. As Y ×X Y is finite locally free over X, the image U of V is open, and
the complement of U is the locus on X where G acts transitively on Y over X. �

Corollary 3.84. Let S be a scheme, let Y → X be a finite locally free morphism of finite
locally free P1

S-schemes that is étale over X − X(1:0), and let G be a finite group acting on Y
over X. If G is a torsor on Y(0:1) over X(0:1), then G acts transitively on Y over X.

61

Chapter 3 Cohomology of smooth curves

Proof. This follows from Lemma 3.63 and Lemma 3.83. �

Lemma 3.85. Let S be a scheme, let a ∈ Seq, and let X be a standard scheme over S of type
a, where a has length s, and such that X is smooth over S. Then X is a family of curves over
S of Euler characteristic s + ∑σ aσ.

Proof. It suffices to check this on geometric fibres, so we may assume that S is the
spectrum of an algebraically closed field k. Then

dimk H0(X,OX)− dimk H1(X,OX) = dimk H0(P1
k ,OP1

k
(a)
)
− dimk H1(P1

k ,OP1
k
(a)
)

= ∑
i
(1 + ai)

= s + ∑
i

ai.

�

Proposition 3.86. Let S be a scheme, and let Y → X be a morphism of standard schemes,
with X of type a and with Y of type b, where a, b are of length s, t, respectively. Let G be a
finite group of order invertible in S acting on Y over X, such that Y is a G-torsor over X.
Then

∑
j

bj ≥ t
s ∑

i
ai − 1

2 t.

Proof. It suffices to check this on geometric fibres, so we may assume that S is the
spectrum of an algebraically closed field k. As G acts transitively on Y over X, and
the order of G is invertible in k, it follows that Y is tamely ramified over X. Therefore
the ramification degree of Y over X is at most t, as Y−Y(1:0) is étale over X− X(1:0),
and Y has degree t over P1

k . So by the Riemann-Hurwitz formula, we have

−2t− 2 ∑
j

bj ≤ −2 t
s s− 2 t

s ∑
i

ai + t,

as desired. �

Hence we have the following.

Proposition 3.87. Then Torsaff
X is representable by an affine k-scheme of finite type.

Now write T = T G
Γ,X .

Theorem 3.88. Let [UTorsaff
X

/RTorsaff
X
] → T G

Γ,X sending for any k-scheme S the object T of

Torsaff
X (S) to the underlying Γ-equivariant G-torsor on X. For all perfect field extensions l

over k, the functor [UTorsaff
X

/RTorsaff
X
](l)→ T (l) is an equivalence. The isomorphism classes

in UTorsaff
X

are irreducible.

Proof. By construction, for all perfect field extensions l over k, the functor from
[UTorsaff

X
/RTorsaff

X
](l) to T (l) is an equivalence. We show that the isomorphism classes

in UTorsaff
X

are irreducible.

62

3.17 Computation of cohomology

Note that Torsaff
X admits an obvious forgetful functor to Flatproj

X
, and we show that

the image of an isomorphism class of Ob Torsaff
X (k) is irreducible in the same way as

in Theorem 3.67. Therefore it suffices to show that the non-empty geometric fibres
of the morphism Ob Torsaff

X → Ob Flatproj
X

are irreducible. So let Y be an object of

Flatproj
X

(k) in the image of this morphism, and write B for the ring of global sections
of Y−Y(0:1).

Then for smoothness data (i, j) at ∞ for s we have that

• i is unique up to a unique element of im ϕ, which is free over k and can
therefore be parametrised by an affine space over k;
• j is unique up to a unique 2n#G-tuple of ker(ϕ⊕ i), which again is free over

k and can therefore be parametrised by an affine space over k.

Hence the fibre over Y is irreducible, as desired. �

Therefore by Proposition 3.1, we have the following.

Corollary 3.89. The induced map Ob Torsaff
X (k)→ Ob T (k)/∼= factors through a bijection

π0(Ob Torsaff
X,ksep) → Ob T (k)/ ∼= that is Gal(ksep/k)-equivariant, and the connected

components of Ob Torsaff
X,ksep are irreducible.

3.17 Computation of cohomology

We now use the previous sections to describe Algorithm 2.2, which, as we recall,
takes as input a factorial field k, a finite ring Λ that is annihilated by an integer n
that is invertible in k and that is injective as a Λ-module, a smooth connected curve
f : X → Spec k that is the composition of a finite étale morphism X → U, an open
immersion U → P1

k (given as the complement of the zero set of a single homoge-
neous polynomial), the structure morphism P1

k → Spec k, and a finite locally con-
stantM ∈ Ob Λ- Modc(Xét), and outputs R0 f!M, R1 f!M, R2 f!M. Moreover, we do
so functorially inM.

Note that we can construct a finite locally free morphism X → A1
k from these data

if U 6= P1
k .

Algorithm 3.90. Suppose that given as input is a factorial field k and a homogeneous poly-
nomial h ∈ k[x, y] of degree d ≥ 1.

Output: a finite locally free morphism U = P1
k −VP1

k
(h)→ A1

k .

• If k = Fq, find the smallest integer D ≤ d! such that xqD − x− 1 and h(x, 1)
have no common zeroes, and output the morphism U → A1

k given by

(x : y) 7→ (xqD − xyqD−1 − yqD
)d

h(x, y)qD ,

and halt.

63

Chapter 3 Cohomology of smooth curves

• If k is infinite, compute an a ∈ k for which h(a) 6= 0, output the morphism
U → A1

k given by

(x : y) 7→ (x− ay)d

h(x, y)
,

and halt.

Proposition 3.91. Algorithm 3.90 is correct and halts in an effectively bounded number of
field operations.

Proof. In the case that k = Fq, we have by construction that
(
(xqD − x− 1)d, hqD)

is
the unit ideal in k[x]. In the case that k is infinite, there exists an a ∈ k with h(a) 6= 0,
which can be found by enumerating at most d + 1 elements of k, and we have that(
(x − a)d, h

)
is the unit ideal of k[x]. The morphism constructed can therefore in

both cases be extended to a morphism P1
k → P1

k such that the inverse image of {∞}
is ZP1

k
(h); as this morphism is finite locally free, so is the morphism constructed. �

3.18 Computation of R0 f∗
Let us first describe how to compute pushforwards, functorially; it suffices to con-
sider sheaves of sets. We will insist on giving our output as a set of sections, since
this makes it easier to compare elements.

The computation of pushforwards is a special case of the following computation.

Algorithm 3.92. Suppose that given as input is a factorial field k, a finite locally free mor-
phism X → A1

k (or X → P1
k) with X a smooth connected curve over k, and finite étale

X-schemes Y1, Y2.
Output: HomXksep (Y1,ksep , Y2,ksep) as a finite Gal(ksep/k)-set.
• Compute a finite purely inseparable extension l of k such that the normal

completions Xl , Y1,l , Y2,l of Xl , Y1,l , Y2,l , respectively, are smooth over l, using
Algorithm 2.12.
• Compute the morphisms Y1,l → Xl and Y2,l → Xl in Algst

l (l), so that Y1,l and
Y2,l are objects of Algst

l,Xl
(l).

• Set H′ = ω−1(Y2,l)×Algst
l,Xl

α−1(Y1,l), set H = Resl
k H′, and compute a finite

Galois extension k′ of k such that Hk′ splits completely over k′.
• Set l′ = l ⊗ k′, and attach to every element of H(k′) the corresponding mor-

phism Y1,l′ → Y2,l′ .
• Attach to each such morphism Y1,l′ → Y2,l′ its restriction to Y1,l′ .
• Output the finite Gal(ksep/k)-set obtained in this way, and halt.

Proposition 3.93. Algorithm 3.92 is correct and halts in an effectively bounded number of
field operations.

Proof. We first show that H is finite étale over k. First note that H′ is a finite l-scheme,
since it is of finite type over l by definition, and for all field extensions m of l, we have
H′(m) = HomXm

(Y1,m, Y2,m) = HomXm(Y1,m, Y2,m), which is finite as Y1,m and Y2,m
are finite étale over Xm. Moreover, by the topological invariance of the small étale

64

3.19 Computation of R1 f∗

site, we see that H′ is formally étale and therefore étale. Hence H = Resl
k H′ is finite

étale over k.
Now the proof follows from the fact that any morphism Y1,l′ → Y2,l′ must already

be defined over k′. �

As f∗F corresponds to the Gal(ksep/k)-set HomXksep (Xksep ,Fksep), we see that
computing pushforwards is a special case of Algorithm 3.92. Next, we consider func-
toriality in F .

Algorithm 3.94. Suppose that given as input is a factorial field k, a finite locally free
morphism X → A1

k (or X → P1
k) with X a smooth connected curve over k, a morphism

ϕ : F → G between finite locally constant sheaves F ,G on Xét.
Output: the Gal(ksep/k)-equivariant map f∗ϕ : f∗F → f∗G.

• Let l be a finite Galois extension of k such that f∗F , f∗G split completely over
l.

• Output the map sending a section s : Xl → Fl to its composition with the
morphism Fl → Gl , and halt.

Remark 3.95. It follows that we can also compute R0 f!F = f!F for any finite locally
constant sheaf F of pointed sets and any smooth curve f : X → Spec k given as a
finite locally free scheme over A1

k or P1
k ; if X is affine, then f!F is simply the sheaf

represented by Spec k, and if X is projective, then f!F = f∗F .

3.19 Computation of R1 f∗
We now describe the computation of R1 f∗; it suffices to do this functorially for
sheaves of groups. As in the previous section, we insist on giving the elements of our
output a geometric interpretation, namely as a set of representatives of isomorphism
classes of torsors on Xksep . In each of the algorithms in this section, the condition that
G be of degree coprime to the characteristic can be dropped in the case that the curve
X is projective.

We first describe an algorithm deciding whether two torsors on X are isomorphic
over ksep.

Algorithm 3.96. Suppose that given as input is a factorial field k, a finite locally free mor-
phism X → A1

k (or X → P1
k) with X a smooth connected curve over k, a finite locally

constant sheaf G of groups on Xét of degree coprime to the characteristic of k, finite separable
extensions k1, k2 of k, and a Gki

-torsor Ti on Xki
for i = 1, 2.

Output: “yes” if T1,ksep ∼= T2,ksep ; otherwise nothing.

• Compute a finite étale Galois morphism g : Y → X with Galois group Γ and
with Y connected, such that g−1G is constant, say with fibre G (with Γ-action).
• Compute a finite purely inseparable extension l over k1k2 such that the nor-

mal completions Yl , T1,l , T2,l of Yl , T1,l , T2,l , respectively, are smooth over l,
using Algorithm 2.12.
• Set T = Torsaff

l,Yl
(or T = Torsproj

l,Yl
in the projective case).

65

Chapter 3 Cohomology of smooth curves

• Using an absolute primary decomposition algorithm, compute a finite sepa-
rable extension l′ of l over which the connected components of Ob Tlsep are
defined.
• Compute T1,l′ and T2,l′ as objects of Tl′(l′).
• If they do not belong to the same connected component of Ob Tl′ , halt.
• Otherwise, output “yes” and halt.

Proposition 3.97. Algorithm 3.96 is correct and halts in an effectively bounded number of
field operations.

Proof. By construction, the algorithm decides correctly whether T1,k
∼= T2,k, but this

is equivalent to T1,ksep ∼= T2,ksep . �

We use this to compute R1 f∗.

Algorithm 3.98. Suppose that given as input is a factorial field k, a finite locally free mor-
phism X → A1

k (or X → P1
k) with X a smooth connected curve over k, G a finite locally

constant sheaf of groups on Xét of degree coprime with the characteristic of k.
Output: R1 f∗G as a finite Gal(ksep/k)-set of representatives of isomorphism classes of

Gksep -torsors on Xksep .
• Compute a finite étale Galois morphism g : Y → X with Galois group Γ and

with Y connected, such that g−1G is constant, say with fibre G (with Γ-action).
• Compute a finite purely inseparable extension l of k such that the normal

completion Yl of Yl is smooth.
• Set T = Torsaff

l,Yl
(or T = Torsproj

l,Yl
in the projective case).

• Using an absolute primary decomposition algorithm, compute a finite Galois
extension l′ of l over which the connected components of Ob Tlsep are defined.
• Compute a finite extension l′′ of l′, and for every connected component of

Ob Tl′ an l′′-rational point on it; i.e. a Γ-equivariant G-torsor on Yl′′ .
• Attach to every such torsor its restriction to Yl′′ , and then its quotient by Γ.
• Let k′′ be the separable closure of k in l′′.
• Let T denote the finite set of G-torsors on Xk′′ obtained this way.
• For every t ∈ T and γ ∈ Gal(k′′/k), find using Algorithm 3.96 γt ∈ T by

enumeration.
• Output the finite Gal(ksep/k)-set T, and halt.

Proposition 3.99. Algorithm 3.98 is correct and halts in an effectively bounded number of
field operations.

Proof. This follows directly from Corollary 3.89 in the affine case, and from Corol-
lary 3.68 in the projective case. �

Before considering functoriality in G, we first consider quotients of finite étale
morphisms by finite locally constant sheaves of groups on Xét.

Algorithm 3.100. Suppose that given as input is a factorial field k, a finite locally free
morphism X → A1

k (or X → P1
k) with X a smooth connected curve over k, a finite étale

scheme Y over X, a finite locally constant sheaf G of groups on Xét acting on Y.
Output: the quotient of Y by the action of G.

66

3.20 Poincaré duality

• Compute a finite étale Galois morphism g : X′ → X with Galois group Γ and
with Y connected, such that g−1G is constant, say with fibre G (with Γ-action).
• Set Y′ = X′ ×X Y.
• Output Γ\(G\Y′) and halt.

Hence we can compute R1 f∗ functorially as follows.

Algorithm 3.101. Suppose that given as input is a factorial field k, a finite locally free
morphism X → A1

k (or X → P1
k) with X a smooth connected curve over k, ϕ : G → H

a morphism of finite locally constant sheaves of groups on Xét of degree coprime with the
characteristic of k.

Output: the Gal(ksep/k)-equivariant map R1 ϕ : R1 f∗G → R1 f∗H.
• Let l be a finite Galois extension of k such that R1 f∗G and R1 f∗H split com-

pletely over l.
• Output the map sending a Gl-torsor T → Xl to a Hl-torsor isomorphic to
Hl ⊗Gl T = Gl\(Hl ×Xl T) → Xl (where G acts by g(h, t) = (hg−1, gt)), and
halt.

Finally, if G is commutative, then R1 f∗G is an abelian group, and we can compute
its group structure.

Algorithm 3.102. Suppose that given as input is a factorial field k, a finite locally free
morphism X → A1

k (or X → P1
k) with X a smooth connected curve over k, ϕ : G → H a

morphism of finite locally constant sheaves of abelian groups on Xét of degree coprime with
the characteristic of k.

Output: the addition map R1 f∗G ×k R1 f∗G → R1 f∗G.
• Let l be a finite Galois extension of k such that R1 f∗G splits completely over

l.
• Output the map sending a pair (T1, T2) of Gl-torsors to a Gl-torsor isomorphic

to T1 ⊗Gl T2 = Gl\(T1 ×Xl T2) (where Gl acts by g(t1, t2) = (t1g−1, gt2)), and
halt.

3.20 Poincaré duality

Note that we have now computed R0 f!, R0 f∗, and R1 f∗ of a smooth connected curve
f : X → Spec k. We compute the rest using Poincaré duality; we recall its statement
first.

Let Λ be a finite ring annihilated by n ∈ Z, let X be a scheme, and let M be
a finite locally constant sheaf of Λ-modules on Xét. Then we denote the d-th Tate
twist M⊗Z/nZ (µn)⊗d of M by M(d); note that this doesn’t depend the choice
of the annihilator n, and that we can compute this if X is a smooth curve or the
spectrum of a field. Write moreoverM∨ forHom(M, Λ), which we can compute by
Algorithm 3.92.

Theorem 3.103 (Poincaré duality, SGA4.3 [1, Exp. XVIII, Sec. 3.2.6]). Let Λ be a finite
ring that is injective as a Λ-module, let f : X → Spec k be a smooth curve over a field, and
letM be a finite locally constant sheaf of Λ-modules on Xét. Then for q = 0, 1, 2 we have
R2−q f∗(M∨(1)) = (Rq f!M)∨.

67

Chapter 3 Cohomology of smooth curves

In other words, we have the identities

R1 f!M =
(

R1 f∗
(
M∨(1)

))∨
R2 f!M =

(
f∗
(
M∨(1)

))∨
R2 f∗M =

(
f!
(
M∨(1)

))∨
.

Therefore we indeed have an algorithm as in Algorithm 2.2, as desired.

68

0Bibliography

[1] M. Artin. Théorie des topos et cohomologié étale des schémas (SGA4) vol. 3, volume
305 of Lecture Notes in Math. Springer-Verlag, 1972.

[2] C. W. Ayoub. The decomposition theorem for ideals in polynomial rings over a
domain. J. Algebra, 76:99–110, 1982.

[3] S. Bosch, W. Lütkebohmert, and M. Raynaud. Néron models, volume 21 of Ergeb.
Math. Grenzgeb. (3). Springer, 1990.

[4] A. Chistov. Algorithm of polynomial complexity for factoring polynomials and
finding the components of varieties in subexponential time. J. Math. Sci. (N. Y.),
34(4):1838–1882, 1986. Translated from Zap. Nauchn. Sem. S.-Petersburg, 137:124–
188, 1984.

[5] J.-M. Couveignes and S. J. Edixhoven, editors. Computational aspects of modular
forms and Galois representations, volume 176 of Ann. of Math. Stud. Princeton
Univ. Press, 2011.

[6] R. Dedekind and H. Weber. Theorie der algebraischen Funktionen einer
Veränderlichen. J. Reine Angew. Math., 1882.

[7] P. Deligne. Cohomologie étale, volume 569 of Lecture Notes in Math. Springer-
Verlag, 1977.

[8] P. Deligne. Le déterminant de la cohomologie. Comtemp. Math., 67:93–177, 1987.
[9] A. Dickenstein, N. Fitchas, M. Giusti, and C. Sessa. The membership problem

for unmixed polynomial ideals is solvable in single exponential time. Discrete
Math. Appl., 33:73–94, 1991.

[10] C. Diem. On arithmetic and the discrete logarithm problem in class groups of
curves, 2008. Habilitation thesis.

[11] D. Ferrand. Un foncteur norme. Bull. Soc. Math. France, 126:1–49, 1998.
[12] A. Fröhlich and J. C. Shepherdson. On the factorisation of polynomials in finite

steps. Math. Z., 62:331–334, 1955.
[13] L. Fu. Étale cohomology theory, volume 14 of Nankai Tracts Math. World Sci. Publ.,

2015.
[14] S. I. Gelfand and Y. I. Manin. Methods of Homological Algebra. Springer Monogr.

Math. Springer-Verlag, 2003.
[15] P. Gianni, B. Trager, and G. Zacharias. Gröbner bases and primary decomposi-

tion of polynomial ideals. J. Symbolic Comput., 6:149–167, 1988.
[16] U. Görtz and T. Wedhorn. Algebraic Geometry I. Adv. Lectures Math. Vie-

weg+Teubner Verlag, first edition, 2010. ISBN 978-3-834-0676-5. doi: 10.1007/
978-3-8348-9722-0.

69

Bibliography

[17] A. Grothendieck. Éléments de Géométrie Algébrique II. Etude globale élémen-
taire de quelques classes de morphismes. Publ. Math. Inst. Hautes Études Sci., 8:
5–222, 1961.

[18] A. Grothendieck. Éléments de Géométrie Algébrique IV. Etude locale des
schémas et des morphismes de schémas, quatrième partie. Publ. Math. Inst.
Hautes Études Sci., 32:5–361, 1967.

[19] A. Grothendieck. Revêtements étales et groupe fondamental (SGA1), volume 224 of
Lecture Notes in Math. Springer-Verlag, 1971.

[20] W. G. Handley and S. S. Wainer. Complexity of primitive recursion. In U. Berger
and H. Schwichtenberg, editors, Computational Logic, volume 165 of NATO Adv.
Sci. Inst., pages 273–300, 1999.

[21] D. Harvey. Counting points on hyperelliptic curves in average polynomial time.
Ann. of Math. (2), 179(2), 2014.

[22] F. Hess. Computing Riemann-Roch spaces in algebraic function fields and re-
lated topics. J. Symbolic Comput., 33(4), 2002.

[23] P. T. Johnstone. Sketches of an elephant: a topos theory compendium, volume 43 of
Oxford Logic Guides. Clarendon Press, 2002.

[24] K. S. Kedlaya. Counting points on hyperelliptic curves using Monsky-Washnit-
zer cohomology. J. Ramanujan Math. Soc., 16(4):323–338, 2001.

[25] K. Khuri-Makdisi. Asymptotically fast group operations on Jacobians of general
curves. arXiv NT/0409209v2, 2004.

[26] J. Kollár. Sharp effective Nullstellensatz. J. Amer. Math. Soc., 1(4):963–975, 1988.
[27] A. Lauder and D. Wan. Counting points on varieties over finite fields of small

characteristic. In J. Buhler and P. Stevenhagen, editors, Algorithmic Number The-
ory, volume 44 of MRSI Publications. 2008.

[28] M. Lieblich. Galois representations arising from p-divisible groups, 2000.
[29] D. A. Madore and F. Orgogozo. Calculabilité de la cohomologie étale modulo

`. Algebra Number Theory, 9(7):1647–1739, 2015.
[30] R. Matsumoto. Computing the radical of an ideal in positive characteristic.

J. Symbolic Computation, 32:263–271, 2001.
[31] B. M. E. Moret. The theory of computation. Addison Wesley Longman, Inc., 1998.
[32] M. Nagata. Local rings. Wiley-Interscience, 1962.
[33] J. Pila. Frobenius maps of abelian varieties and finding roots of unity in finite

fields. Math. Comp., 55(192):745–763, 1990.
[34] B. Poonen, D. Testa, and R. van Luijk. Computing Néron-Severi groups and

cycle class groups. Compos. Math., 151(4):713–734, 2015.
[35] R. Schoof. Elliptic curves over finite fields and the computation of square roots

mod p. Math. Comp., 44:483–494, 1985.
[36] J.-P. Serre. Lectures on NX(p), volume 11 of Res. Notes Math. A. K. Peters, 2011.
[37] B. L. van der Waerden. Modern Algebra (English). Frederick Ungar Publishing

Co., 1949.

70

0Samenvatting

Dit proefschrift gaat, zoals de titel “Berekenbaarheid van de étale Euler-Poincaré karak-
teristiek” misschien al suggereert, over het algoritmisch berekenen van de étale Euler-
Poincaré karakteristiek. Dit is gerelateerd aan het “snel tellen van oplossingen van
vergelijkingen”, in de volgende zin.

Neem variabelen x1, x2, x3, . . . , xn. Een polynoom in deze variabelen is een uit-
drukking verkregen uit deze variabelen en het getal 1 door optellen, aftrekken, of
vermenigvuldigen. Bijvoorbeeld: x1, x2, x3, . . . zijn alle zelf ook polynomen; ieder
geheel getal is een polynoom (tel 1 een aantal keer bij 1 op, of trek 1 een aantal keer
van 1 af); en om wat ingewikkeldere voorbeelden te noemen, x1 · x2− 1, x3

1− 5x1 + 8,
x3 + x4 · x9

5 zijn ook polynomen (zoals gebruikelijk staat xi voor x · x · · · · · x waarin
x in totaal i keer voorkomt). Een systeem van polynomen is dan een collectie van poly-
nomen.

Neem een priemgetal p. De oplossingen waarin we geı̈nteresseerd zijn, zijn de zo-
genaamde modulo p oplossingen van een polynoom; dit zijn collecties gehele getallen
(a1, a2, a3, . . . , an), alle van 0 tot en met p − 1, zodat wanneer er voor iedere vari-
abele x1, x2, x3, . . . , xn, respectievelijk a1, a2, a3, . . . , an wordt gesubstitueerd, dat er
dan een veelvoud van p uit komt. Evenzo, een modulo p oplossing van een systeem
van polynomen is een collectie gehele getallen (a1, a2, a3, . . . , an) dat een oplossing is
van ieder polynoom in het systeem.

Bijvoorbeeld, neem p = 3 en n = 1, en bekijk het polynoom x3
1 − 5x1 + 8. Door

voor x1 de waarden 0, 1, 2, te substitueren, krijgen we het volgende tabel.

x1 x3
1 x3

1 − 5x1 + 8
0 0 8
1 1 4
2 8 6

We zien dus dat x3
1 − 5x1 + 2 als enige modulo 3 oplossing het getal 2 heeft;

namelijk, 6 is het enige getal uit de rechterkolom dat een veelvoud is van 3.
Nu is het in principe makkelijk om het aantal modulo p oplossingen van een

systeem van polynomen te tellen; men kan gewoon ieder van de pn mogelijkhe-
den af gaan, en van iedere mogelijkheid nagaan of het een modulo p oplossing
is. Maar voor toepassingen in de cryptografie (denk aan bijv. internetversleuteling
of je bankpas) neemt men priemgetallen van enkele honderden cijfers, en in zulke
gevallen zou het te lang duren om alle mogelijkheden af te gaan, zelfs voor de sterk-
ste supercomputer.

71

Samenvatting

Om in dat soort gevallen nog steeds het aantal modulo p oplossingen te kunnen
tellen, is een oplossing – die al daadwerkelijk wordt toegepast in het geval n = 2 en
een “systeem” van één polynoom – het gebruiken van een formule voor het aantal
modulo p oplossingen van een systeem van polynomiale vergelijkingen. In dit geval
is de formule de zogenaamde Lefschetz spoorformule, die uitgedrukt is in de étale
Euler-Poincaré karakteristiek behorende bij het systeem van polynomen.

We kunnen ook op een meer “meetkundige” manier naar (systemen van) poly-
nomen kijken, door de oplossingen van systemen van polynomen te beschouwen;
een oplossing is een collectie van getallen (a1, a2, a3, . . . , an) zodat wanneer er voor
iedere x1, x2, x3, . . . , xn, respectievelijk a1, a2, a3, . . . , an wordt gesubstitueerd, dat er
dan 0 uit komt. We kunnen de oplossingen van systemen van polynomen dan vi-
sualiseren met behulp van een grafiek; voor het polynoom x1 · x2 − 1 (met n = 2)
hebben we bijvoorbeeld een grafiek van de volgende vorm.

x1

x2

De projectie van deze grafiek op de x1-as bevat alle punten op de x1-as behalve
0, en boven ieder ander punt van de x1-as ligt er één punt van de grafiek. Met
andere woorden, iedere punt van de x1-as hoort óf bij een punt van de grafiek, óf is
een oplossing van de vergelijking x1 = 0, dus de twee polynomen x1 · x2 − 1 (met
n = 2) en x1 = 0 (met n = 1) kunnen worden opgevat als een soort “meetkundige
splitsing” van het polynoom 0 (met n = 1), en in dit geval is er een relatie tussen de
bijbehorende étale Euler-Poincaré karakteristieken.

Er zijn meer van dit soort “meetkundige” relaties, en deze worden in dit proef-
schrift gebruikt om een algoritme te geven die de étale Euler-Poincaré karakteristiek
van een systeem polynomen uitrekent.

72

0Nawoord

Ik bedank:
• allereerst mijn promotoren Bas Edixhoven en Lenny Taelman voor hun be-

geleiding, en voor alle gesprekken en discussies, die altijd motiverend op mij
werkten;
• Bas Edixhoven, Ronald van Luijk, David Madore, Lenny Taelman, en Olivier

Wittenberg, voor de discussies na het mini-symposium in Leiden op 25 juni
2013;
• tenslotte Samuele Anni, Steven Berghout, Owen Biesel, Raymond van

Bommel, Johan Bosman, Fokko van de Bult, Birgit van Dalen, Christophe
Debry, Maarten Derickx, Remy van Dobben de Bruyn, Krzysztof Dorobisz,
Dino Festi, Alberto Gioia, Albert Gunawan, David Holmes, Michiel Kosters,
Peter Koymans, Abtien Javanpeykar, Ariyan Javanpeykar, Niels Langeveld,
Junjiang Liu, Stefan van der Lugt, Ronald van Luijk, Julian Lyczak, Chloe
Martindale, Djordjo Milovic, Maxim Mornev, Marin van Noord, Giulio
Orecchia, Carlo Pagano, René Pannekoek, Quintijn Puite, Jan van Rijn, Mima
Stanojkovski, Marco Streng, Frank Takes, Jonathan Vis, Erik Visse, Qijun Yan,
Yan Zhao, Weidong Zhuang, Wouter Zomervrucht, Stefan Zwetsloot, en vele
anderen, voor het leuker maken van de afgelopen 4 1

2 jaar.

73

0Curriculum vitae

Jinbi Jin is geboren op zondag 4 december 1988, te Almelo.
Van 2000 tot en met 2006 volgde hij onderwijs aan het RKSG Marianum, van 2000

tot en met 2003 in Lichtenvoorde, en van 2003 tot en met 2006 in Groenlo, waar hij
ook zijn VWO-diploma in juni 2006 heeft gehaald. Daarna heeft hij tot en met 2011
Wiskunde gestudeerd aan de Universiteit Leiden, waar hij in december 2011 zijn
diploma heeft gehaald.

Sinds oktober 2016 is hij begonnen met een post-doc aan het Max Planck Instituut
voor Wiskunde in Bonn, Duitsland.

75

0Index

∆ f , 53
DΛ, 19
DΛ,c, 19
Φp(N) , 51
K0, 19
Λ- Mod, 19
Λ- Modc, 19
M∨, 67
Ob C, 37
Ω, 59
OP1

S
(a), 39

RC , 36
ResY

X , 26
Seq, 3, 39
T G

Γ,X , 35
Tr(λ; M), 32
UC , 36
χ!, 19
Flataff, 60
Torsaff, 61
(Γ, G)- Algfree, 49
Modfree, 49
Mod Algfree, 59
Etproj, 54
Flatproj, 52
Torsproj, 55
Algst, 46
(Γ, G)- Algst, 48
Modst, 40

absolute factorisation, 9
absolute primary decomposition, 13
algorithm, 2, 5

Las Vegas, 5

base function, 1

category scheme, 36, 38
of étale covers, 54
of finite flat covers, 52, 60
of free equivariant algebras, 49
of free modules, 49
of free modules (relative), 59
of standard algebras, 46
of standard equivariant algebras,

48
of standard modules, 40
of torsors, 55, 61

complexity, 5
component-locally free

equivariant algebra, 49
equivariant scheme, 49
module, 48
module (relative), 58

differential morphism, 59
discriminant, 53

effectively bounded, iv
elementary fibration, 27
Euler-Poincaré characteristic, 19
explicitly free, 21
explicitly given

field, 4
map, 3
morphism of rings, 4
ring, 4
set, 3

factorial field, 4
fibre functor, 51

77

Index

functor between category schemes,
37, 39

Grothendieck group
of finite type schemes, 31

Lefschetz trace formula, 32
locally standard

algebra, 45
equivariant algebra, 47
module, 39

norm, 53
normal completion, 23

partial recursive function, 2
Poincaré duality, 67
presentation

of a map, 3
of a set, 3

primitive recursion, 2
primitive recursive function, 2
projection function, 1

recursive function, 3

single-sorted, 38

slice category scheme, 50
smooth completion of curves, 23
smoothness data, 60
standard

algebra, 45
equivariant algebra, 47
equivariant scheme, 48
finite flat cover, 52
module, 39
scheme, 47

substitution, 1
successor function, 1

topological invariance of the small
étale site, 20

trace form, 7, 53
transitivity of the discriminant, 54
type

of a standard algebra, 45
of a standard equivariant algebra,

47
of a standard module, 39

unbounded minimisation, 2

Weil restriction, 26

78

