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To describe the full spectrum of surface fluctuations of the interface between phase-separated colloid-

polymer mixtures from low scattering vector q (classical capillary wave theory) to high q (bulklike

fluctuations), one must take account of the interface’s bending rigidity. We find that the bending rigidity is

negative and that on approach to the critical point it vanishes proportionally to the interfacial tension. Both

features are in agreement with Monte Carlo simulations.

DOI: 10.1103/PhysRevLett.101.086101 PACS numbers: 68.03.Cd, 68.05.Cf, 68.35.Ct

One of the outstanding theoretical problems in the
understanding of the structure of a simple liquid surface
is the description of the full spectrum of surface fluctua-
tions obtained in light scattering experiments [1,2] and
computer simulations [3–5]. Insight into the structure of
a simple liquid surface is provided by molecular theories
[6,7], such as the van derWaals squared-gradient model, on
the one hand, and the capillary wave model [8,9] on the
other hand. The theoretical challenge is to incorporate both
theories and to describe the spectrum of fluctuations of a
liquid surface from the molecular scale to the scale of
capillary waves.

Here, we report on a theoretical description of
Monte Carlo (MC) simulations [4] of a system consisting
of a mixture of colloidal particles with diameter d and
polymers with a radius of gyration Rg. The presence of

polymer induces a depletion attraction [10] between the
colloidal particles which may ultimately induce phase
separation [11,12]. The resulting interface of the demixed
colloid-polymer system is studied for a number of polymer
concentrations and for a polymer-colloid size ratio " �
1þ 2Rg=d ¼ 1:8.

The quantity studied in the simulations is the (surface)
density-density correlation function:

SðrkÞ � 1

ð�‘ � �vÞ2
Z L

�L
dz1

Z L

�L
dz2h½�ð~r1Þ � �stepðz1Þ�

� ½�ð ~r2Þ � �stepðz2Þ�i; (1)

where �ð~rÞ is the colloidal density, ~rk ¼ ðx; yÞ is the direc-
tion parallel to the surface, and where we have defined
�stepðzÞ � �‘�ð�zÞ þ �v�ðzÞ with �ðzÞ the Heaviside

function and �‘;v the bulk density in the liquid and vapor

region, respectively, where by ‘‘liquid’’ we mean the phase
relatively rich in colloids and by ‘‘vapor’’ the phase rela-
tively poor in colloids. Its Fourier transform is termed the
surface structure factor

SðqÞ ¼
Z

d~rke�i ~q� ~rkSðrkÞ: (2)

In Fig. 1, MC simulation results [4] for SðqÞ are shown for
various values of the integration limit L. The figure shows
that the contribution to SðqÞ from short wavelength fluctu-
ations (high q) increases with L.
To analyze SðqÞ, one needs to model the density fluctua-

tions in the interfacial region. In the capillary wave model
(CW) [8], the fluctuating interface is described in terms of
a two-dimensional surface height function hð ~rkÞ

�ð ~rÞ ¼ �0ðzÞ � �0
0ðzÞhð ~rkÞ þ � � � ; (3)

where �0ðzÞ ¼ h�ð ~rÞi. In the extended capillary wave
model (ECW), the expansion in gradients of hð~rkÞ is con-
tinued [13–15]:

�ð ~rÞ ¼ �0ðzÞ � �0
0ðzÞhð ~rkÞ �

�1ðzÞ
2

�hð ~rkÞ þ � � � : (4)
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FIG. 1. MC simulation results for the surface structure factor
(in units of d4) versus q (in units of 1=d) for various values of the
integration limit L=W ¼ 1; 2; 3; 4 [4]. The dashed line is the
capillary wave model. In this example " ¼ 1:8, �p ¼ 1:0.
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The function �1ðzÞ is identified as the correction to the
density profile due to the curvature of the interface,
�hð~rkÞ � �1=R1 � 1=R2, with R1 and R2 the (principal)

radii of curvature.
With Eq. (4) inserted into Eq. (1), we find that SðqÞ

equals the height-height correlation function, SðqÞ ¼
ShhðqÞ, where

ShhðqÞ �
Z

d~rke�i ~q� ~rk hhð ~r1;kÞhð~r2;kÞi: (5)

Here we have assumed that the location of the interface, as
described by the height function hð ~rkÞ, is given by the

Gibbs equimolar surface [16], which gives for �0ðzÞ and
�1ðzÞ:Z

dz½�0ðzÞ � �stepðzÞ� ¼ 0;
Z

dz�1ðzÞ ¼ 0: (6)

Naturally, other choices are possible [5] and equally legiti-
mate as long as they lead to a location of the dividing
surface that is ‘‘sensibly coincident’’ [16] with the inter-
facial region.

The height-height correlation function ShhðqÞ is deter-
mined by considering the free energy�� associated with a
surface fluctuation [8,9]. The inclusion of a curvature
correction to the free energy is described by the Helfrich
free energy [17]. It gives for ��

�� ¼ 1

2

Z d ~q

ð2�Þ2 �ðqÞq
2hð ~qÞhð� ~qÞ; (7)

with

�ðqÞ ¼ �þ kq2 þ � � � : (8)

The coefficient k is identified as Helfrich‘s bending rigidity
[17,18]. It is important to realize that the bending rigidity,
defined by Eqs. (7) and (8), depends on the choice made for
the location of the dividing surface (here, the Gibbs equi-
molar surface for the colloid component).

Using Eq. (7), the height-height correlation function can
be calculated [18]

ShhðqÞ ¼ kBT

�ðqÞq2 ¼
kBT

�q2 þ kq4 þ � � � : (9)

Without bending rigidity (k ¼ 0) this is the classical cap-
illary wave result in the absence of gravity (dashed line in
Fig. 1). When L is sufficiently large, the capillary wave
model accurately describes the behavior of SðqÞ at low q.

To model SðqÞ in the whole q range, we also include
bulklike fluctuations to the density:

�ð~rÞ ¼ �0ðzÞ � �0
0ðzÞhð~rkÞ �

�1ðzÞ
2

�hð~rkÞ þ ��bð~rÞ:
(10)

Inserting Eq. (10) into Eq. (1), one now finds that

SðqÞ ¼ ShhðqÞ þN LSbðqÞ: (11)

The second term is derived from an integration into the

bulk regions (to a distance L) of the bulk structure factor
SbðqÞ

SbðqÞ ¼ 1þ �b

Z
d~r12e

�i ~q�~r12½gðrÞ � 1�: (12)

The density correlation function gðrÞ differs in either
phase, but here we take for it g‘ðrÞ of the bulk liquid.
This approximation may be justified by arguing that close
to the critical point there is no distinction between the two
bulk correlation functions, whereas far from the critical
point the contribution from the bulk vapor can be neglected
since �v � 0. The error is further reduced by fitting the
L-dependent prefactorN L to the limiting behavior of SðqÞ
at qd ! 1.
In Fig. 2, we show the result from Fig. 1 for L=W ¼ 3.

For qd � 1 the results asymptotically approach the capil-
lary wave model (dotted line). The dashed line is the result
of adding the bulklike fluctuations to the capillary waves:

SðqÞ ¼ kBT

�q2
þN LSbðqÞ: (13)

Figure 2 shows that Eq. (13) already matches the simula-
tion results quite accurately except at intermediate values
of q, qd � 1.
Finally, we include a bending rigidity in SðqÞ:

SðqÞ ¼ kBT

�q2 þ kq4 þ � � � þN LSbðqÞ: (14)

The value of the bending rigidity is extracted from the
behavior of SðqÞ at low q. The fact that the simulation
results in Fig. 2 are systematically above the capillary
wave model in this region indicates that the bending rigid-
ity thus obtained is negative, k < 0. Unfortunately, a nega-
tive bending rigidity prohibits the use of SðqÞ in Eq. (14) to
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FIG. 2. MC simulation results [4] (circles) for the surface
structure factor (in units of d4) versus q (in units of 1=d). The
dotted line is the capillary wave model; the dashed line is the
combination of the capillary wave model and the bulk correla-
tion function; the solid line is the combination of the extended
capillary wave model and the bulk correlation function. In this
example " ¼ 1:8, �p ¼ 1:0, L=W ¼ 3.
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fit the simulation results in the entire q range, since the
denominator becomes zero at a certain value of q. It is
therefore convenient to rewrite the expansion in q in
Eq. (14) as

SðqÞ ¼ kBT

�q2

�
1� k

�
q2 þ � � �

�
þN LSbðqÞ; (15)

which is equivalent to Eq. (14) to the order in q2 consid-
ered, but which has the advantage of being well behaved in
the entire q range. The above form for SðqÞ, with the
bending rigidity used as an adjustable parameter, is plotted
in Fig. 2 as the solid line. Exceptionally good agreement
with the MC simulations is now obtained for all q. In
Table I, we list the fitted values for the bending rigidity
for a number of different polymer concentrations.

Next, we investigate whether the value and behavior of k
can be understood from a molecular theory. One should
then consider a microscopic model for the free energy� to
determine the density profiles �0ðzÞ and �1ðzÞ. Here, we
consider the free energy density functional based on a
squared-gradient expansion [7,13,14,19]:

�½�� ¼
Z

d~r

�
mj ~r�ð ~rÞj2 � B

4
½��ð ~rÞ�2 þ gð�Þ

�
; (16)

where the coefficients m and B are defined as

m � � 1

12

Z
d~r12r

2UðrÞ; B � � 1

60

Z
d~r12r

4UðrÞ:
(17)

The integration over ~r12 is restricted to the attractive part
(r > d) of the interaction potential UðrÞ, for which we
consider the Asakura-Oosawa-Vrij depletion interaction
potential [10]:

UðrÞ ¼ �kBT�p

2ð"� 1Þ3
�
2"3 � 3"2

�
r

d

�
þ

�
r

d

�
3
�
; (18)

where the intermolecular distance is in the range 1<
r=d < ". For explicit calculations, gð�Þ is taken to be of
the Carnahan-Starling form:

gð�Þ ¼ kBT� lnð�Þ þ kBT�
ð4�� 3�2Þ
ð1� �Þ2 ���� a�2;

(19)

where � � ð�=6Þ�d3, � ¼ �coex, and the van der Waals
parameter a is given by

a � � 1

2

Z
d~r12UðrÞ: (20)

The surface tension, to leading order in the squared-
gradient expansion, can be determined from the usual
expression [7]

� ¼ 2
ffiffiffiffi
m

p Z �‘

�v

d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð�Þ þ p

q
: (21)

In the inset of Fig. 3, the surface tension is shown as a
function of the colloidal volume fraction difference, �� �
�‘ � �v. The squared-gradient expression (solid line) is in
satisfactory agreement [20] with the MC simulations.
The (planar) density profile �0ðzÞ is determined from

minimizing the free energy functional �½�� in Eq. (16) in
planar symmetry. To also determine the density profile
�1ðzÞ from a minimization procedure, one should consider
the energetically most favorable density profile for a given
curvature of the surface. To set the curvature to a specific
value, one adds to the free energy in Eq. (16) an external
field Vextð~rÞ that acts a Lagrange multiplier. Different
choices for Vextð ~rÞ can then be made, but we choose it
such that it acts only in the interfacial region:

Vextð ~rÞ ¼ ��0
0ðzÞ�hð ~rkÞ; (22)

with the Lagrange multiplier � set by the imposed curva-
ture. This choice for Vextð~rÞ constitutes our fundamental
‘‘ansatz’’ for the determination of �1ðzÞ. It improves on
earlier choices made [13,14,21] in the sense that the bulk
densities are equal to those at coexistence and the density
profile remains a continuous function.
The minimization of the free energy, with the above

external field added, using the fluctuating density in
Eq. (4) yields the following Euler-Lagrange (EL) equations

TABLE I. MC simulation results [4] for the polymer volume
fraction �p, liquid and vapor colloidal volume fractions, �‘ and

�v, surface tension � (in units of kBT=d
2), bending rigidity k (in

units of kBT; in parenthesis the estimated error in the last digit),

and
ffiffiffiffiffiffiffiffiffiffiffiffiffi�k=�

p
(in units of d).

�p �‘ �v � k
ffiffiffiffiffiffiffiffiffiffiffiffiffi�k=�

p
0.9 0.2970 0.0141 0.1532 �0:045 (15) 0.54

1.0 0.3271 0.0062 0.2848 �0:07 (2) 0.50

1.1 0.3485 0.0030 0.4194 �0:10 (3) 0.49

1.2 0.3647 0.0018 0.5555 �0:14 (3) 0.50

0 0.1 0.2 0.3 0.4
∆η

-0.16

-0.12

-0.08

-0.04

0

k

0 0.2 0.4∆η
0

0.2

0.4

0.6

σ

FIG. 3. Bending rigidity in units of kBT versus the volume
fraction difference ��. The inset shows the surface tension in
units of kBT=d

2. The solid lines are the gradient expansion
approximation; filled circles are the results from the MC simu-

lations; the dashed line is the fit
ffiffiffiffiffiffiffiffiffiffiffiffiffi�k=�

p � 0:47d.
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for �0ðzÞ and �1ðzÞ:
g0ð�0Þ ¼ 2m�00

0 ðzÞ;
g00ð�0Þ�1ðzÞ ¼ 2m�00

1 ðzÞ þ 4m�0
0ðzÞ

þ 2B�000
0 ðzÞ þ 2��0

0ðzÞ:
(23)

The change in free energy �� due to a certain density
fluctuation is determined by inserting �ð ~rÞ in Eq. (4) into
the expression for� in Eq. (16). One finds that �� is then
given by the expression in Eq. (7), with the bending rigidity
[14]

k ¼ �2m
Z

dz�1ðzÞ�0
0ðzÞ �

B

2

Z
dz�0

0ðzÞ2; (24)

where we have used the EL equations in Eq. (23).
To determine �0ðzÞ we assume proximity to the critical

point where gð�Þ takes on the usual double-well form. The
solution of the EL equation in Eq. (23) then gives [7]:

�0ðzÞ ¼ 1

2
ð�‘ þ �vÞ � ��

2
tanhðz=2�Þ; (25)

where � is a measure of the interfacial thickness which we
shall define as � � mð��Þ2=ð3�Þ, with the value of �
given by Eq. (21). To determine �1ðzÞ the differential
equation in Eq. (23) is solved using the tanh profile for
�0ðzÞ, yielding:

�1ðzÞ ¼ 3B

10m

��

�

f1� ln½2 coshðz=2�Þ�g
cosh2ðz=2�Þ ; (26)

where we have used that � ¼ �2mþ B=ð5�2Þ.
Inserting Eq. (26) into Eq. (24), one finds for k

k ¼ �Bð��Þ2
60�

¼ � B�

20m
: (27)

This expression indicates that the bending rigidity vanishes
near the critical point with the same exponent as the
surface tension, i.e.,

k / B�

m
/ �d2: (28)

This scaling behavior should be contrasted to the usual
assumption that k / ��2, i.e., that k approaches a finite,
nonzero limit at the critical point [18,21].

In Fig. 3, the gradient expansion result in Eq. (27) for the
bending rigidity is shown as the solid line. The bending
rigidity is negative, in line with the simulation results,
although the magnitude is significantly lower.

To summarize, we have shown that to account for the
simulated scattering function over the whole range of
scattering vector q, including the intermediate range be-
tween low q (classical capillary wave theory) and high q
(bulklike fluctuations), one must take account of the inter-
face‘s bending rigidity. Two of the important results are
that the bending rigidity k for the interface between phase-

separated colloid-polymer mixtures is negative, and that on
approach to the critical point it vanishes proportionally to
the interfacial tension rather than, as had often been sup-
posed, varying proportionally to the product of the tension
and the square of the correlation length, thereby approach-
ing a finite, nonzero limit. Both features of k are in accord
with what is found in the simulations. The magnitude of k

obtained from the molecular theory is lower (
ffiffiffiffiffiffiffiffiffiffiffiffiffi�k=�

p �
0:13d) than in the simulations (

ffiffiffiffiffiffiffiffiffiffiffiffiffi�k=�
p � 0:47d; dashed

line in Fig. 3).
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