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KFA Jülich GmbH, Forschungszentrum, IFF, D-52425 Ju¨lich, Germany

~Received 30 October 2000; accepted 30 April 2001!

The sphere to cylinder transition in a one-phase droplet microemulsion system is studied
theoretically. Within the framework of the curvature energy model by Helfrich, it was already shown
by Safranet al. @J. Phys.~France! Lett. 45, L-69 ~1984!# that for a certain range of the curvature
parameters~rigidity constants and spontaneous curvature!, a transition occurs from spherical
droplets to infinitely long cylinders through a region where both spheres and cylinders are present.
Our aim is to further investigate this region in aquantitativeway by including—in addition to
curvature energy—translation entropy, cylinder length polydispersity, and radial polydispersity. In
this way we are able to obtain structural information on the spheres and cylinders formed, their
respective volume fractions, and polydispersity, and provide a more detailed comparison with
experimental results. ©2001 American Institute of Physics.@DOI: 10.1063/1.1380428#

I. INTRODUCTION

Over the past three decades it has been shown that mi-
croemulsions are structurally well-defined self-organizing
mixtures of water, oil, and surfactants that can form a wide
variety of thermodynamically stable phases. These comprise
phases consisting of~more or less spherical! droplets of wa-
ter in oil ~w/o microemulsions or L2-phase! or oil droplets in
water~o/w microemulsion or L1-phase!, as well as bicontinu-
ous mono- and bilayer phases. If the temperature and/or
ionic strength of the aqueous phase is varied, a rich phase
behavior is generally revealed,1,2 whereby microemulsion
phases can coexist with water and/or oil excess phases as
well as liquid crystalline phases forming two- and three-
phase equilibria.

Ample experimental evidence from, e.g., electric bire-
fringence~Kerr-effect!, dielectric spectroscopy, fluorescence
quenching, turbidity, and temperature jump experiments, has
been presented for droplet aggregation in the L1 and
L2-phases.3 Furthermore, a considerable jump~2–3 orders of
magnitude! in conductivity has been reported for w/o AOT
microemulsions when the temperature or amount of internal
phases is increased.4 It is still a matter of debate whether this
increase in conductivity is a result of charge transfer between
aggregated droplets or whether the aggregated droplets open
up forming interconnected cylindrical structures. Even
though the formation of cylindrical structures is extensively
documented experimentally in micellar systems,5,6 their ex-
istence is less well-established in microemulsions.

Recent evidence for the formation of cylindrical struc-
tures has been supplied by SAXS and SANS scattering stud-
ies in the L1 and L2-phases. The usual interpretation of the
scattering data in this region focuses on a fit of~aggregating!
spherical droplets characterized by an average radius, radial
polydispersity, and stickiness parameter describing the de-

gree of aggregation.7,8 It was found by Ilgenfritzet al.9 and
Glatteret al.10 that also cylindrical structures start to become
present. Only recently could a morequantitativestudy be
undertaken of this structural transition from spherical drop-
lets to cylindrical structures in the one-phase microemulsion
system.11 Using SAXS, the structural changes in w/o AOT
microemulsions were investigated as a function of tempera-
ture (15– 60 °C), salt concentration~up to 0.6% NaCl!,
water/AOT molar ratio~25–60!, and droplet weight fraction
~2%–20%!.11

Theoretically it now seems well-established that the
Helfrich free energy12 describing the curvature free energy
of the interfacial surfactant layer can help understand the
global features of the microemulsion phase diagram.13,14As
in the experimental situation, while a lot is understood when
it concerns the description ofsphericalmicroemulsion drop-
lets, relatively little is known on the formation ofcylindrical
structures. Pivotal work has been done by Safran and
co-workers.15–17 In 1984 the phase diagram of the sphere to
cylinder transition was published based on Helfrich’s curva-
ture energy but neglecting entropy effects,14,15 while more
recently entropy effects were included to predict closed-loop
coexistence regions in a system consisting of spheres and
cylinders.16 It is our intention in this article to extend the
work by Safran and co-workers and to study the sphere to
cylindrical transition in the one-phase region in more detail.
Our aim is to investigate this in aquantitativeway by includ-
ing translation entropy, cylinder length polydispersity, and
radial polydispersity.

Our theory has three important ingredients:
~1! Curvature free energy: The Helfrich form of the free

energy is used to describe the interfacial free energy of the
curved surfactant monolayer that separates the oil and the
water phase,12
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The above free energy features an integral over the whole
surface area,A, of the total curvature,J51/R111/R2 and
Gaussian curvature,K51/(R1R2) with R1 andR2 the prin-
cipal radii of curvature at a certain point on the surfaceA.
Three curvature parameters are introduced: 1/R0 , the inverse
radius of spontaneous curvature,k the rigidity constant of
bending, andk̄ the rigidity constant associated with Gaussian
curvature. In the following analysis, we treat these curvature
parameters as unknown and construct our phase diagrams in
terms of them. However, we do know from experiments that
k and k̄ are approximately constant over the temperature
range considered and of the order of 1 or a fewkBT,18 while
the inverse radius of spontaneous curvature changes signifi-
cantly as a function of temperature~approximately linear!
and can even change sign at the so-called inversion tempera-
ture T̄.19 Therefore, in the comparison with experiments we
considerk and k̄ as constants and treat 1/R0 as our ‘‘tem-
perature variable,’’ 1/R0}(T2T̄).

~2! Entropy: Although the consideration of the curvature
free energy alone already gives good qualitative insight into
the microemulsion phase diagram, entropy needs to be con-
sidered in any more quantitative analysis. Entropy is gener-
ally responsible for the occurence of polydispersity, which is
an important feature of microemulsion systems, and it will
smoothen structural transitions in the one-phase region like
the sphere to cylindrical transition that we consider here. The
theory for including entropy in microemulsion systems is
however not free of controversy in the literature.20 In this
article we investigate a number of different expressions for
the entropic contribution to the free energy to find out which
aspects are model dependent and which aspects are more
generally valid.

~3! Constraints: Two constraints have to be considered.
First, the total volume,Vtot , insidethe spheres and cylinders
is determined by the amount of internal phase present, for
instance the amount of water when we consider water-in-oil
microemulsions. Second, the total surface area,A, is deter-
mined by the amount of surfactant in the system. When we
minimize the free energy consisting of the curvature free
energy and the entropic contribution to the free energy, these
two constraints have to be taken into account. One way to
take these constraints into account is to add Lagrange multi-
pliers ~which we will call s and2Dp! to the free energy.

We start, in Sec. II, with a reinspection of the phase
diagram of the sphere to cylindrical transition in which only
the curvature free energy is taken into account with the
above constraints neglecting the contribution of entropy. This
phase diagram was first published by Safran14,15 and it al-
ready shows many features of the phase diagrams calculated
in later sections when entropyis taken into account. In Sec.
III, translation entropy is included and the cylinder length
polydispersity is considered, while in Sec. IV also the poly-
dispersity in the radius of the sphere and the cylinder is taken
into account. In the final section we summarize our findings
and discuss the limitations of the theory presented.

II. NO ENTROPY: SPHERES AND INFINITELY LONG
CYLINDERS

The curvature free energy ofNs spheres with radiusRs is
derived by insertingJ52/Rs andK51/Rs

2 into Eq. ~1.1!,

Fcurv,s

p k
5NsH 2

16

R0
Rs14~21x! J , ~2.1!

with x[ k̄/k defined as the ratio of the two rigidity constants.
The total volume and surface area are given by

A5Ns4pRs
2,

~2.2!
Vtot5Ns

4
3pRs

3.

The curvature free energy ofNc cylinders with radiusRc and
lengthL@Rc ~so that we can neglect the curvature energy of
the ends of the cylinder! is derived by insertingJ51/Rc and
K50 into Eq.~1.1!,

Fcurv,c

p k
5NcLH 2

4

R0
1

1

Rc
J . ~2.3!

The volume and surface area are given by

A5Nc2pRcL,
~2.4!

Vtot5NcpRc
2L.

The free energy of a system containing both spheres and
cylinders is the sum of the above free energies ofNs spheres
and Nc cylinders. Instead ofNs and Nc as parameters, it is
more convenient to use thevolume fractionsof spheres and
cylinders,vs andvc , defined as

vs[
Ns

Vtot

4

3
pRs

3,

~2.5!

vc[
Nc

Vtot
pRc

2L.

The total free energy then becomes

Fcurv

k Vtot
5vsH 2

12

R0

1

Rs
2 13~21x!

1

Rs
3J

1vcH 2
4

R0

1

Rc
2 1

1

Rc
3J , ~2.6!

with the volume and area constraints written as

vs1vc51,
~2.7!

3vs

Rs
1

2vc

Rc
5

A

Vtot
[

1

v
.

The ratio between the total volume and surface area defines
the length scalev. In general,v depends on the size of the
surfactant molecules and the molecules constituting the in-
ternal phase. Specifically,A5nsurfasurf, with nsurf the num-
ber of surfactant molecules andasurf the surface area taken in
by a surfactant molecule;Vtot5nintv int , with nint the number
of molecules in the internal phase andv int the volume per
molecule taken in by the internal phase.

In the following we express all lengths~Rs , Rc , R0 , and
L! in terms ofv. For instance, in the case that the minimi-
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zation of the total curvature free energy yieldsvs51 ~only
spheres!, one immediately finds from the second constraint
in Eq. ~2.7! that Rs53, in units of v. Analogously, when
only cylinders are present (vc51), the radius of the cylinder
is given byRc52, in units ofv. In these cases, with only one
species present, the radii therefore followdirectly from the
constraints. The free energies are then simply obtained from
Eq. ~2.6!,

v3Fcurv

k Vtot
52

4

3

1

R0
1

1

9
~21x!, only spheres

v3Fcurv

k Vtot
52

1

R0
1

1

8
, only cylinders.

~2.8!

When we consider the free energy of the system consisting
of both spheres and cylinders, the radii have to be deter-
mined from the minimization of the free energy in Eq.~2.6!
with the constraints in Eq.~2.7!. A convenient way is to first
solve the volume fractionsvs andvc in terms ofRc andRs

from Eq. ~2.7!, yielding

vs5
Rs~22Rc!

2Rs23Rc
,

~2.9!

vc5
Rc~Rs23!

2Rs23Rc
,

and insert the result into the free energy in Eq.~2.6!. The
minimizing equations]F/]Rs50 and]F/]Rc50 then yield
the following pair of algebraic equations to determineRs and
Rc in terms ofx and 1/R0 :

4

R0
RsRc~Rs

213Rc
224RsRc!

16~21x!Rc
2~Rs2Rc!2Rs

350,
~2.10!

2
8

R0
RsRc~Rs

213Rc
223RsRc!

16~21x!Rc
31Rs

2~4Rs29Rc!50.

With the free energies of the three systems~spheres, cylin-
ders, and spheres1cylinders! determined, one is then able to
construct the phase boundaries of the transitions between
spheres and cylinders and between these two phases and the
phase consisting of both spheres and cylinders. It should be
realized that the phase consisting of spheres and cylinders is
still a singlephase and not phase separated.

Before showing the complete phase diagram we first
need to discuss the transition to two other phases. It turns out
that for small values of 1/R0 ~largeR0) a transition occurs to
the lamellar phase, while for large values of 1/R0 ~smallR0)
the internal phase is expelled as an excess phase and phase
separation occurs. The boundary at which the latter transition
occurs is termed thesolubilization limitor theemulsification
failure transition. These two phases are now discussed in
more detail.

A. Solubilization limit

At the solubilization limit~SL!, the internal phase starts
to be present as an excess phase. If the volume of the excess
phase is denoted byV0 andv0 is defined asv0[V0 /Vtot , the
volume constraint in Eq.~2.7! becomes

v01vs1vc51. ~2.11!

The amount of internal phase that is expelled as an excess
phase,v0 , is determined by a minimization of the free en-
ergy with respect tov0 . The solubilization limit is therefore
determined by the minimization equation]F/]v050, with
the condition thatv050 at the solubilization limit. This pro-
cedure gives as solubilization limit for the three systems,
spheres, cylinders, and spheres1cylinders, the following re-
lations between 1/R0 andx:

1

R0
5

1

6
~21x!, SL, only spheres,

x50, SL, spheres1cylinders,

1

R0
5

1

4
, SL, only cylinders.

~2.12!

B. Transition to the lamellar phase

The lamellar phase (La) is characterized by planar
sheets of surfactant films that carry no curvature so that the
corresponding curvature energy is zero (Fcurv50). There-
fore, when the calculated curvature energy of the spheres and
cylinders changes sign and becomespositive, the free energy
for forming spheres and/or cylinders is higher than the free
energy associated with the lamellar phase and a~first order!
phase transition occurs. The location of the transition to the
lamellar phase is thus determined by insertingFcurv50 into
Eq. ~2.6!. One finds

1

R0
5

1

12
~21x!, La , only spheres,

1

R0
5

1

8
, La , only cylinders.

~2.13!

The expression for 1/R0 at the transition to the lamellar
phase of the phase comprising spheresand cylinders is
somewhat tedious and we will not reproduce it here. It can
be derived from solving the set of equations in Eq.~2.10!
together with the condition,

4

R0
RsRc~Rs

223Rs16Rc23Rc
2!13~21x!Rc

2~Rc22!

1Rs
2~32Rs!50, ~2.14!

for Rs , Rc , and 1/R0 .
The resulting phase diagram as a function ofv/R0 and

x[ k̄/k is shown in Fig. 1. With slightly different axes, it was
already published by Safran.14,15 The upper region is the
2̄w-region where the microemulsion coexists with the inter-
nal phase, the lower region is the lamellar phase (La), and in
between is the one-phase microemulsion region, which con-
sists of either spheres, or cylinders, or spheres and cylinders
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~s1c! with sharp transitions~dashed lines! between them. It
should be emphasized that in the calculation of the phase
diagram in Fig. 1, we have only considered spheres and~in-
finitely long! cylinders as structures possibly present in the
microemulsion phase. More complex structures, such as
saddlelike structures, are therefore not considered but are
expected to play a role whenx.0.

III. TRANSLATIONAL ENTROPY: SPHERES
AND SPHEROCYLINDERS

Next, we consider the influence of translational entropy
on the phase diagram. For the cylinders, our treatment of the
influence of entropy is very much in the sprit of the Flory–
Huggins theory of polymers.22 We first consider the entropic
contribution to the free energy of spheres only.

A. Spheres

Subdividing the volumeV into volume elementsv0,s

each containing one or none spherical droplets, the entropy
contribution ofNs spheres is given by

Fent,s5kBTFNs lnS Nsv0,s

V D2NsG , ~3.1!

wherekB is Boltzmann’s constant andT the absolute tem-
perature. In writing Eq.~3.1! we have assumed that the total
volume occupied by the spherical particles is much smaller
than the volume of the vessel,Vtot!V. The total free energy
is the sum of the curvature energy and translational entropy

Fs

p k
5NsH 2

16

R0
Rs14~21x!1tF lnS Nsv0,s

V D21G J ,

~3.2!

where we have defined the reduced temperature, or reduced
inverse rigidity constant of bending for that matter,t
[kBT/(pk). The volume and area constraints are still given
by Eq. ~2.2!,

A5Ns4pRs
2,

~3.3!
Vtot5Ns

4
3pRs

3.

The unknown volume elementv0,s plays the role of the
de Broglie volumeL3. The cubic root ofv0,s is the typical
length scale over which a microemulsion droplet needs to be
displaced in order for it to ‘‘count’’ as constituting a different
state. Its magnitude and scaling with, e.g., the droplet size is
a matter of some debate.20 Within the context of statistical
mechanical treatments using the curvature energy model,23 it
now seems well-established that the hypothesis of Safran and
co-workers14,16 to assumev0,s

1/3 to be of the order of the drop-
let radius itself is a ‘‘reasonable approximation.’’20 In the
present treatment we therefore takev0,s to be of the order of
the droplet size,

v0,s'
4p

3
Rs

3. ~3.4!

Introducing the total volume fractionf[Vtot /V, the free en-
ergy can then be written as

Fs

p k
5NsH 2

16

R0
Rs14~21x!1t@ ln~f!21#J . ~3.5!

As in Sec. II, when only spheres are present, the spherical
droplet radius follows directly from the constraints:Rs53
~in units of v). The free energyFs is then simply obtained
by substitutingRs53 into the expression above. Different
expressions for the entropic contribution can and have been
proposed based either on a different assumption for the form
of v0,s or taking droplet-droplet interactions into account.21

Typically, these alternate expressions lead to a slightly modi-
fied phase diagram not affecting the overall character of it.

1. Solubilization limit

The solubilization limit is derived in the same way as in
the previous section. For the spheres alone one finds

1

R0
5

1

6
~21x!1

t

48
@2 ln~f!23#. ~3.6!

In the literature it is more common to assume thatv0,s is
constant and the above expression for the solubilization limit
becomes23

1

R0
5

1

6
~21x!1

t

24
lnS fv0,s

4
3 pRs

3D , ~3.7!

with Rs53.

2. Transition to the lamellar phase

The transition to the lamellar phase is simply determined
by settingFs50 in Eq. ~3.5! giving

1

R0
5

1

12
~21x!1

t

48
@ ln~f!21#. ~3.8!

B. Spherocylinders

In order to derive an expression for the entropy of the
cylinder we need to take the length of the cylinder into con-

FIG. 1. Microemulsion phase diagram without entropy as a function of

v/R0 and k̄/k. The upper region is the 2w̄-region where the microemulsion
coexists with the internal phase. The lower region is the lamellar phase
(La). In between is the one-phase microemulsion region, which consists of
either spheres, or~infinitely long! cylinders, or spheres and cylinders (s1c)
with sharp transitions~dashed lines! between them.
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sideration. In the Flory–Huggins theory for polymers,22 the
length is expressed asL5nl0 with n the number of mono-
mers with lengthl 0 . The entropic contribution to the free
energy ofNc cylinders, all having lengthL, on a lattice with
volume elementv0,c is, in the Flory–Huggins mean-field ap-
proximation, given by

Fent,c5kBTFNc lnS Ncv0,c

V D2NcnG . ~3.9!

When we consider the curvature energy of cylinders of finite
length L, the curvature energy associated with the ‘‘end-
caps’’ of the cylinder needs to be considered. A full treatment
to determine the end-cap energy involves the minimization
of the free energy with respect to the full shape.17 In the
present treatment, however, we assume the shape to be that
of a ‘‘sphero-cylinder’’~spherical end-caps! and only mini-
mize with respect to the two shape parameters defining the
spherocylinder: the radiusRc and lengthL. The total free
energy of spherocylinders with entropy is then

Fc

p k
5NcH 2

4L

R0
1

L

Rc
2

16

R0
Rc14~21x!

1tF lnS Ncv0,c

V D2
L

l 0
G J , ~3.10!

with the volume and surface area given by

A5Nc2pRc~L12Rc!,
~3.11!

Vtot5Nc

p

3
Rc

2~3L14Rc!.

In reality, the cylinders are not all of the same lengthL and
one should consider the effect of polydispersity in the cylin-
der length.

1. Length polydispersity

In order to account for polydispersity in the cylinder
length, we need to allow for a distributionNc(n) denoting
the number of cylinders with lengthL5nl0 . The total free
energy then becomes afunctionalof the distributionNc(n),

Fc

p k
5(

n
Nc~n!H 2

4nl0
R0

1
nl0
Rc

2
16

R0
Rc14~21x!

1tF lnS Nc~n!v0,c

V D2nG J , ~3.12!

with the volume and surface area given by

A5(
n

Nc~n!2pRc~nl012Rc!,

~3.13!

Vtot5(
n

Nc~n!
p

3
Rc

2~3nl014Rc!.

In the following we replace the summation by an integration
over n. The minimization of the free energy in Eq.~3.12!,
taking the above constraints on the volume and surface area
into account, is done in two steps. First, it is noted that the
functional differentiation with respect toNc(n) yields an ex-
ponential distribution forNc(n),

Nc~n!5
V

v0,c
e2an1b ~3.14!

with a andb constants to be determined from a further mini-
mization. Depending on the molecular model used, the vol-
umev0,c might depend onn, so that the exponential distri-
bution above may have an algebraic prefactor. In the present
treatment we takev0,c independentof n.

Instead ofa andb as parameters, it is more convenient24

to express the exponential distribution in terms of the aver-
age length,L, and average number of cylinders,Nc , defined
as

Nc[E
0

`

dnNc~n!,

~3.15!

L[
1

Nc
E

0

`

dnNc~n!nl0 ,

so that the distribution@Eq. ~3.14!# becomes

Nc~n!5
Ncl 0

L
e2(nl0 /L). ~3.16!

As a second step, we insert the above exponential distribu-
tion back into the expression for the free energy in Eq.~3.12!
and carry out the integration overn.24 We find an expression
for the free energy quite similar to the expression for the free
energywithout length polydispersity@Eq. ~3.10!#,

Fc

p k
5NcH 2

4L

R0
1

L

Rc
2

16

R0
Rc14~21x!

1tF lnS Ncv0,cl 0

VL D2
L

l 0
21G J , ~3.17!

with the boundary conditions of the same form as in Eq.
~3.11!,

A5Nc2pRc~L12Rc!,
~3.18!

Vtot5Nc

p

3
Rc

2~3L14Rc!.

Again, certain assumptions need to be made regarding the
unknown volume elementv0,c and the length scalel 0 , which
is the length scale over which two cylinders need to differ in
length in order for the two cylinders to ‘‘count’’ as having
different lengths. Similar to the case of spherical droplets, we
assume thatv0,c is of the order of a cylindrical segment with
radiusRc and lengthl 0 ,

v0,c'pRc
2l 0 , ~3.19!

and assumel 0 to be of the order of the radius of the cylinder,

l 0'Rc . ~3.20!

Other approximations are certainly possible and one could
argue thatv0,c

1/3 and l 0 are fixed microscopic length scales to
be determined by some other method. The assumptions in
Eqs.~3.19! and~3.20! have the advantage that no additional
unknown parameters have to be introduced. In the context of
the approximations made, this certainly suffices but below
other approaches will be considered.
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With the total volume fractionf[Vtot /V, the free en-
ergy in Eq.~3.17! is written as

Fc

p k
5NcH 2

4L

R0
1

L

Rc
2

16

R0
Rc14~21x!

1tF lnS fRc
2

L2 D 2
L

Rc
21G J , ~3.21!

where we have neglected terms ofO(1/L).
In the case that only cylinders are present, the above free

energy needs to be minimized with respect toRc , L, andNc

keeping the volume and surface area constraints in mind.
One finds thatRc andL are determined by the following two
equations:

2
8Rc

R0
1~716x!2

4Rc

L
1

3

2
tF lnS fRc

2

L2 D 11G
15tS 11

14

5

Rc

L D50, ~3.22!

6

Rc

~L12Rc!

~3L14Rc!
51. ~3.23!

To leading order in 1/L these two equations are solved ex-
plicitly to yield

Rc521
8

3

1

L
1OS 1

L2D ,

~3.24!

t ln~L !52
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1

R0
1

1
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~716x!1
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13

3 G
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Furthermore, the solubilization limit and transition to the
lamellar phase can be determined.

2. Solubilization limit

The solubilization limit is given by

1

R0
5

1

4
~12t !1

1

L S 2

3
2

23

12
t D1OS 1

L2D , ~3.25!

with the cylinder lengthL at the solubilization limit to lead-
ing order given by

t ln~L !5~112x!1
t

2
@ ln~4f!17#1OS 1

L D , ~3.26!

which is derived by inserting the expression for 1/R0 in Eq.
~3.25! into Eq. ~3.24!.

3. Transition to the lamellar phase

The transition to the lamellar phase is determined by
settingFc50 in Eq. ~3.21!

1

R0
5

1

8
~12t !2

t

2L
1OS 1

L2D , ~3.27!

with to leading order inL,

t ln~L !5
1

3
~516x!1

t

2 F ln~4f!1
17

3 G1OS 1

L D , ~3.28!

which is derived by inserting the expression for 1/R0 in Eq.
~3.27! into Eq. ~3.24!.

In the calculation of the two conditions in Eqs.~3.22!
and~3.23!, we have made use of the expressions forv0,c and
l 0 in Eqs. ~3.19! and ~3.20!. As an aside we investigate the
consequences of assuming thatv0,c and l 0 are constants in-
stead. One finds that the condition in Eq.~3.22! now be-
comes

2
8Rc

R0
1~716x!2

4Rc

L
1

3

2
tF lnS fv0,cl 0

pRc
2L2 D 11G

14t
Rc

l 0
S 11

Rc

L
1

l 0

L D50. ~3.29!

The difference in approach only shows up as an end-
correction to the last term in Eq.~3.22!. As argued before,
such detail is lost in the approximative scheme considered
here.

Having derived the free energies of spheres and cylin-
ders separately, it is now easy to construct the free energy of
the system containing both spheres and cylinders.

C. Spheres and spherocylinders

The total free energy of spheres and spherocylinders
with length polydispersity is the sum of the free energies in
Eqs.~3.5! and ~3.21! taking the respective volume fractions
into account,

v3F
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1
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3 1t
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4
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2 1
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32

16
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1

RcL

14~21x!
1

Rc
2L

1t
1

Rc
2L

F lnS f vc Rc
2

L2 D 2
L

Rc
21G J ,

~3.30!

with the volume and area constraints given by

vs1vc51,
~3.31!

3vs

Rs
16

vc

Rc

~L12Rc!

~3L14Rc!
51.

The free energy above needs to be minimized with respect to
the five variablesRs , Rc , L, vc , andvs with the two con-
straints in Eq.~3.31!. This has been done, numerically, with
the result shown in Fig. 2. In this example we have fixed the

1078 J. Chem. Phys., Vol. 115, No. 2, 8 July 2001 E. M. Blokhuis and W. F. C. Sager



droplet volume fractionf50.05 and set the reduced tem-
perature t50.3 ~which corresponds tok'1 kBT!. The
dashed lines in Fig. 2~a! are the limiting analytical results for
the solubilization limit and transition to the lamellar phases
as given in Eqs.~3.6!, ~3.8!, ~3.25!, and~3.27!. An important
distinction with the phase diagram in Fig. 1 is the fact that
there is no sharp transition to a region with only spheres or
only cylinders. The inclusion of translational entropy there-
fore smoothens the sphere to cylinder transition. This means
that at any finite temperature the relative population of
spheres and cylinders is determined by the Boltzmann distri-
bution prohibiting the existence of regions with only spheres
or cylinders present.

In Figs. 2~b! and 2~c!, the cylinder volume fraction and
cylinder length, respectively, are shown in the phase dia-
gram. In the direction of increasingx[ k̄/k and decreasing
v/R0 both the cylinder volume fraction and cylinder length
increases.

Already the~numerical! minimization of the free energy
in Eq. ~3.30! gives a good indication of the influence of
entropy on the phase diagram of spherical and cylindrical
microemulsions. For the comparison with the experimental
phase diagram, however, we still need to consider one addi-
tional effect: the polydispersity in theradius of the spheres
and cylinders.

IV. RADIAL POLYDISPERSITY

In this section we account for the polydispersity in the
radius of the spherical and cylindrical structures. As in the
case of length polydispersity, we now have a distribution
Ns(n) (Nc(n)) denoting the number of spheres~cylinders!
with radiusRs5nr0,s (Rc5nr0,c).

A. Spheres

We first consider the free energy of spherical droplets,

Fs

p k
5(

n
Ns~n!H 2

16

R0
nr0,s14~21x!

1tF lnS Ns~n! v0,s

V D21G J , ~4.1!

with the volume and surface area now given by

A5(
n

Ns~n! 4p ~nr0,s!
2,

~4.2!

Vtot5(
n

Ns~n!
4p

3
~nr0,s!

3.

Again, the summation is replaced by an integration overn.
The above free energy is minimized adding Lagrange multi-
pliers s and 2Dp fixing the surface area and volume, re-
spectively. The distribution then has the form,

FIG. 2. Microemulsion phase diagram with translational entropy and

cylinder length polydispersity, as a function ofv/R0 and k̄/k with f50.05
and t50.3. The drawn lines denote the location of the solubilization limit
and the transition to the lamellar phase. In~a! the dashed lines are the
limiting analytical results for the solubilization limit and transition to the
lamellar phases as given in Eqs.~3.6!, ~3.8!, ~3.25!, and ~3.27!. The cylin-
der volume fraction,vc520% – 95% ~steps of 5%!, and average cylinder
length, L510– 200~steps of 10, in units ofv! are shown in~b! and ~c!,
respectively.
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Ns~n!5
V

v0,s
e2 ~1/t ![4(21x)2 ~16/R0! nr0,s1 ~s/k!4(nr0,s)

22 ~Dp/k!~4/3!(nr0,s)
3] . ~4.3!

Again, the above distribution may have an algebraic prefac-
tor due to some assumedn ~radial! dependence ofv0,s . The
above distribution was first derived by Overbeek.25 Follow-
ing Reiss,26 v0,s was taken proportional ton23/2 by Overbeek
but different models leading to different exponents of the
prefactor have been reported in the literature.27,28 Here we
proceed by assuming thatr 0,s is some microscopic length
scale to be determined in some other way while the expres-
sion for v0,s is the same as in the previous section@cf. Eq.
~3.4!#,

v0,s'
4p

3
Rs

3. ~4.4!

We should now proceed in a similar way as in the treat-
ment of the length polydispersity of the cylinder:~1! assume
some form forv0,s such as in Eq.~4.4!, ~2! express the
Lagrange multipliers in terms of an average radius and total
number of droplets,~3! insert the resulting distribution into
the free energy, and~4! minimize with respect to the remain-
ing variables. This route is, however, mathematically rather
complicated if no further approximations are made.29 What
we will do here is to approximate the distribution in Eq.~4.3!
by discarding the terms proportional ton2 and n3 in the
exponent and allow for the presence of some algebraic pref-
actor with an exponent which we will callzs . With this
approximation, the important characteristics of the distribu-
tion remain with the neglect of then2 and n3-terms in the
exponent only affecting the tail-end of the distribution. The
advantage of this approach is that the resulting distribution
has the form of the well-knownSchultz distribution,30 widely
used in the experimental fit7,11 of the size-distribtion of mi-
croemulsion droplets,

Ns~n!5
Nsr 0,s

Rs

~zs11!zs11

G~zs11! S nr0,s

Rs
D zs

e2(zs11) nr0,s /Rs,

~4.5!

whereG(x) is Euler’s Gamma function, and whereNs and
Rs are the total number of droplets and average radius de-
fined by

Ns[E
0

`

dn Ns~n!,

~4.6!

Rs[
1

Ns
E

0

`

dn Ns~n! nr0,s .

The constantzs is related to the radial polydispersity,ss
2

51/(zs11). One can imagine two approaches with respect
to the determination of the value ofzs ; first, zs can be treated
as a constant to be fitted to the experimental value, second,
one could determinezs from a minimization of the free en-
ergy with respect tozs , so thatzs is expressed in terms of
temperature, the total volume and surface area, and the cur-
vature coefficients. The latter approach is more fundamental

but mathematically more complex. However, if we assume
ss

2!1 ~and latersc
2!1!, which is usually a very good ap-

proximation, and only keep track of the leading contributions
to the free energy, the minimization can be carried out ana-
lytically giving explicit expressions for the radial polydisper-
sities.

With the distribution in Eq.~4.5! in terms ofzs and the
variablesNs andRs , insertion ofNs(n) into the free energy
in Eq. ~4.1! and integration overn leaves us with the follow-
ing expression for the free energy of polydisperse spheres:

Fs

p k
5NsH 2

16

R0
Rs14~21x!1tF lnS f r 0,s

Rs
D1a1G J ,

~4.7!

with the volume and area constraints given by

A5Ns 4p a2 Rs
2,

~4.8!

Vtot5Ns

4p

3
a3 Rs

3.

The functionsa1 , a2 , anda3 appearing in Eqs.~4.7! and
~4.8! are defined as

a1[ lnS zs11

G~zs11! D1zs c~zs11!2zs22

'2 1
2 ln~ss

2!2 3
2 2 1

2 ln~2p!1 1
3 ss

2,

~4.9!

a2[
zs12

zs11
'11ss

2,

a3[
~zs12!~zs13!

~zs11!2 '113 ss
2,

with c(x) Euler’s psi function. Apart from the presence of
the functionsa1 , a2 , and a3 , the expression for the free
energy in Eq.~4.7! is the same as the free energy of the
monodisperse droplets@Eq. ~3.5!#.

As in the previous sections, the radius of the spheres is
directly determined by the constraints in Eq.~4.8! giving
Rs53 a2 /a3'326 ss

2 in units of v. Insertion into the free
energy in Eq.~4.7! and differentiation with respect toss

allows the determination of the radial polydispersity. One
finds that in an expansion inss

2!1, ss is determined by the
following equation, which can readily be solved numerically:

052
t

24
1ss

2F2
4

R0
121xG1

t

8
ss

2 lnS f2 r 0,s
2

18p ss
2D

2
11

36
t ss

21
t

12
ss

4 lnS f2 r 0,s
2

18p ss
2D 1O~ss

4!. ~4.10!

Furthermore, the solubilization limit and transition to the
lamellar phase are calculated.
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1. Solubilization limit

The solubilization limit is given by
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with ss now determined by
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4!. ~4.12!

2. Transition to the lamellar phase

The transition to the lamellar phase is derived by setting
Fs50 in Eq. ~4.7!,
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with ss determined by
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B. Spherocylinders

The inclusion of polydispersity in the distribution of the
radius of the cylindrical microemulsion structures follows
along the same lines as the spherical droplets. We first con-
sider the free energy of a distribution of cylinders with radius
Rc5nr0,c ,

Fc

p k
5(

n
Nc~n!H 2

4L

R0
1

L

nr0,c
2

16

R0
nr0,c14~21x!
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VL D2
L
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with the volume and surface area now given by
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3
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The summation is replaced by an integration overn and a
Schultz-distribution is assumed for the radial distribution,
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e2(zc11) nr0,c /Rc,
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whereNc and Rc are the total number of cylinders and av-
erage radius defined by

Nc[E
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`

dn Nc~n!,

~4.18!
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`

dn Nc~n! nr0,c .

Again an assumption needs to be made concerning the
lengthscalesr 0,c , v0,c , andl 0 . We proceed by assuming that
r 0,c is a microscopic constant andv0,c and l 0 to be given by
the previous expressions@cf. Eqs.~3.19! and ~3.20!#,

v0,c'p Rc
2l 0 ,

~4.19!
l 0'Rc .

The resulting free energy is then obtained by inserting the
distribution in Eq.~4.17! into Eq. ~4.15! and carry out the
integration,
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with the volume and surface area given by

A5Nc 2p Rc ~L12a6Rc!,
~4.21!
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Furthermore we have defined
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zc11
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511sc
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2,

a7[
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~zc11!2 '113 sc
2.

In the case that only cylinders are present, the free energy in
Eq. ~4.20! needs to be minimized with respect toRc , L, sc ,
and Nc keeping the volume and surface area constraints in
Eq. ~4.21! in mind. One finds thatRc , sc , and L are to
leading order in 1/L given by
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Furthermore, the solubilization limit and transition to the
lamellar phase can be determined.

1. Solubilization limit

For a system of only cylinders one finds for the solubi-
lization limit,
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with sc
2 and the cylinder lengthL to leading order given by
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2. Transition to the lamellar phase

The transition to the lamellar phase for the cylinders
alone is
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with sc
2 and the cylinder lengthL to leading order given by
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C. Spheres and spherocylinders

Finally, we introduce the volume fractionsvs andvc and
obtain the free energy of the system containing both spheres
and cylinders using Eqs.~4.7! and ~4.20!,
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with the volume and area constraints

vs1vc51,
~4.29!
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16
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~3a2L14a3Rc!
51.

Besides temperaturet and the curvature coefficientsx and
1/R0 , the inclusion of radial polydispersity has left us with
the additional parametersr 0,s andr 0,c . Furthermore, the vol-
ume and area constraints manifest themselves in the presence
of the total volume fractionf and length scalev.

The free energy in Eq.~4.28! is expressed in terms of the
sevenvariablesRs , Rc , L, zs , zc , vs , andvc to be deter-
mined by minimization of the free energy with the con-
straints in Eq.~4.29!. This has been done, numerically, with
the result shown in Fig. 3. In this example we have setr 0,s

51 andr 0,c51 ~in units of v!. Similar results are obtained
when different values forr 0,s and r 0,c are assumed. In gen-
eral, loweringr 0 shifts the phase boundaries uniformly to the
right in the phase diagrams depicted in Fig. 3~Dx'0.17 per
factor 10 inr 0!.

The general shape of the phase diagram and the evolu-
tion of the cylinder volume fraction@Fig. 3~a!# and cylinder
length@Fig. 3~b!# is the same as in Fig. 2. The advantage of
including radial polydispersity therefore mainly lies in the
fact that explicit values for the spherical@Fig. 3~c!# and cy-
lindrical @Fig. 3~d!# radial polydispersities can be provided. It
is concluded thatss andsc decreasegoing in the direction
of the lamellar phase. Furthermore, the radial polydispersi-
ties also decrease in the direction of increasingx[ k̄/k with
the important distinction, however, thatss takes on a mini-
mum polydispersity of about 14%~for the few spherical
droplets that remain in this region! while sc vanishes@}1/L;
see Eq.~4.23!#. An interesting experimental consequence of
the results in Figs. 3~c! and 3~d! is that in the case that the
inversion temperature is approached from below (T,T̄), the
radial polydispersitydecreaseswith increasingtemperature.
This decrease in polydispersity with increasing temperature
is then purely a result from the intricate interplay between
the constraints, entropy, and curvature energy.

We now show how the results of this section can be
compared to experimental phase diagrams. To make this
comparison more transparent it should be reminded that we
can takek and k̄ as approximately constant~fixed x and t!

and treat 1/R0 as the ‘‘temperature variable’’ 1/R0}(T2T̄).
In Fig. 4~a! the experimental microemulsion phase diagram
is shown as a function of the oil to water ratioa[o/(w
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1o) and temperatureT at constant surfactant concentration
g[s/(w1s1o), with w, s, ando the water, surfactant, and
oil weight fraction, respectively. The usual structural evolu-
tion within the one-phase region, bounded by lamellar phases
(La) and two two-phase regions~2̄ and 2I !, is sketched. The
evolution shown is from spherical water droplets in oil
~lower right corner! via a bicontinuous phase to oil droplets
in water~upper right corner!.31 The region where the results
of this section are expected to be most applicable is the re-
gion close to the droplet region, not too close to the lamellar
region and not too close to the bicontinuous region. We have
calculated the evolution of the cylinder volume fraction tak-
ing t50.3, r 0,s5r 0,c51 ~in units of v! and g50.2 in Fig.
4~b! which roughly corresponds to the region enclosed by the
dashed line in Fig. 4~a!. In comparison with the usual sketch
of the structural evolution, which has emerged on the basis
of extensive experimental effort,31 it is noted that an increase
in the number of cylinders~as well as average length! more
prominantly occurs in the direction of increasing temperature
(1/R0→0) than with decreasinga.

In Fig. 5~a!, the microemulsion phase diagram is shown

as a function of surfactant concentrationg and temperatureT
at constant oil to water ratioa50.5. This is the Kahlweit
‘‘fish’’-diagram2 showing a three-phase region~3! and two
two-phase regions~2̄ and 2I !. Again, the evolution is
sketched from spherical water droplets in oil via a bicontinu-
ous phase to oil droplets in water.32 The evolution of the
cylinder volume fraction, takingt50.3 andr 0,s5r 0,c51 ~in
units ofv!, is shown in Fig. 5~b! which roughly corresponds
to the region enclosed by the dashed line in Fig. 5~a!. It
should be noted, however, thata50.5 corresponds to a
rather substantial droplet volume fractionf violating the as-
sumptionf!1, so that the comparison between Figs. 5~a!
and 5~b! should be taken only as a qualitative comparison.

V. SUMMARY AND DISCUSSION

We have showed that the Helfrich free energy model can
be used to describe the sphere to cylinder transition in a
one-phase region microemulsion system. In order for our de-
scription to be as realistic as possible we have included, be-

FIG. 3. Microemulsion phase diagram with translational entropy, cylinder length polydispersity, and radial polydispersities, as a function ofv/R0 andk̄/k. We
have chosenf50.05, t50.3 andr 0,s5r 0,c51 ~in units ofv!. ~a! shows the cylinder volume fraction,vc515% – 95% in steps of 5%;~b! shows the average
cylinder length,L53 – 3000~in units ofv! in logarithmic steps;~c! shows the radial polydispersity of the sphere,ss514% – 27% in steps of 1%;~d! shows
the radial polydispersity of the cylinder,sc51% – 10% in steps of 1% andsc510% – 25% in steps of 5%.
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sides translation entropy, cylinder length polydispersity, and
radial polydispersity. The model presented here has a number
of limitations that should be discussed.

~i! We have neglected all interactions between the differ-
ent structures present. This effectively means that the validity
of our analysis is limited to small volume fractions,f!1.
For a realistic description at higher volume fractions, the
sphere–sphere, sphere–cylinder, and cylinder–cylinder inter-
action energy needs to be included. Treating the spherical
droplets as hard spheres or sticky hard spheres,8 which may
or may not be a valid assumption,33 the sphere–sphere inter-
action energy can be well described by a Percus–Yevick ap-
proximation, but little is known about the other interactions
thus seriously hampering the extension to higher volume
fractions.

~ii ! Another drawback of the model is the neglect of the
possible existence of other phases. In the direction of zero
spontaneous curvature (1/R0→0) it is expected that the cyl-
inders formed start to branch17 when they increase in length

and ultimately form a bicontinuous phase that competes with
the formation of a lamellar structure. At present we have
limited ourselves to the calculation of the point where the
free energy changes sign, and the lamellar phase is formed,
hereby neglecting the narrow region of microemulsion-
lamellar phase coexistence or entropy considerations for the
lamellar phase. It should therefore be concluded that our the-
oretical analysis is most valid close to the solubilization limit
describing the onset of the sphere to cylinder transition.

~iii ! The theory presented here has a mean-field charac-
ter. This means that even though certain fluctuations around
the mean are taken into consideration—for example those
fluctuations that only change the radius—shape fluctuations
are not taken into account. The result is that our calculated
values for the radial polydispersity are a lower limit to the
experimental value. Especially in the case of the radial poly-
dispersity of very long cylinders, the contribution to the ra-
dial polydispersity of a uniform fluctuation changing only
the radius of the cylinder becomes negligible compared to

FIG. 4. Microemulsion phase diagram as a function of the oil to water ratio
a and~a! temperature or~b! 1/R0 , at fixed surfactant concentrationg. In ~a!
the usual structural evolution within the one-phase region is sketched. The
one-phase region is bounded by two lamellar phase regions (La) and two

two-phase regions~2̄ and 2I !. The region enclosed by the dashed lines shows
the region where the theory is expected to be most applicable. This region is
shown in~b! which was calculated takingt50.3, r 0,s5r 0,c51 ~in units of
v! and g50.2. Also shown is the cylinder volume fraction,vc

525% – 75% in steps of 25%.

FIG. 5. Microemulsion phase diagram as a function of surfactant concen-
tration g and ~a! temperature or~b! 1/R0 , at fixed oil to water ratio,a
50.5. In ~a! the usual structural evolution within the one-phase region is
sketched. This is the ‘‘fish’’-diagram showing a three-phase region~3! and

two two-phase regions~2̄ and 2I !. The region enclosed by the dashed lines
shows the region where the theory is expected to be most applicable. This
region is shown in~b! which was calculated takingt50.3 andr 0,s5r 0,c

51 ~in units of v!. Also shown is the cylinder volume fraction,vc

540% – 90% in steps of 10%.
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the contribution from undulatory shape fluctuations.
~iv! Many assumptions and approximations have been

made with regard to the consideration of entropy-effects.
These include the Flory–Huggins approximation for the cyl-
inder entropy and the assumptions made on the magnitude of
the ‘‘entropy length scales’’v0,s , v0,c , l 0 , r 0,s , and r 0,c .
Although we have not shown it in great detail, it turns out
that details concerning the choice of the entropy terms only
deform the phase diagram slightly without changing the
overall character of it. The same holds for the influence on
the calculation of the structural parameters,vc , Rs , Rc , ss ,
andsc . Only the average cylinder lengthL turns out to be
logarithmically sensitive to the details of the model and the
numbers presented here should therefore only be taken as an
indication.
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