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A theoretical investigation
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The sphere to cylinder transition in a one-phase droplet microemulsion system is studied
theoretically. Within the framework of the curvature energy model by Helfrich, it was already shown
by Safranet al. [J. Phys.(France Lett. 45, L-69 (1984] that for a certain range of the curvature
parameters(rigidity constants and spontaneous curvatum@ transition occurs from spherical
droplets to infinitely long cylinders through a region where both spheres and cylinders are present.
Our aim is to further investigate this region ingaiantitativeway by including—in addition to
curvature energy—translation entropy, cylinder length polydispersity, and radial polydispersity. In
this way we are able to obtain structural information on the spheres and cylinders formed, their
respective volume fractions, and polydispersity, and provide a more detailed comparison with
experimental results. @001 American Institute of Physic§DOI: 10.1063/1.1380428

I. INTRODUCTION gree of aggregatioh® It was found by ligenfritzet al® and
. Glatteret al1°that also cylindrical structures start to become

Over the past three decades it has been shown that Mizesent Only recently could a morpiantitative study be
croemulsions are structurally well-defined Se”'organ'Z'ngundertaken of this structural transition from spherical drop-

m|>(.tures of water, oil, apd surfactants that can form a W'd.elets to cylindrical structures in the one-phase microemulsion
variety of thermodynamically stable phases. These compris

o . Systemt! Using SAXS, the structural changes in w/o AOT
phases consisting @more or less sphericatiroplets of wa- : . ! : .
S ) i . . microemulsions were investigated as a function of tempera-
ter in oil (w/o microemulsions or j-phase or oil droplets in

. . . . ture (15-60°C), salt concentratiofup to 0.6% NaQ|l
water(o/w microemulsion or k-phase, as well as bicontinu- ater/AOT molar ratio25—60, and droplet weight fraction
ous mono- and bilayer phases. If the temperature and/o}. ' P 9

0 on 11
ionic strength of the aqueous phase is varied, a rich phas /OTﬁO/é't_ v it ll-established that th
behavior is generally revealéd, whereby microemulsion eoretically 1t now seems well-establishe at the

phases can coexist with water and/or oil excess phases ELe”riCh free energ¥ describing the curvature free energy
well as liquid crystalline phases forming two- and three-Of the interfacial surfactant layer can help understand the
phase equilibria. global features of the microemulsion phase diagtafiAs

Ample experimental evidence from, e.g., electric bire-i” the experimental situation, while a lot is understood when

fringence(Kerr-effecy, dielectric spectroscopy, fluorescence it concerns the description sphericalmicroemulsion drop-
quenching, turbidity, and temperature jump experiments, haléts, relat|vely.I|ttIe is known on the formation a¥lindrical
been presented for droplet aggregation in the and structures. Pivotal work has beer? done by Safran and
L,-phases.Furthermore, a considerable jurf®-3 orders of co-workers:>"*"In 1984 the phase diagram of the sphere to
magnitudg in conductivity has been reported for w/o AOT cylinder transition was published based on Helfrich’s curva-
microemulsions when the temperature or amount of interndlire energy but neglecting entropy effetis? while more
phases is increasddt is still a matter of debate whether this recently entropy effects were included to predict closed-loop
increase in conductivity is a result of charge transfer betweefoexistence regions in a system consisting of spheres and
aggregated droplets or whether the aggregated droplets Opépilinders.16 It is our intention in this article to extend the
up forming interconnected cylindrical structures. Evenwork by Safran and co-workers and to study the sphere to
though the formation of cylindrical structures is extensivelycylindrical transition in the one-phase region in more detail.
documented experimentally in micellar systetfigheir ex-  Our aim is to investigate this inguantitativeway by includ-
istence is less well-established in microemulsions. ing translation entropy, cylinder length polydispersity, and
Recent evidence for the formation of cylindrical struc- radial polydispersity.
tures has been supplied by SAXS and SANS scattering stud- Our theory has three important ingredients:
ies in the L and L,-phases. The usual interpretation of the (1) Curvature free energy: The Helfrich form of the free
scattering data in this region focuses on a fitarfgregating  energy is used to describe the interfacial free energy of the
spherical droplets characterized by an average radius, radialrved surfactant monolayer that separates the oil and the
polydispersity, and stickiness parameter describing the dewater phasé?

0021-9606/2001/115(2)/1073/13/$18.00 1073 © 2001 American Institute of Physics
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II. NO ENTROPY: SPHERES AND INFINITELY LONG
Feun= f dA[

2k k., —
- =-J+ 5J°+kK|. (1.1 CYLINDERS
Ry™ 2

The curvature free energy bl spheres with radiuRy is
The above free energy features an integral over the wholderived by insertingl=2/R; andK = 1/R? into Eq. (1.1),
surface areaA, of the total curvature)J=1/R;+1/R, and
Gaussian curvaturés = 1/(R;R,) with R; and R, the prin- s
cipal radii of curvature at a certain point on the surféce 7k
Three curvature parameters are introduceB; 1the inverse  jth x=k/k defined as the ratio of the two rigidity constants.
radius of spontaneous curvatute the rigidity constant of  The total volume and surface area are given by
bending, and the rigidity constant associated with Gaussian
curvature. In the following analysis, we treat these curvature
parameters as unknown and construct our phase diagrams in
terms of them. However, we do know from experiments that
k and k are approximately constant over the temperaturel he curvature free energy df; cylinders with radius}; and
range considered and of the order of 1 or a fey¥,*¥ while ~ lengthL>R. (so that we can neglect the curvature energy of
the inverse radius of spontaneous curvature changes signiti€ ends of the cylindgis derived by inserting=1/R; and
cantly as a function of temperatufepproximately linegr ~K=0 into Eq.(1.),

16
=Nej — z-Ret4(2+) |, 2.1

A=N4nRZ,

(2.2
Viot= ngﬁRg-

and can even change sign at the so-called inversion tempera- Feurve 4
ture T.*° Therefore, in the comparison with experiments we ~ — == Ncl—: - R_o+ R 2.3
considerk andk as constants and treatRy/ as our “tem- )
perature variable,” Rom(T—ﬂ. The volume and surface area are given by
(2) Entropy: Although the consideration of the curvature ~ A=N27R.L,
free energy alone already gives good qualitative insight into (2.4

— 2
the microemulsion phase diagram, entropy needs to be con- Vior=NemReL.

sidered in any more quantitative analysis. Entropy is generfhe free energy of a system containing both spheres and
ally responsible for the occurence of polydispersity, which iscylinders is the sum of the above free energieblgépheres
an important feature of microemulsion systems, and it willand N, cylinders. Instead oN, and N, as parameters, it is

smoothen structural transitions in the one-phase region likenore convenient to use thelume fractionsof spheres and
the sphere to cylindrical transition that we consider here. Theylinders,v andv,, defined as

theory for including entropy in microemulsion systems is N. 4
S

however not free of controversy in the literat@Peln this D= —° — 7R3

article we investigate a number of different expressions for Vi3 ¥

the entropic contribution to the free energy to find out which (2.5
aspects are model dependent and which aspects are more UCE_CT,RgL_

generally valid. Viot

(3) Constraints: Two constraints have to be consideredThe total free energy then becomes
First, the total volumeY,y, insidethe spheres and cylinders
is determined by the amount of internal phase present, for @: {_ 1—2iz+3(2+x) is}
instance the amount of water when we consider water-in-oil KVt °| RoR R

S S
microemulsions. Second, the total surface afeais deter-

mined by the amount of surfactant in the system. When we +odf — i _124_ ! } ' (2.6)
minimize the free energy consisting of the curvature free RoRc  R¢

energy and the entropic contribution to the free energy, thesgith the volume and area constraints written as

two constraints have to be taken into account. One way to

take these constraints into account is to add Lagrange multi- VsTvc=1,

pliers (which we will call o and — Ap) to the free energy. v, 20, A 1 (2.7)

We start, in Sec. Il, with a reinspection of the phase R + R V.—o
diagram of the sphere to cylindrical transition in which only s ¢ ot @

the curvature free energy is taken into account with theThe ratio between the total volume and surface area defines
above constraints neglecting the contribution of entropy. Thighe length scalev. In general,w depends on the size of the
phase diagram was first published by Saffdfand it al-  surfactant molecules and the molecules constituting the in-
ready shows many features of the phase diagrams calculatéeinal phase. Specificallh = ng,@su, With ng,s the num-

in later sections when entropy taken into account. In Sec. ber of surfactant molecules aad,the surface area taken in

[ll, translation entropy is included and the cylinder lengthby a surfactant molecul®/,,;= Nj,win:, With ni,; the number
polydispersity is considered, while in Sec. IV also the poly-of molecules in the internal phase angl; the volume per
dispersity in the radius of the sphere and the cylinder is takemolecule taken in by the internal phase.

into account. In the final section we summarize our findings  In the following we express all lengthiR, R., Ry, and

and discuss the limitations of the theory presented. L) in terms ofw. For instance, in the case that the minimi-
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zation of the total curvature free energy yields=1 (only

spherey one immediately finds from the second constraint

in Eq. (2.7 that Rg=3, in units of w. Analogously, when

only cylinders are present {(=1), the radius of the cylinder
is given byR.= 2, in units ofw. In these cases, with only one

species present, the radii therefore follolivectly from the

constraints. The free energies are then simply obtained from

Eq. (2.6),

wchurV: 41

1
+§(2+x), only spheres

K Viot 3Ry
3 (2.8
o F cyry 1 1 .
=——+ =, only cylinders.
k VtOt RO 8

Sphere to cylinder transition 1075

A. Solubilization limit

At the solubilization limit(SL), the internal phase starts
to be present as an excess phase. If the volume of the excess
phase is denoted by, andv is defined a® ,=Vy/V,y, the
volume constraint in Eq2.7) becomes

(2.11)

The amount of internal phase that is expelled as an excess
phaseyg, is determined by a minimization of the free en-
ergy with respect te,. The solubilization limit is therefore
determined by the minimization equatiai/dvy=0, with

the condition thav =0 at the solubilization limit. This pro-
cedure gives as solubilization limit for the three systems,
spheres, cylinders, and spheteylinders, the following re-

votvstuv.=1.

When we consider the free energy of the system consistingytions between R, andx:
of both spheres and cylinders, the radii have to be deter-

mined from the minimization of the free energy in Eg.6)

with the constraints in Eq2.7). A convenient way is to first

solve the volume fractionsg anduv. in terms of R, and Ry
from Eq. (2.7), yielding

R(2-R)
UsT2R.—3R,’
(2.9
R:(Rs—3)

YeT 2R-3R,

and insert the result into the free energy in E2.6). The
minimizing equationg’F/JdR;=0 anddF/JR.=0 then yield
the following pair of algebraic equations to determiRgand
R. in terms ofx and 1R;:

4 2 2
Re ReRe(RE+ 3RS~ 4RR.)

+6(2+x)R3(Rs—R,) —R3=0,
(2.10

8 2 2
~ R ReR(RE+3RE-3RR,)

+6(2+x)R3+R2(4Rs— 9R,) =0.

1 1

i SL, only spheres,

Re 6(2+X)’ y Sp

x=0, SL, spherescylinders, (2.12
1 1 .

— = SL, only cylinders.

Ry 4

B. Transition to the lamellar phase

The lamellar phaseL(,) is characterized by planar
sheets of surfactant films that carry no curvature so that the
corresponding curvature energy is ze®.(,=0). There-
fore, when the calculated curvature energy of the spheres and
cylinders changes sign and becorpesitive the free energy
for forming spheres and/or cylinders is higher than the free
energy associated with the lamellar phase aitfirst orde)
phase transition occurs. The location of the transition to the
lamellar phase is thus determined by insertihg,,=0 into
Eqg. (2.6). One finds

1 1

—=—(2+x), L., onlyspheres,

R, 12 (2.13
! L,, onlycylinders

R_O_ga s y cy .

The expression for R, at the transition to the lamellar
phase of the phase comprising spheessl cylinders is
somewhat tedious and we will not reproduce it here. It can

With the free energies of the three systefspheres, cylin- b . . . .
) ) ) e derived from solving the set of equations in E2.10
ders, and spheresylinders determined, one is then able to trqgether with the condition,

construct the phase boundaries of the transitions betwee
spheres and cylinders and between these two phases and the
phase consisting of both spheres and cylinders. It should
realized that the phase consisting of spheres and cylinders is”
still a single phase and not phase separated.

Before showing the complete phase diagram we first
need to discuss the transition to two other phases. It turns off" Rs» Re, and 1Rq. _ _
that for small values of R, (largeR,) a transition occurs to _The resulting phase diagram as a functiondR, and
thelamellar phasewhile for large values of B, (smallRy) x=k/k is shown in Fig. 1. With slightly different axes, it was
the internal phase is expelled as an excess phase and phad@ady published by Safrdft'® The upper region is the
separation occurs. The boundary at which the latter transitioB¢-region where the microemulsion coexists with the inter-
occurs is termed thsolubilization limitor theemulsification  nal phase, the lower region is the lamellar phdsg) ( and in
failure transition. These two phases are now discussed ibetween is the one-phase microemulsion region, which con-
more detail. sists of either spheres, or cylinders, or spheres and cylinders

ReR.(RZ—3R¢+6R,— 3R?) +3(2+X)RA(R.— 2)

+R:(3—Ry) =0, (2.14
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o4 ‘ ‘ ‘ ‘ A=N 4R,
® (3.3
Ry Viot= NS%WRg'

T The unknown volume element  plays the role of the

de Broglie volumeA®. The cubic root ofvy is the typical
length scale over which a microemulsion droplet needs to be

oz r displaced in order for it to “count” as constituting a different

spheres ///// cylinders state. Its magnitude and scaling with, e.g., the droplet size is
Al a matter of some debat® Within the context of statistical
01t 1 mechanical treatments using the curvature energy nfddtel,
now seems well-established that the hypothesis of Safran and
ho co-worker$**®to assume s to be of the order of the drop-
00 ‘ ‘ ‘ ‘ ‘ j let radius itself is a “reasonable approximatioff’In the
10 o8 o8 o4 02 00 %2 present treatment we therefore takg, to be of the order of
®k the droplet size,
FIG. 1. Microemulsion phase diagram without entropy as a function of A7
wl/Ry andk/k. The upper region is the@region where the microemulsion Vos™ 5 RS (3.9

3

coexists with the internal phase. The lower region is the lamellar phase

(Lo). In between is the one-phase microemulsion region, which consists o ; b — _
either spheres, dinfinitely long) cylinders, or spheres and cylindersHg fntroducmg the total volume fractios VtOt/V’ the free en

with sharp transition$dashed Iine)sbetween them. 5rgy can then be Writte“ as
S—N Rs+4(2+x)+t |II¢ 1 3.5
mk s RO S ( X) [ ( ) ] . ( .

(s+c) with sharp transitiongdashed linesbetween them. It
should be emphasized that in the calculation of the phasAs in Sec. Il, when only spheres are present, the spherical
diagram in Fig. 1, we have only considered spheres(and droplet radius follows directly from the constrainR;=3
finitely long) cylinders as structures possibly present in the(in units of w). The free energy is then simply obtained
microemulsion phase. More complex structures, such aby substitutingRs=3 into the expression above. Different
saddlelike structures, are therefore not considered but amxpressions for the entropic contribution can and have been

expected to play a role wheo>0. proposed based either on a different assumption for the form
of vgg Or taking droplet-droplet interactions into accoght.

IIl. TRANSLATIONAL ENTROPY: SPHERES Typically, these alternate expressions lead to a slightly modi-

AND SPHEROCYLINDERS fied phase diagram not affecting the overall character of it.

Next, we consider the influence of translational entropy1. Solubilization limit
on the phase diagram. For the cylinders, our treatment of the
influence of entropy is very much in the sprit of the Flory— the
Huggins theory of polymer& We first consider the entropic

contribution to the free energy of spheres only. 1 1 t
—=—(2+x)+ —<[2In(¢)—3]. (3.6
A. Spheres Ry 6 48

Subdividing the volumeV into volume elementy,, !N the literature it is more common to assume thaf is
each containing one or none spherical droplets, the entropgPnstant and the above expression for the solubilization limit

The solubilization limit is derived in the same way as in
previous section. For the spheres alone one finds

contribution ofNg spheres is given by become
N U0, i_ E L ¢UO,S
Fents=kgT| NgIn %) —Ng|, (3.1) R.~ 5(2X)+5,In | 3.7)

wherekg is Boltzmann’s constant and@ the absolute tem- with Rg=3.
perature. In writing Eq(3.1) we have assumed that the total
volume occupied by the spherical particles is much smalle&_ Transition to the lamellar phase
than the volume of the vessél,<V. The total free energy N o )
is the sum of the curvature energy and translational entrop% The transition to the lamellar phase is simply determined
y settingFs=0 in Eg. (3.5 giving
Fs NSUO,S> q

Tk In| =

16
NS[—R—RS+4(2+X)+'[ ] 1 1 t |
where we have defined the reduced temperature, or reduc%d
inverse rigidity constant of bending for that matter, '
=kgT/(7k). The volume and area constraints are still given  In order to derive an expression for the entropy of the
by Eq.(2.2), cylinder we need to take the length of the cylinder into con-

Spherocylinders
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sideration. In the Flory—Huggins theory for polyméfshe vV
length is expressed ds=nl, with n the number of mono- Ne(n)= U—e“’“+ﬁ (3.14
mers with lengthly. The entropic contribution to the free o¢
energy ofN, cylinders, all having length, on a lattice with ~ With @ and 3 constants to be determined from a further mini-
volume elemenb . is, in the Flory—Huggins mean-field ap- mization. Depending on the molecular model used, the vol-
proximation, given by umevy. might depend om, so that the exponential distri-
bution above may have an algebraic prefactor. In the present
N, In( Nevoe (3.9 treatment we take . independenof n.

\% Instead ofa and 8 as parameters, it is more convenfént
When we consider the curvature energy of cylinders of finitl© €xpress the exponential distribution in terms of the aver-
length L, the curvature energy associated with the “end-29€ lengthL, and average number of cylindet, , defined
caps” of the cylinder needs to be considered. A full treatmenfS
to determine the end-cap energy involves the minimization %
of the free energy with respect to the full shapdn the NCEJ dnN(n),
present treatment, however, we assume the shape to be that 0

Fent,c: kgT —Ncn

of a “sphero-cylinder”(spherical end-capsand only mini- 1 (= 3.19
mize with respect to the two shape parameters defining the L=~ JO dnNc(n)nly,
spherocylinder: the radiuR; and lengthL. The total free ¢
energy of spherocylinders with entropy is then so that the distributiofEq. (3.14] becomes
Fe 4L L 16 Nl
_° _ T _ €0 _—(nlg/L)
K C{ Ry + R Ry R.+4(2+X%) N¢(n) i e~ (nlp/L), (3.16
Nevge) L As a second step, we insert the above exponential distribu-
+In v | E ' (310  tion back into the expression for the free energy in Bdl2

and carry out the integration ovar?* We find an expression

with the volume and surface area given by for the free energy quite similar to the expression for the free

A=N27R(L+2R,), energywithout length polydispersityEq. (3.10],
T 3.1) Fo 4L 16

Vie=Nez RE(BL+4Ry). k- Ne| ~ R—O+ R, R—ORC+4(2+X)
In reality, the cylinders are not all of the same lengtland il Nevoclo| L 1 31
one should consider the effect of polydispersity in the cylin- N —vL lo ' (3.1
der length.

9 with the boundary conditions of the same form as in Eq.

1. Length polydispersity (3.1,

In order to account for polydispersity in the cylinder A=N27R(L+2R,),
length, we need to allow for a distributidd.(n) denoting - (3.18
the number of cylinders with length=nl,. The total free Vior= Ncg R2(3L+4R,).
energy then becomesfanctional of the distributionN¢(n),

Again, certain assumptions need to be made regarding the

Fe 4nlg nly 16 )

— = 2 Nc(n){ — —=—+ —— =—R.+4(2+X) unknown volume element, . and the length scalg, which

7K “n Ro Re Ro is the length scale over which two cylinders need to differ in

N.(n)v length in order for the two cylinders to “count” as having
+] In[ —=———2¢] — ] (3.12 different lengths. Similar to the case of spherical droplets, we
assume that . is of the order of a cylindrical segment with
with the volume and surface area given by radiusR; and lengthl g,
voc=mReo, (3.19

A=Y N.(n)27R(nly+2Ry,),

" (313 and assumé, to be of the order of the radius of the cylinder,

Vi= 2 Ne(n) 2 RE(3nlg+4R,). =R (320

" Other approximations are certainly possible and one could

In the following we replace the summation by an integrationargue thalvé{g’ andl, are fixed microscopic length scales to
over n. The minimization of the free energy in E(B.12, be determined by some other method. The assumptions in
taking the above constraints on the volume and surface ardggs.(3.19 and(3.20 have the advantage that no additional
into account, is done in two steps. First, it is noted that theunknown parameters have to be introduced. In the context of
functional differentiation with respect fd.(n) yields an ex- the approximations made, this certainly suffices but below
ponential distribution folN.(n), other approaches will be considered.
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With the total volume fractionp=V,y,/V, the free en- 1 1 1
ergy in Eq.(3.17) is written as Ro =g(1-0=5+0\ =2/, (3.27)

Fe aL L 16 with to leadin [

e _ _ il g order irL,

- c{ Ro+ Rc R —R:.t4(2+x)

7
HRZ\ L tIn(L)——(5+6x)+ In(4¢)+ —|+0O ) (3.28
+t/In 7z R (3.2)
C

which is derived by inserting the expression foRd/n Eq.
where we have neglected terms@©@{1/L). (3.27) into Eq. (3.24.

In the case that only cylinders are present, the above free |, the calculation of the two conditions in Eqe.22

energy needs to be minimized with respecRtg L, andN, and(3.23, we have made use of the expressionssfgyr and

keeping the volume and surface area constraints in mlnq in Egs. (3.19 and (3.20. As an aside we investigate the
One finds thaR; andL are determined by the following two consequences of assuming that, andl, are constants in-

equations: stead. One finds that the condition in E&.22 now be-
comes
- )— Re, In<—2—¢ +1
Ro L2 L 3t | (¢Uo,c|o)+l}
- n——
est 142 RC) 0 (3.22 o R
5 L ’ ' R, R. o
+4t|— 1+T L =0. (3.29
6 (L+2R;) (3.23 0
R. (BL+4R;) ™ ' The difference in approach only shows up as an end-

correction to the last term in E¢3.22. As argued before,

To leading order in 1/ these two equations are solved ex- such detail is lost in the approximative scheme considered

plicitly to yield here

81 1 Having derived the free energies of spheres and cylin-

R.=2+ 30 +0 F) , ders separately, it is now easy to construct the free energy of
(3.24 the system containing both spheres and cylinders.
161 1 '
tIn(L)=—§R—+ (7+6x)+ In(4¢)+
. C. Spheres and spherocylinders
+0 E). The total free energy of spheres and spherocylinders

with length polydispersity is the sum of the free energies in
Furthermore, the solubilization limit and transition to the EGs. (3.5 and(3.21) taking the respective volume fractions

lamellar phase can be determined. into account,
OF B s e 1
2. Solubilization limit KV US| Ro RT3 gt tggslintdvg 1]
The solubilization limit is given by 3v.L 41 1 16 1
==t =
1 1/2 23 1 (BL+4R:) | RoR: RI RoRL
Ro 4V Lz " @F)’ 329 I I((bchg) ] 1“
+ +X) | IN| —— | — 5 — ,
with the cylinder length_ at the solubilization limit to lead- ReL ReL L Re
ing order given by (3.30
t 1 i i i
tin(L)=(1+2x)+ E[In(4q§)+7]+(9 [)’ (3.26 with the volume and area constraints given by
vstuve=1,
which is derived by inserting the expression foRd.in Eqg. (3.3
(3.25 into Eq. (3.24). 3vs ve (L+2R)

R TOR. BLTaR, "

The free energy above needs to be minimized with respect to

the five variableRxg, R., L, v, andvg with the two con-
The transition to the lamellar phase is determined bystraints in Eq(3.31. This has been done, numerically, with

settingF.=0 in Eq.(3.2) the result shown in Fig. 2. In this example we have fixed the

3. Transition to the lamellar phase
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FIG. 2. Microemulsion phase diagram with translational entropy and

cylinder length polydispersity, as a function @fR, andk/k with #$=0.05

andt=0.3. The drawn lines denote the location of the solubilization limit
and the transition to the lamellar phase. (B the dashed lines are the
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droplet volume fraction=0.05 and set the reduced tem-
perature t=0.3 (which corresponds tdk=1 kgT). The
dashed lines in Fig.(2) are the limiting analytical results for
the solubilization limit and transition to the lamellar phases
as given in Egs(3.6), (3.8), (3.25, and(3.27). An important
distinction with the phase diagram in Fig. 1 is the fact that
there is no sharp transition to a region with only spheres or
only cylinders. The inclusion of translational entropy there-
fore smoothens the sphere to cylinder transition. This means
that at any finite temperature the relative population of
spheres and cylinders is determined by the Boltzmann distri-
bution prohibiting the existence of regions with only spheres
or cylinders present.

In Figs. 2b) and Zc), the cylinder volume fraction and
cylinder length, respectively, are shown in the phase dia-
gram. In the direction of increasing=k/k and decreasing
/Ry both the cylinder volume fraction and cylinder length
increases.

Already the(numerical minimization of the free energy
in Eqg. (3.30 gives a good indication of the influence of
entropy on the phase diagram of spherical and cylindrical
microemulsions. For the comparison with the experimental
phase diagram, however, we still need to consider one addi-
tional effect: the polydispersity in theadius of the spheres
and cylinders.

IV. RADIAL POLYDISPERSITY

In this section we account for the polydispersity in the
radius of the spherical and cylindrical structures. As in the
case of length polydispersity, we now have a distribution
Ng(n) (N¢(n)) denoting the number of spherésylinders
with radiusRs=nrgq (Re=nrgq).

A. Spheres

We first consider the free energy of spherical droplets,

F 16
v Ns(n)[ = g MMosT4(24)

Ng(n) Uos

In v

+t

1 } 4.1

with the volume and surface area now given by

A= Ny(n) 4 (nroe)?,

4.2

41
Vi= 2 Ne(n) 5=(nrog)°

limiting analytical results for the solubilization limit and transition to the Again, the summation is replaced by an integration aver

lamellar phases as given in Ed8.6), (3.8), (3.25, and(3.27). The cylin-

der volume fractionp .=20%—95% (steps of 5% and average cylinder

length, L=10-200(steps of 10, in units ofv) are shown in(b) and (c),
respectively.

The above free energy is minimized adding Lagrange multi-
pliers o and —Ap fixing the surface area and volume, re-
spectively. The distribution then has the form,
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Ng(n)= Ul e~ (I[4(2+x)~ (16/Rg) nrog+ (a/k)4(nrge)®~ (Ap/k)(413)(nrog)’] 4.3
0s

Again, the above distribution may have an algebraic prefacbut mathematically more complex. However, if we assume
tor due to some assumexd(radia) dependence afys. The 02<1 (and latero2<1), which is usually a very good ap-
above distribution was first derived by Overb&@lollow-  proximation, and only keep track of the leading contributions
ing Reissz,evo,S was taken proportional 0~ *? by Overbeek to the free energy, the minimization can be carried out ana-
but different models leading to different exponents of thelytically giving explicit expressions for the radial polydisper-
prefactor have been reported in the literattré® Here we sities.

proceed by assuming thapg is some microscopic length With the distribution in Eq(4.5) in terms ofzg and the
scale to be determined in some other way while the expresrariablesNg andRg, insertion ofNg(n) into the free energy
sion forvgg is the same as in the previous sectfefi Eq.  in Eq.(4.1) and integration oven leaves us with the follow-
(3.9)], ing expression for the free energy of polydisperse spheres:

Aqr FS ¢r05
In( RS )+C¥1

16
vos~ 3 Rs. (4.4) 75~ Nef — g Ret a2+t

We should now proceed in a similar way as in the treat-
ment of the length polydispersity of the cylindét) assume with the volume and area constraints given by
some form forvgg such as in Eq.(4.4), (2) express the
Lagrange multipliers in terms of an average radius and total A=Ns4m a; R:,
number of droplets(3) insert the resulting distribution into (4.8
the free energy, an@) minimize with respect to the remain-
ing variables. This route is, however, mathematically rather
complicated if no further approximations are mad&Vhat
we will do here is to approximate the distribution in E4.3)
by discarding the terms proportional t¢ and n® in the

™ 3
Viot= Ns? a3 Rs.

The functionsa,, @,, and a3 appearing in Egs(4.7) and
(4.8) are defined as

exponent and allow for the presence of some algebraic pref- z+1
actor with an exponent which we will caltl;. With this a@;=In Tz+D) TZsh(zs+1)—25—2
approximation, the important characteristics of the distribu- s
tion remain with the neglect of the? and n3-terms in the ~—lIn(e?)— - Lin(2m) + L o2,
exponent only affecting the tail-end of the distribution. The 4.9
advantage of this approach is that the resulting distribution zs+2 5
has the form of the well-knowBchultz distributior® widely a;=_—7~1+0o,
used in the experimental fit' of the size-distribtion of mi- ®
croemulsion droplets,
p a35(25+2)(25j3)~1+3cr§,
(zs+1)

Nerge (ze+ 1)1 [ nr
Ns(n)= sO,s(s ) ( 0s

ZS
ef(zs+ 1) nros/Rg
Re TI(z+1) | Rg :

with #(x) Euler’s psi function. Apart from the presence of

(4.9 the functionsa4, a,, and ag, the expression for the free
whereI'(x) is Euler's Gamma function, and wheh, and ~ €nergy in Eq.(4.7) is the same as the free energy of the
R, are the total number of droplets and average radius denonodisperse droplef&q. (3.5)].

fined by As in the previous sections, the radius of the spheres is
directly determined by the constraints in E@.8) giving
N.= fwdn Ng(n) Rs=3 ay/a3~3—-6 cr§ in units of w. Insertion into the free
* Jo s energy in Eq.(4.7) and differentiation with respect to-

(4.6) allows the determination of the radial polydispersity. One
finds that in an expansion i<m§< 1, o5 is determined by the

1 0
Re= Ng fo dn Ns(n) nro,. following equation, which can readily be solved numerically:

The constantz is related to the radial polydispersity;? t 4 t , [ $?rés
=1/(z;+1). One can imagine two approaches with respect 0=—53F05 ~ R_O+2+X tg9s In 187 o2
to the determination of the value of; first, z; can be treated
as a constant to be fitted to the experimental value, second, 11 P? ré
: nimizati — —tol+ —otin| | +0(a?) (4.10
one could determings from a minimization of the free en- 36 7T 127 M 187 o (o). :
S

ergy with respect t@, so thatzg is expressed in terms of
temperature, the total volume and surface area, and the cururthermore, the solubilization limit and transition to the
vature coefficients. The latter approach is more fundamentdhmellar phase are calculated.
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1. Solubilization limit

The solubilization limit is given by

1 12 »2re t
Ro ( +X)+48 18770' 16
2 1 2 | ¢2 ! O
+ o5l 5 +x)+—n e o2 36" (a2),
(4.11

with a5 now determined by

t 1

t PPres\ ot
FX)+ — 51— =
05 (24%)+ 5308 In(18ﬂ- o2 1875

(4.12

t 2r2
¢ Lgan| 2 l0s
12 187

2. Transition to the lamellar phase

The transition to the lamellar phase is derived by setting

Fs=0 in Eq.(4.7),

1 1 ¢;2r0S t
R—O—l—z<2+x>+9—e'” 18ro?| 32
+o? ! 24 %)+ —| —d)z t +0
05| g (2+X) EEn 8702 72 (09,
(4.13

with o determined by

t 2 t 2r3s\ 13
0=— - += (2+x)+—osln(u)——to€

24737 12 18w ol) 72
t ¢°r5
4 S
+—1205|n(m§ +O(O’S) (4.14

B. Spherocylinders

The inclusion of polydispersity in the distribution of the
radius of the cylindrical microemulsion structures follows
along the same lines as the spherical droplets. We first con-
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Neroc (Ze+1)%" 1 (nrg |2
Nc(n)= c O,c( C ) ( 0c

¢ e—(zc+1) nroc/Re
Re TI'(z.+1) | R '
(4.17

whereN, and R, are the total number of cylinders and av-
erage radius defined by

N.= fo dn N.(n),
(4.18

1
R N_j dn N(n) nrog.

Again an assumption needs to be made concerning the
lengthscales,., vo., andly. We proceed by assuming that
I'oc iS @ microscopic constant ang . andlq to be given by

the previous expressiolisf. Egs.(3.19 and(3.20],

2
vO,C%W Rclo,

(4.19
|0~ RC .

The resulting free energy is then obtained by inserting the
distribution in Eq.(4.17) into Eq. (4.15 and carry out the
integration,

16
R4 4(24X)

Fo_ [ 4, L
7k el TR, TR R,
R.r L
+1 In _¢ LC2 9¢ _|_+a'5 ]y (42@
0

with the volume and surface area given by

A=N.27R;(L+2agR.),

sider the free energy of a distribution of cylinders with radius

R.=nrog,

4L L 16

F
K En: Nc(n)[ — —0+ nfo,c_ R_onr°'°+4(2+x)

Ne(n)voclo) L
+t In(T —E—l (415)
with the volume and surface area now given by
A=2 Ne(n) 2a[L nroc+2(nro)?,
n
(4.1

V=2 Ne(n) 5 [3L (nro0)?+ 4(nrgg)?).

The summation is replaced by an integration omeand a

Schultz-distribution is assumed for the radial distribution,

(4.21)
T 2
Viot= Nc§ R: (Bagl +4a7R.).
Furthermore we have defined
z.+1 5
= =1+o0%,
4 ZC [
—in| =2 + +1 2
as=In| 751y T P(zc+1)—2z;
~—3%In(ed)- 3- iIn(27)+ 02, (4.22
B z.+2 5
ag= ZC+1~1+O'C,
_ (Ze+2)(z,+3) s
=(—+1)r 1+3 O'C.

In the case that only cylinders are present, the free energy in
Eqg. (4.20 needs to be minimized with respectRg, L, o,

and N keeping the volume and surface area constraints in
Eqg. (4.20) in mind. One finds thaR;, o., andL are to
leading order in 1/ given by
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(4.23

R.=2 (1202 +81+(9 !
(I=200)+ 3¢ L)
, 1 t o 1
ros ek
64
tIn(L)——(7+6x)— 9 R
t [2¢%rd, 8 23 1
+§In 1 3—R—0—2'[ +§t+0[.

Furthermore, the solubilization limit and transition to the

lamellar phase can be determined.

1. Solubilization limit

E. M. Blokhuis and W. F. C. Sager

W F g 12 1+32+ 1+t
kVtot_ ag RO Eg ( X)Eg 4_§RS
Puvslos 3vclL
X u e —
N R T | T Gagl+4asRy
WA lie 0L oyt
RO R TR RyRL ATV
¢dvcRcroe) L
+tR§L In 1z E+a5 . (4.28
with the volume and area constraints
vstve=1,
(4.29

3ap vs ve (L+2a3R.)

w5 RTOR, Baltdayry) &

Besides temperature and the curvature coefficients and
1/Ry, the inclusion of radial polydispersity has left us with

For a system of only cylinders one finds for the solubi-the additional parametergs andr,. Furthermore, the vol-

lization limit,

L2

l—11 8—14t—3t? o
R_O_Z( —t)+ ( t— t)—+

with o-g and the cylinder length to leading order given by

(4.295

5 t 1

UC=E+O EZ f

In(L 2 d)z 13 O !
tIn( )——( +X)+ T +§t+ E .

2. Transition to the lamellar phase

, (4.29

ume and area constraints manifest themselves in the presence
of the total volume fractiorp and length scale.

The free energy in Eq4.28 is expressed in terms of the
sevenvariablesRg, R;, L, zs, z., vs, andv. to be deter-
mined by minimization of the free energy with the con-
straints in Eq.4.29. This has been done, numerically, with
the result shown in Fig. 3. In this example we haverggt
=1 andry.=1 (in units of ). Similar results are obtained
when different values fory andrq, are assumed. In gen-
eral, loweringr shifts the phase boundaries uniformly to the
right in the phase diagrams depicted in FigAXx~0.17 per
factor 10 inry).

The general shape of the phase diagram and the evolu-
tion of the cylinder volume fractiohFig. 3(@)] and cylinder
length[Fig. 3(b)] is the same as in Fig. 2. The advantage of
including radial polydispersity therefore mainly lies in the

The transition to the lamellar phase for the cylindersfact that explicit values for the spheriddtig. 3(c)] and cy-

alone is

1 1 1
R, 81V

with a§ and the cylinder length to leading order given by

o

, t 1 (1)
=R
tIn(L)——(1+6x)+—In<
3
E .

C. Spheres and spherocylinders

(4.27)

¢2

“(2-t) |+

+0

Finally, we introduce the volume fractions andv . and

1 1
E+O(F) , (42@

lindrical [Fig. 3(d)] radial polydispersities can be provided. It
is concluded thatrg and o, decreasegoing in the direction

of the lamellar phase. Furthermore, the radial polydispersi-
ties also decrease in the direction of increastagk/k with

the important distinction, however, that takes on a mini-
mum polydispersity of about 14%for the few spherical
droplets that remain in this regipwhile o vanisheg«1/L;

see Eq.(4.23]. An interesting experimental consequence of
the results in Figs. @) and 3d) is that in the case that the
inversion temperature is approached from beldw<(T), the
radial polydispersitydecreasesvith increasingtemperature.
This decrease in polydispersity with increasing temperature
is then purely a result from the intricate interplay between
the constraints, entropy, and curvature energy.

We now show how the results of this section can be
compared to experimental phase diagrams. To make this
comparison more transparent it should be reminded that we
can takek andk as approximately constaftixed x andt)

and treat 1R, as the “temperature variable” %m(T—ﬂ.

obtain the free energy of the system containing both spherds Fig. 4(@) the experimental microemulsion phase diagram

and cylinders using Eq$4.7) and (4.20,

is shown as a function of the oil to water ratio=o/(w
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FIG. 3. Microemulsion phase diagram with translational entropy, cylinder length polydispersity, and radial polydispersities, as a funid@paratk/k. We
have chosery=0.05,t=0.3 andrys=rq.=1 (in units of ). (&) shows the cylinder volume fraction.=15%—95% in steps of 5%b) shows the average
cylinder length,L =3-3000(in units of w) in logarithmic steps(c) shows the radial polydispersity of the spherg=14%—27% in steps of 1%g) shows
the radial polydispersity of the cylindes,.=1%—10% in steps of 1% and,=10%—25% in steps of 5%.

+0) and temperatur@ at constant surfactant concentration as a function of surfactant concentratigand temperature
y=s/(w+s+0), with w, s, ando the water, surfactant, and at constant oil to water ratiaz=0.5. This is the Kahlweit
oil weight fraction, respectively. The usual structural evolu-“fish”-diagram? showing a three-phase regi¢8) and two
tion within the one-phase region, bounded by lamellar phasegyo-phase regions(2 and 2. Again, the evolution is
(L,) and two two-phase regiori® and 2, is sketched. The sketched from spherical water droplets in oil via a bicontinu-
evolution shown is from spherical water droplets in oil ous phase to oil droplets in watérThe evolution of the
(lower right corney via a bicontinuous phase to oil droplets cylinder volume fraction, taking=0.3 andrys=rqo.=1 (in

in water (upper right corner® The region where the results units of w), is shown in Fig. ) which roughly corresponds
of this section are expected to be most applicable is the reo the region enclosed by the dashed line in Fign).5lt
gion close to the droplet region, not too close to the lamellashould be noted, however, that=0.5 corresponds to a
region and not too close to the bicontinuous region. We haveather substantial droplet volume fractigrnviolating the as-
calculated the evolution of the cylinder volume fraction tak-sumption <1, so that the comparison between Fig&)5
ing t=0.3, ros=ro.=1 (in units of w) and y=0.2 in Fig.  and §b) should be taken only as a qualitative comparison.
4(b) which roughly corresponds to the region enclosed by the

dashed line in Fig. @). In comparison with the usual sketch

of the str_uctural eyolution, which .has emerged on the basiy syMMARY AND DISCUSSION

of extensive experimental effott,it is noted that an increase

in the number of cylindergas well as average lengtimore We have showed that the Helfrich free energy model can
prominantly occurs in the direction of increasing temperaturée used to describe the sphere to cylinder transition in a
(1/Ry—0) than with decreasing. one-phase region microemulsion system. In order for our de-

In Fig. 5@a), the microemulsion phase diagram is shownscription to be as realistic as possible we have included, be-
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FIG. 4. Microemulsion phase diagram as a function of the oil to water ratioFIG. 5. Microemulsion phase diagram as a function of surfactant concen-
« and(a) temperature ofb) 1/R,, at fixed surfactant concentratign In (a) tration y and (a) temperature ofb) 1/R,, at fixed oil to water ratio«
the usual structural evolution within the one-phase region is sketched. The=0.5. In (@) the usual structural evolution within the one-phase region is
one-phase region is bounded by two lamellar phase regiogs 4nd two  sketched. This is the “fish”-diagram showing a three-phase re¢#rand

two-phase region€ and 2. The region enclosed by the dashed lines showstwo two-phase region& and 2. The region enclosed by the dashed lines
the region where the theory is expected to be most applicable. This region ighows the region where the theory is expected to be most applicable. This
shown in(b) which was calculated taking=0.3, ros=ro.=1 (in units of ~ region is shown in(b) which was calculated taking=0.3 andros=ro

w) and y=0.2. Also shown is the cylinder volume fraction;, =1 (in units of w). Also shown is the cylinder volume fraction,
=25%-75% in steps of 25%. =40%-90% in steps of 10%.

sides translation entropy, cylinder length polydispersity, andand ultimately form a bicontinuous phase that competes with
radial polydispersity. The model presented here has a numbdéne formation of a lamellar structure. At present we have
of limitations that should be discussed. limited ourselves to the calculation of the point where the
(i) We have neglected all interactions between the differfree energy changes sign, and the lamellar phase is formed,
ent structures present. This effectively means that the validithereby neglecting the narrow region of microemulsion-
of our analysis is limited to small volume fractiong<1. lamellar phase coexistence or entropy considerations for the
For a realistic description at higher volume fractions, thelamellar phase. It should therefore be concluded that our the-
sphere—sphere, sphere—cylinder, and cylinder—cylinder intepretical analysis is most valid close to the solubilization limit
action energy needs to be included. Treating the sphericalescribing the onset of the sphere to cylinder transition.
droplets as hard spheres or sticky hard sphresich may (iii) The theory presented here has a mean-field charac-
or may not be a valid assumptidhthe sphere—sphere inter- ter. This means that even though certain fluctuations around
action energy can be well described by a Percus—Yevick aghe mean are taken into consideration—for example those
proximation, but little is known about the other interactionsfluctuations that only change the radiuskape fluctuations
thus seriously hampering the extension to higher volumere not taken into account. The result is that our calculated
fractions. values for the radial polydispersity are a lower limit to the
(i) Another drawback of the model is the neglect of theexperimental value. Especially in the case of the radial poly-
possible existence of other phases. In the direction of zerdispersity of very long cylinders, the contribution to the ra-
spontaneous curvature Ry—0) it is expected that the cyl- dial polydispersity of a uniform fluctuation changing only
inders formed start to branthwhen they increase in length the radius of the cylinder becomes negligible compared to
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