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Determination of curvature corrections to the surface tension
of a liquid—vapor interface through molecular dynamics simulations

A. E. van Giessen® and E. M. Blokhuis
Colloid and Interface Science, Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA Leiden,
The Netherlands

(Received 8 May 2001; accepted 9 October 2001

We use molecular dynamics simulations of particles interacting through a truncated Lennard-Jones
potential to study the surface properties of the curved liquid—vapor interface. We determine the
Tolman lengths, investigate its critical behavior, and provide first results for the rigidity constants

of bending,k, and of Gaussian curvaturk, The rigidity constant of bending, determined at three
different temperatures, is found to be positive and of the order of ond<iBIfThe rigidity constant

of Gaussian curvature, determined at a single temperature, is of the same order of magnitude.
© 2002 American Institute of Physic§DOI: 10.1063/1.142361]7

I. INTRODUCTION Although our ultimate goal is to obtain a better under-

, .. . standing of complex interfaces, in this article we determine
Complex interfaces are generally systems containing lidthe cyrvature coefficients of aimple interface, i.e., the

uid surfaces in which at least one of the components has I‘?quid—vapor interface of a one-component system, using
strong affinity for the surface. Examples of complex inter-pqjacyjar dynamics simulations. The reason to focus on
faces include those occurring in systems containing surfaGsjmpeinterfaces is twofold. First, it turns out that the deter-

tants (i.e., in microemulsions lipids (i.e., membranes, ination of the rigidity constants for the one-component sys-
vesicles, polymers (grafted or adsorbed to the surface (om js already rather difficult. Second, the concept of the

block-copolymers, ett.For the theoretical understanding of Helfrich free energy has not been free of controversy for

the properties of complex interfaces, it has long been recogsiyje interfaces. In his plenary lectfire the second Liquid
nized that thecurvatureproperties play a dominant role. This \1atter Conference in 1993, John Rowlinson asked the par-

recognition has led to the formulation of the surface CUNVa%jcinants, “What could apparently be simpler than a drop of
ture free energy by Helfrich which has the following fofm: liquid?” Rowlinson then proceeded to argue that a number of

K Kk . key problems remain, the most persistent of which are those

sz dA a—ZR—J+ §J2+kK ) (1.1 related to the existence of terms beyon&R-+Hwith R the

0 radius of the droplet—of the radius dependent surface ten-

The Helfrich free energy is derived by assuming that thesion o(R): There remains the(...) more difficult
radii of curvature,R; and R,, are large compared to the question—do terms in higher powers thaR 1 the expan-
length scales of interest so that expansiorin small curva- ~ sion of Q) or o(R) have any meaning for a simple fluid?
ture can be made. Specifically, the above free energy is aifhere are strong arguments against their vayidit .”
expansion to second order of the total curvature,1/R; Rowlinson then proceeded to enumerate a number of argu-
+ 1/R, and Gaussian curvaturé=1/(R;R,), leading to the ~ments against continuing the expansion beyoril. For a
existence of fouphenomenologicatoefficients:o, the sur-  spherical liquid droplet and for a cylindrical liquid column,

face tension of the planar interfade,, the radius of spon- €ach with equimolar radiug, Eq. (1.1) reduces to
taneous cur\@turek, the rigidity constant associated with

bending, andk, the rigidity constant associated with Gauss- o(R)= E:U_4£ s S 1.2
ilan curvature. A Ro
The Helfrich expression for the surface free energy has
been successfully applied to describe the shape and phase k1 k1
diagram of complex interfact3 but also for the description o (R)y=0— 2R_0 R + > E +..- (1.3

of the properties of the simple liquid—vapor interfdcA.
major drawback of the Helfrich description is that no infor-

mation is provided on thealueof the coefficientsr, Ro, k spherical geometry, while ¢” indicates cylindrical geom-

and k. Much theoretical attention has therefore focused Oktry: the dots represent terms of higher order th&? it the

the determination of these phenomenological parameters iy nansion in the curvature. The first-order correction to the
terms of microscopic models, e.g., membranes, vesiclegtace tension due to the curvature energy defines the so-
polymer system$ and microemulsion systens. called Tolman lengttf 5, which is related to the radius of
spontaneous curvature vies= 2k/R,. The doubts raised by
dElectronic mail: a.vgiessen@chem.leidenuniv.nl Rowlinson concern the existence of thseconedorder

Here, and throughout this article, the subscrigtihdicates

0021-9606/2002/116(1)/302/9/$19.00 302 © 2002 American Institute of Physics
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terms—the rigidity constantk and k—for a simple liquid culation of the Tolman length, we also used an equivalent
interface. In this article we address these doubts by calculagXpression introduced by Haye and Brifin

ing the rigidity constants using computer simulations. 1

It is important to note that the surface tension of thed= ;J dz Z[pn(2) = pr(2)]— 5 deJ drip’(r)r
planar interface, which is measured in surface tension experi-
ments, and the Tolman length arelependentf the choice X (1—3s%) zlngz)(zl,zz,r) . (2.3

of the dividing surface. The rigidity constarksandk, how-  The first term in this expression is known as the mechanical
ever,do depend on this choice. This fact does not render therolman length, and involves the normal and transverse com-
rigidity constants useless; it does, however, indicate the neggbnents to the pressure tenspg(z) and p1(z), respec-
to state which convention for locating the dividing surface istively.
used. Two common choices are the equimolar surface, for  The virial expression for the rigidity constants are given
which the excess number density is zero, and the “surface dj
tension,” which makes the Laplace equation valid atrafl
The planar limit of the difference between these two dividing k= — §f dzlf drip ¢’ (r)r
surfaces equals the Tolman lengéy z.—z5. There is no
fundamental reason to choose one location of the dividing
surface over the other—as long as they are chosen “sensibly
coincident” with the interfacial region. In this article we
have chosetthe equimolar surfacas the dividing surface as
a matter of convenience.
As a model system for our simulations, we use a one-
fdzlf dris ' (r)r

( 7,2, (1—3s?)

2
+ §(1+632—1584)>p(()2)(zl,22,r)

+2 (234 2){s?—sir? p(1— 32)}10(2)(21:22,@,” ,

component liquid—vapor system in which the particles inter- k=

act through a truncated Lennard-Jones potential—at fixed

volume, number of particles, and temperature. For this model r2

system the phase diagram and some surface properties such + 508+ 632—2&4))1382)(21,22,0
as surface tension are well document®t: Furthermore, we

(22122(1 3s?)

establish more accurately the Tolman length for the Lennard- +(2,+2,)((1—35%) p(z)(Zl,Zz,l‘)

Jones system, since its sign, magnitude, and critical behavior

have been t_he Fopic of much recent reseé?ph_. _ +4{s2—sir? p(1—s?)} p(2)(211227¢,r))}, (2.4)
The derivation of expressions for the rigidity constants

suitable for use in molecular dynamics simulations is givenyhere o= ¢, is the angle between, andr,.

in Sec. Il. Section Il follows with detail of the simulations, It has been notéd that the expressions for the rigidity

while in Sec. IV we describe and discuss the results of thosgonstants diverge when the potential decaysra$, or

simulations. We end with a summary in Sec. V. slower, at large. This means that for &#ue Lennard-Jones

fluid in which the potential is not truncated, the rigidity con-
stants are infinite. In real systems, however, the potential
Il. VIRIAL EXPRESSIONS crosses over to an ’ decay for large distances due to retar-
dation effects, so that the above expressions for the rigidity
The way one usually determines the surface tension bgonstants lead to finite values. Also, in our simulations the
computer simulations is through the “virial expression” first rigidity constants are finite since the Lennard-Jones potential
derived by Kirkwood and Buff in 1948 It expresses the is truncated at 24. Even so, for real systems or, in general,
surface tension in terms of the interaction potenfit) and  for systems interacting through an algebraically decaying po-

the pair density of the planar interfap&’(z;,2,,r)*® tential, the coefficients for higher order terms may very well
diverge. At that point, the expansion is no longer analytic and
fdzlj dri, ¢’ (r)r (1—3s?) p(z)(Zl,Zza r, terms containing, for example, R( may need to be in-

2.1) cludeq. This QOes not, howe_ver, re_nder the earlier terms
meaningless since they are still dominant for laRye
wherer=|r,, s=cosé;, and z,=z;+sr. Similar expres- The virial expressions fos- and & feature the pair den-
sions have been derived for the radius of spontaneous curvaity of the planar interfacey?)(z,,z,,r), and can therefore
ture (or Tolman length and the rigidity constantsFor the  be determined from a simulation of the planar interface only.

Tolman length, it was derived tHat The expressions for the rigidity constants, however, depend
1 also on the leading order change in pair density of the spheri-
o=— %f dzlf drip, ¢’ (r)r (1—3s?) cal and cylindrical interface due to curvature
2 @) _ @ @) 1
X (21+2) p§(21,25.1) 22 P (222 1)=pg (20,22,1) +psi(21,22,0) g+,

where it is understood that the integration ozauns from @7 7 )= p@(2y.25.0) + p@(21.2 =+
the liquid to the vapor phase and where the0 plane is  P¢ (21,22, ¢.1)= po (21, 22,1) ¥ pea(Z1, 22,00 5
chosen to coincide with the equimolar surfddeor the cal- (2.5
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For the determination of the rigidity constants, it is therefore _1
essential to perform simulations of curved interfaces with  Is(R)= R—O—(2k+ Kgt
very large radii of curvature so that the higher order terms in

the expansion in R may be neglected. Furthermore, in or- 2Kk 1

der to derive expressions for each of the rigidity constants, it 1,(R)==——k=+---.

. : . )~ : Ry, R

is necessary to consider two different geometries: the spheri-

cal and cylindr_ical interface. _ _ o The way to determine the rigidity constants is to carry out
~ We now discuss the way in which these virial expres-gimylations of both spherical droplets and cylindrical col-
sions can be used in a molecular dynamics simulation tQ,1ns of certair(large radiusR. From the(negative slope of

determine the various quantities. The surface tension ang plot of I (R) andl(R) versus IR, one determinek and

I\OITSQ :ngg\:anari;tﬁfggg;wgﬂly gﬁ:ﬂ;}gig 2}2’ aev?;unzt;ZkﬂLE respectively. We thereby assume that the radii of cur-
9 g exp 9 P vature are large enough so that the remaining terms of the

(2.10

interface: expansion in Eq2.10 can be neglected.
1 ’ 2
0= a2 9N (137, (2.6
! Ill. SIMULATION DETAILS
1 The simulations used to evaluate the surface tension, the
= — —— ! e e —_— 2 . . !
0= 8Ao .2, ¢ (ryy) 1ij (1357 (zi+2), 27 Tolman length, and the rigidity constants consisted of mo-

lecular dynamics simulations of particles interacting through
whereA is the surface area and the summation runs over afhe Lennard-Jones potential
pairs of particled andj. The evaluation of the rigidity con- 1
(o g
(?) - (T

stants is somewhat more elaborate since it involves the lead- =4
dLy(r)=4e
where ¢ is the depth of the potential well, and is the

ing order change in pair density with curvature. In the ap-
pendix we define the following integrals:
1 molecular diametefot to be confused with the surface ten-
I(R)= ﬁf drlf dry @' (1)r p(ry,ry) sion). The potential is cut off at a distance of=2.5¢. In
addition, the potential is shifted such that it is zero at the

6
) (3.1

cutoff. Thus, the actual potential used in the simulations is

x{ -3 zﬁ%sr)(l—Bsz)
r)— ro r<rg
¢(r):[g’u() P - 32
+|622(1—35?) +2,51(15— 275) c-

As usual for MD simulations, all quantities are reduced by
the appropriate factors of, o, Boltzmann's constankg,
and the particle mass. In general, due to the finite cutoff,
the physical quantities obtained in the simulations are only
for the spherical droplet, and approximations of those in real systems. It is known that the
value of the surface tension changes substantially when the
1 , 2 cutoff is increased from 26 to 7.33%-.111° This effect is
l(R)= ﬁf drlf dra @' (1)r pc™(ry,r2) even more dramatic for the rigidity constants since the values
of the rigidity constants diverge logarithmically when the
cutoff grows to infinity. In real systems, the rigidity constants

r? 5 NE!
— (83— 4252+ 55s )}ﬁ] (2.9

2 i 2
x| (2z,+sN[s*= i o(1-5)] are finite due to retardation effects, but still one may wonder
whether the values of the rigidity constants obtained here
_ 32§[sz—sin2<p(1—sz)] using a truncated Lennard-Jones potential witk 2.50 are
a good approximation of the value for realistic systems. It
+2,51[352— 7 Si o(1—5)] would certainly be worthwhile to investigate the dependence

of the rigidity constants on the potential cutoff in more de-
tail; to do so, however, is computationally very expensive
and we leave this as a project for future work.

The initial configurations for the simulations contained
both phases, a high-density slab, sphere, or cylinder sur-
rounded by a low-density “vapor,” with the particles on an
fcc lattice. The lattice spacing was appropriate for a liquid or
for the cylinder. We also show that, t8(1/R), these inte- for a vapor density, depending on the phase. The desired
grals are related to the following expansion with the curva-geometry of the equilibrated phase was already present in the
ture parameters as coefficients: initial configuration. For the simulations with droplets or cyl-

- r2( s*—4s?sir? o(1—5?)

+ %sin“ (p(l—sz)zﬂé] (2.9
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TABLE I. Parameters for spheres at =0.90. TABLE II. Parameters for cylinders at* =0.90.

Box size N Re Box size N Re
120X 120X 120 158 999 30.7 120X 120x 12 30 006 30.6
100x 100x 100 90 600 25.3 120x120x 12 20000 22.4

80%x 80x 80 48 884 20.9 80X 80x 12 12 250 19.2
60X 60X 60 23140 16.8 80X 80x12 10 000 16.4
50x 50x 50 13108 13.7 80X 80x 12 8700 14.6
50X 50X 50 10 048 11.0 60X 60X 12 6 050 13.0
50X 50X 50 8 750 9.4 60X 60X 12 4177 9.4
40X40x 40 5195 8.7 40X 40X 12 2227 7.4
40X 40x 12 1714 5.6

inders, the volume of the high-density phase in the initial

configuration was adjusted to achieve a predetermined nungonstant by scaling the particle velocities every 100 time
ber of particles, which then, when equilibrated, formed aSteps. The total momentum of the system was set to zero
sphere or cylinder of the desired radius. For systems wittperiodically, to correct for drift due to round-off errors in the
larger radii, the initial configurations were based on thecalculation; this is more important for smaller systems than
equilibrated configuration of a system with a smaller radiusfor larger systems. For small systems, the drift was removed
which was then padded with a spherical or cylindrical region€Very 100 time steps, while for larger systems, this was
of particles on an fcc lattice with a liquid-like density, and changed to every 200 or 400 time steps. The center of mass
then the remainder of the volume was filled with a lattice ofof the system was moved to the center of the box when the
vapor-like density, until the target number of particles hadtotal momentum was set to zero to prevent drift in the loca-
been reached. All configurations were allowed to fully equi|i_tion of the sphere or cylinder. The statistical error in various
brate, a process which could last for millions of time stepsduantities was determined by averaging over subintervals of
for large systems. The equilibration process for the large syst00000 time steps. Typical runs were anywhere from 2
tems was sped up by rescaling the momenta in the dengé10® to 4x10° time steps in length, though all runs of

phase separately from those in the vapor phase, whicRlanar interfaces consisted of at least 1P time steps, in-
greatly reduced the equilibration time. creasing up to X 10’ for the two temperatures nearest the

The paucity of simulations of cylinder in the critical point. Simulations for the planar interface were run at
literaturé®7 initially led us to believe that such simulations Nine different temperatures™* =0.75, 0.80, 0.85, 0.90, 0.95,
were difficult. However, this turns out not to be the case;0-975, 1.00, 1.025, and 1.05; those of cylinders were per-
simulating cylindrical liquid columns is actually straightfor- formed at temperatures @ =0.80, 0.90, and 0.95, while
ward. It is simply a matter of a judicious choice of box shapeSimulations of droplets were done at only one temperature,
and size: the dimension of the box parallel to the cyIinderT* =0.90. All simulations for the planar interfaces were run
axis must be less than the diameter of the cylinder, while th&Sing @ system containing either 7100 particles in a box of
two dimensions perpendicular to the axis should be mucff0X20x80, or, forT*=0.975, 11000 particles in a box of
larger than the diameter. For the simulations reported here0%<20x100. Details of the systems containing droplets and
the lengths of the box perpendicular to the cylinder axis weréYlinders can be found in Tables | and Il, respectively.
always at least four times the cylinder radius. One must also
start the simulation with a cylindrical initial configuration.

This configuration is extremely stable; only when the dimen- 06
sion parallel to the axis is considerably larger than the diam-
eter does the cylinder break up into droplets. Only one cyl- 0.3 1
inder evaporated in the simulations, that of the smallest
system,N=1714, at the highest temperatufi;, =0.95; all 04
other cylinders were stable.

The expressions for(R), Egs. (2.8 and (2.9), contain ¢ 03

an explicit reference to the equimolar raditss R, of the
droplet or cylinder. In order to evaluate these integrals, we 02 ¢
used five “test” radii, one of whichR, was the approxi-

mate equimolar surface determined from the equilibration 017}
run. The other four radii wer®,,+0.1 and 0.2. After the
production run was finished, we determined the average 0O o1 02 03

equimolar radius and then interpolated to the correct value of

I (Re) using a quadratic fit to the five values calculated for
RiestaNdRieset 0.1 and 0.2. FIG. 1. A plot of the reduced surface tensiarvs the reduced temperature

. . T i it t=(Tc—T)/T,; the error in each data point is smaller than the symbol. The
The simulations used both the link-list and the pair IIStsolid line is a fit to our datécircles, and has an exponent pf=1.24. The

method. The lists were updated every seven time steps. Th&tical temperature is indicated by the star. The squares are data from Ref.
reduced time step wast=0.01. The temperature was kept 10, and are shown for comparison.

t
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TABLE lll. Values for the number of time steps, the equilibrium densities, the surface tension, and the Tolman

length at different temperatures.

T Time steps Po Py og )
1.050 1.1& 10 0.158 0.490 0.0230.002 1.314:0.230
1.025 1.05 10" 0.124 0.537 0.0560.002 0.931+0.157
1.000 8.0 10° 0.101 0.570 0.0790.002 0.3740.101
0.975 6.0< 1¢° 0.081 0.597 0.1130.002 0.3320.081
0.95 4.0<10° 0.067 0.621 0.1560.002 0.333:0.024
0.90 4.0<10° 0.045 0.662 0.2260.002 0.264:0.030
0.85 4.0<10° 0.031 0.697 0.3060.002 0.1610.020
0.80 4.0<10° 0.020 0.729 0.3910.002 0.16%-0.018
0.75 4.0<10° 0.013 0.758 0.4830.002 0.1630.016

IV. RESULTS AND DISCUSSION able to determine the critical exponent for the Tolman length.

- - : ; Physical arguments suggest that the magnitude of the critical
We begin by discussing the results from the planar inter- a
gin by cIScUssing y P ! xponent cannot be larger thas 0.63. This is because the

faces. The equilibrium properties of the systems are listed i | lenath is the diff betw wo dividi
Table Ill. From the temperature—density coexistence curvef0 marlheng 1S I ed' |_(;a_rence ¢ € eeg tr\:vo '\]f' Ing fS;Jr
we find a critical temperature of; =1.076. Values for the aces, the equimoiar dividing surtace and the surface of ten-

calculated surface tension agree well with those found in th on, gnd since each of these surfaces lies within the inter-
literature®*! Figure 1 shows our values plotted against the' 2°: it would be expected that the Tolman length cannot
reduced temperature distance to the critical pofft(T, diverge any faster than the width.of the interfgce. The data
—T)I/T.. For comparison, values from Ref. 10 are included.frorn the lower tenjperatu.re{echU(.jlng thg FWO highest tem-
The critical temperature is also indicated by the star. A fit toperature)s are not Inconsistent W.'th a C”t'?al exg)%@e”‘ of
the scaling lawe~|t|#, shown as the solid line, gives a —0.63; the dashed line in Fig. 2 is proportionalt{o** and

L : o is a guide to the eye. The analyses of both Rowlin$and
\a/\ilcueep:g:jtczlﬁgtglich “2%% exponent af=1.24+0.02. The of Fisher and Wort® indicate that the divergence of the

The Tolman length was calculated using E(&2) and Tolman length would be dominated by either of two terms.
(2.3): the results from both expressions are in agreement, ant ne, due to Iflelttj_—m|xmg termsl |n.thzlcurvauf[r?g&rrecttrl]on n
are consistent with those of Haye and BrifiiThe data, € renormaization group analysis, Ivergestas as the.
determined by fitting the values of calculated from each critical temperature is approached. The other, Whlch arises
subinterval to a Gaussian distribution, are shown in Fig. 2 agrom theﬂ?is(’)g[nvmle;yryh of thz \I/c\;/catll free-energ;gldetnsgy,t di-
a function of the reduced temperature distance to the criticaf€'9%s & - risheran ortis were unable 1o deter-

point,t; they are also given in Table Ill. The Tolman length is mine g5 due to poor convergence of teeexpansion, though
always positive, and far from the critical point, it is approxi-

their analysis suggests it is positive. Equating.63 to 65
mately 0.16. Near the critical point, the Tolman length ap- v gives a value foi;~0.
pears to diverge. The data from the two highest temperatures

Typical equilibrium configurations of a liquid droplet
appear to be slightly inconsistent with the behavior shown a

nd a liquid column, both surrounded by their vapor, are
lower temperatures. Given the scatter in the data, we are ngrown In Figs. 3 and 4, respectively. The droplet has an

equimolar radius of 84, while the cylinder has an equimo-

1.6
!
! o
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FIG. 2. The Tolman length, shown as circles, is plotted against the reduced o

temperature distance to the critical poir (T,—T)/T. . The open squares
are the data of Haye and BruiRef. 14. The dashed line is a guide to the FIG. 3. A typical configuration for a spherical liquid droplet surrounded by
eye with an exponent of 0.63. its vapor. The radius of the droplet is 8.7
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L(R)

FIG. 4. A typical configuration for a cylindrical liquid column in its vapor. I
The radius of the cylinder is 602
. . . . -04 .
lar radius of 6.2. The system sizes considered in these 0 0.05 0.1 0.15 0.2
simulations ranged up thl=30 000 for columns, and up to IR

160000 for droplets. Tables | and Il contain the number ofg g 6. values forl (R) are plotted vs R for three temperaturest*

particles, the equimolar radius, and the box dimensions for0.80 (circles, 0.90 (squarel and 0.95(diamonds. For clarity, the data

the simulations aff*=0.9. Simulations at other tempera- for T*=0.80 have been shifted up by 0.1, while those Tér=0.95 have

tures used the same number of particles and box size, Whif_ﬁen shifted down by 0.1. The various linear fits are described |n. the text.
. . The open squares are results with different box lengths iz theection; the

the radius was allowed to vary. Larger systems were considg, o, of the each pair has a length ofd.0

ered, for example a cylindrical column df=61 000 with a

radius Re~ 500, but the calculation of .(R) proved to be

unreliable. This is due to the presence of large capillary wavearticles and twice the volume. One pair had an equimolar

fluctuations along the surface. Figure 5 shows a projection ofadius ofR,=12.99+0.03; the larger system had 12 772 par-

a typical configuration of this large cylinder onto they ticles and the smaller system had 6386 particles. The other

axis, with the center of each particle represented as a dopair hadR.=9.62+0.03, with the larger system containing

One can clearly see the fluctuations in the location of th€7200 particles, and the smaller, 3600 particles. For both

surface. These fluctuations reduce the radial symmetry of thgairs, the bulk densities are in agreement. The values for

system, which is reflected in an increase of theerage |,(R) differ slightly, with the smaller system having a

interfacial width and a decrease in the accuracy of the calcusmaller I .(R), though they agree to within the margin of

lation of I(R), which depends explicitly on a known and error. In comparison with the data presented below, which all

constanR, . This provides a practical upper limit for the size have a box length in the direction of 12r, there is no

of the system. We do not include any calculations with aobvious dependence ¢f(R) on the box length, other than

radius greater thaR=32. the data for systems with a box length in théirection of

In order to investigate any finite-size effects due to cut-100 being the lowest. The data from the systems discussed
ting off the length of the cylinder in the direction, we ran  here are shown in Fig. 6 as open squares.
two pairs of simulations of cylinders of identical radii, but To determine the coefficients in the expansiGhg) and
with different box lengths in the direction. For each pair, (A7), we plotI.(R) versus 1R in Fig. 6 andl4(R) versus
the smaller system had adimension of 10, while the  1/R in Fig. 7. Figure 6 contains data for three temperatures:
larger system had one of @0The larger system was exactly T* =0.80(circles, 0.90(squares and 0.95diamonds. The
twice the size of the smaller system: twice the number ofdata forT* =0.80 andT* = 0.95 have been shifted vertically

for clarity. The intercept, R/R,, is also equal ter 6, wheres

is the Tolman length; botla- and 6 were determined from

100 : ' ; simulations of planar interfaces, as described above. In Fig.

6, one can see that for largethe data for all three tempera-
tures are independent Bf to within the margin of error. This
regime includes data for systems with radii Bf=120
(1/R=0.083) and larger. For smaller values of the radius, the
value forl (R) decreases with decreasing radii. The rate of
this decrease depends on the temperature: For the lowest
temperature] .(R) decreases only slightly aR decreases,
while for the highest temperature, the decreasé.(R) is
very rapid with decreasing.

To extract the rigidity constark from these data, it is
necessary to fit Eq2.9) to the “largeR” regime. However,
6 ‘ ; ‘ just where this regime ends is unclear. Applying linear re-
-100 -50 0 50 100 gression to the first fivéfor T*=0.95) or sevenfor T*

=0.90 and 0.8Ddata points gives values fdc which are
FIG. 5. Aprojection onto the—y axis of a cylinder with a radius of 50. The indistinguishable from zero, to within the margin of error.

center of each particle is represented by a dot. Note the clearly visiblél_-his iS. the region Where_the df_%ta in Fig. 6 are obviously
capillary waves. linear, i.e., for systems with radii of b2and larger. These

50




308 J. Chem. Phys., Vol. 116, No. 1, 1 January 2002 A. E. van Giessen and E. M. Blokhuis

0.1 ‘ ‘ TABLE IV. Fit parameters and values férandk.
T* N k Kk
0.95 6 0.550.20
0.90 8 0.49-0.15 —0.57+0.31
I(R) ol E 0.80 10 0.42:0.10
x
005 - approximately kg T for an AOT monolayer and for a binary
liquid-liquid mixture, respectively. In recent x-ray scattering
01 experiments by Daillant and co-workers on water and or-
0 002 004 006 008 01 012 ganic liquids?* it was shown that the surface energy is low-

R ered at small wavelengths, which indicates a negative rigid-

FIG. 7. I(R) vs 1R for T*=0.90. The two fits described in the text are ity constant. These results were shown to be consistent with

shown as solid lines. calculations by Mecke and Dietri¢fi Although it thus seems
that our MD results are in contradiction with mean-field
calculation$ and the scattering experimenfsit might very

fits are shown as dashed lines. From a physical standpointell be that the rigidity constant describing fluctuations of a

however, cylinders with radii of 10 are already quite large planar interface differs from the rigidity constant describing

and would be expected to be within the lai@dimit. Con-  the equilibrium shape of curved surfacés.

sequently, we can extend the laBeregime to include data

that lie just outside the linear region but nevertheless reprey. SUMMARY

sent large cylinders. This means including data in the region

wherel .(R) just begins to curve towards more negative val- VIVe have pe;jrformed r;qléaculaad?/]namlcs ISIIT|1U|a30nS ?f a
ues. Fitting Eq(2.9) to this extended region, shown as solid S'MP'® Lennard-Jones fluid, and have calculated surface

lines in Fig. 6, results in nonzero values for the rigidity con- Properties for both planar and curved interfaces. The calcu-

stant. Note that these lines fall within the error for all data!at€d Surface tension of the planar interface agrees well with
considered. These values farare all on the order of one values found in the literatur®.We also calculate the Tolman

half; the exact values are given in Table IV. We also see (angth, ?ndf find hthat_'_t IIS p(_JS|t|veda_nd approxm;:]lteiy_ .
slight increase ok with temperature. Given the difficulty of ~ 9-167 far from the critical point, and increases as the criti-
the fit, these values can only be seen as estimatek. fior cal temperature is approached. We were unable to determine

any case, it seems safe to say that the rigidity constant i@e ;I)reuse Cm'?al behawor o]‘;he Tp[ma}n length, ?g; our
positive, and less than 1.0 for all temperatures. results are not inconsistent with a critical exponent

Figure 7 shows the data fog(R) for various spherical — —0.63. . . L
droplets at a single temperatuf@ = 0.90. The linear regime We also_present the first calculations of the rigidity con-
extends to approximatelfR=16 (1R=0.063), which is stantsk andk from simulations of spherical and cylindrical
larger than that of the cylinder at the same temperature, aﬁnterfaces. These calculations involve simulating both spheri-
proximately R=12. This is consistent with the expectation cal droplets and cylindrical columns for various large radii.
that the linear regime for the spheres should begin at a larg&pur results are summarized in Table IV. We fikdo be
R than for the cylinders, since for a giv& the curvature of  Positive and on the order of one-hagT; we also findk
a sphere is greater than that of a cylinder. A strategy similaincreases slightly with increasing temperature. The magni-
to that used above for determining valueskeesults in two ~ tude ofK is a factor of 2(or morg smaller than that deter-
values for X+k, corresponding to the dashed and solid lineg™n€d from experiments.** Due to the difficult nature of
in Fig. 7. As an estimate fde, we take the average of the two the calculation, we are less certain of the sigrk@&nd esti-

fits giving a value of B+k=0.40= O'—ZO' Using this and the mat?ﬂite? er?(?sqtgir:ggeo?m;:(iggc—i.ity constants for a simple fluid
values fork determined above, givds= —0.57+=0.31 using

= ) ] such as our Lennard-Jones fluid is not without controvery.
the ()axtended regiork¢=0.40+ 0.52 for the strictly linear re-  Roylinsorf has summarized many of the concerns about the
gion).

. ) _validity of the expansion of the free energy past the order of
In order to facilitate the comparison of our results with 1) - A5 mentioned above, his concern that the expressions
those from experiments and from other calculations, we cafy; the rigidity constants diverge when the intermolecular
use the value of/kgT=119.4 for argo?\to estimatek andk potential decays as © for larger does not apply, since the
in terms ofkgT; this results in an estimate~0.5kgT forall  potential used in these simulations has a definite short-range
temperatures, though again increasing slightly with temperacutoff. For the same reason, we do not expect to see, nor do
ture, and an estimate of the magnitudekef —0.5kgT. The  we see, the expansion breakdown due to nonanalytic terms
calculated value ok is positive, which is in contrast to such as Ing). It is difficult to address Rowlinson’s remaining
mean-field calculation$?° which indicate thak is negative.  concerns, since they are of a more general nature and cannot
In comparison with experimental results, both Meunierbe investigated via molecular dynamics simulations. The
et al?»??and Schmidt have determinel to be positive and main question, however, is that of the physical relevance of
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the expansion coefficients when applied to interfaces of a R? R?
simple fluid. We see na priori reason to doubt their rel- 6AsR (29F 11 F2)= 5 Ci(R)

evance. We would expect them to be small in magnitude,

which we indeed find from our simulations, since the par- 2k —1

ticles in our simulations have no internal structure. Even —(2k+ )ﬁ (AB)
were they to be zero, a conclusion which could be supported

with our results, they would still offer insight into the physi- for the spherical interface, and

cal behavior of the surface: that an interface of a simple fluid R2 2k

has little or no rigidity. The calculation of these coefficients — ———(8F;+ 6F,)=R?C(R)= ——k +- (A7)

does indeed depend on the choice of the dividing surface, but 2AR

this does not diminish their usefulness. for the cylindrical interface. The left-hand side of these ex-
pansion can also be evaluated using the statistical mechani-
cal expression in Eq(Al). Beginning with the sphere, we
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In this appendix we show how the integrals as defined in SR [R\3 3sr
Egs.(2.8) and(2.9) are related to the curvature expansionin ~ (8r,— 6rq)- rlzz—rz(—> (1-3s?)— -—(3—-5s?)
Eq. (2.10. This is done by reinvestigating the derivation of R ! 213
the virial expressions for the rigidity constants in Ref. 4. 2
These virial expression are derived by evaluating the change — r_(3 30s2+355%) |. (A9)
in free energy under two deformations of the interface, each 2r1

of which preserves the volume of the phases, but changes the
radiusR by an infinitesimal amounéR. Full details of these For the cylinder, these are, using the notation in Ref. 4
transformations are given in Ref. 4. On the one hand, the

general formula for the change in free energk, is given  (5r,—

oR
6r1)-r12=Fr2 s?—sir? o(1—s?)

by the statistical mechanical expression

!

1 r
5F:§f drlf dr2(5r2_5r1)'r12¢ (

p(Z)(rlirZ) ’
(A1)

while on the other hand it can be written in terms of the

surface tensiowr(R) and its derivativeC(R)=(do/IR). We
now discuss these two approaches in more detail.

2

+ 2—sm2 o(1—s%)— 2—sm2 o(1—5?)
) rl\l

X[3s?—sir? go(l—Sz)]l (A10)

It is shown in Ref. 4 that for the specific transformation for the first transformation, and

considered, labeled 1 and 2, the change in free energy for the

spherical interface is given by

oy(R)
SFi=—A = —C4(R)| SR, (A2)
o(R) 1
SF,=2A R + ECS(R) SR (A3)
and for the cylinder by
o(R)
SFi=—A R «(R)| 6R, (A4)
a(R)
5F2=A[T+CC(R)} SR. (AB)

By taking the appropriate combinations of Eq#2) and
(A3), and of Eqs(A4) and(A5), we can eliminater(R) and
obtain

2

(8ry—6rq) - r=——r2—| | s>—sir? ¢(1—5?)

R (R
R

1

— —[s —3sirf p(1—5?)]
F1)

2
—[s*+6 i p(s*~s7)
lH

+sin ¢(1—5%)?] (A11)

for the second transformation.

Turning first to the spherical droplet, we substitute Eq.
(A1), together with Eqs(A8) and (A9), into Eq. (A6). We
then expand the factor of ri/ in powers of 1R, using the
definition ofr;=z;+ R. This leaves us with an expansion in
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powers of 1R, given in the main text as E@2.8). A similar,
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