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Boundary tension: From wetting transition to prewetting critical point
S. Perković, E. M. Blokhuis, E. Tessler, and B. Widom
Department of Chemistry, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301

~Received 2 December 1994; accepted 13 February 1995!

We develop a mean-field model free energy which we use in a van der Waals-like theory to study
the prewetting transition in a system of two fluid phases when an incipient third phase may wet the
interface between them. The line of prewetting transitions in the phase diagram is determined from
the bulk wetting transition to the prewetting critical point. As the prewetting critical point is
approached, the two coexisting surface phases become more and more alike, and they become
identical at the prewetting critical point. The values of the boundary tension of the one-dimensional
boundary formed by the edge-on meeting of two coexisting surface phases are calculated exactly
~numerically! in a range between the wetting transition and the prewetting critical point. The data
points obtained are extrapolated to a finite and positive boundary tension at the wetting transition
and to a zero boundary tension at the prewetting critical point. These results are consistent with
related earlier work. After scaling the dimensionless boundary tensions with appropriate force units,
we determine that their values range from 0 at the prewetting critical point toO (10212) N close to
the wetting transition. These orders of magnitude compare well with recent experimental
results. ©1995 American Institute of Physics.

I. INTRODUCTION

The prewetting transition is a coexistence of two surface
phases of equal tensions but different structures. It is a 2D
phenomenon analogous to a bulk phase equilibrium, where
two bulk phases of different densities coexist. One of the
surface phases consists of a microscopic layer of a third
phase, which may become a bulk phase at three-phase coex-
istence, while the other surface phase has no such layer. In
Fig. 1 we show a side view of the coexistence of two surface
phases at the interface between two bulk fluid phases,a and
g. On the right side, the interface consists of a microscopic
layer of a thirdb-like phase, while on the left side, the in-
terface has no such layer. The two surface phases meet
edge-on to create a one-dimensional boundary line.

The phenomenon of prewetting, along with its bulk-
phase counterpart, the wetting transition, are surface phase
transitions, first predicted theoretically by Cahn1 and Ebner
and Saam.2 The relation between these two phenomena is
best described with the use of a generic phase diagram. Ac-
cording to the phase rule of Gibbs, for a three phase system,
the wetting and prewetting transitions can only be described
with a minimum of two components and two thermodynamic
fields. In Fig. 2, the two thermodynamic fields,m1 andm2 ,
may represent the temperature and the chemical potential
difference between the system’s two components. The solid
curve represents thermodynamic states where the three bulk
phases,a, b andg, are at coexistence. Below theW point
on the coexistence curve, the system is partially wet: theb
phase forms a non-zero~and non-180°) contact angle be-
tween thea andg phases. Above theW point, the system is
wet: theb phase spreads at theag interface, so that there is
no direct contact between thea andg phases. TheW point
represents the wetting transition where the structure of the
ag interface changes from the partially wet to the wet state
~or vice versa!. If the wetting transition is a first-order sur-
face phase transition, its first-order character manifests itself

in the ag two-phase region as well, on the left side of the
coexistence curve. There, only thea andg phases coexist as
bulks. Under certain conditions, theag interface consists of
a microscopic layer of ab-like phase. That layer is not stable
as a bulk, in coexistence witha andg. Theag interface is
said to be prewet byb ~shaded region in Fig. 2!. In other
parts of theag two-phase region, such a structure is not
present at theag interface. The coexistence of these two
different structures of theag interface is a first-order surface
phase transition: the prewetting transition. The loci of all the
prewetting transitions create the prewetting line; the dashed
curve in Fig. 2. That line is tangential to the three-phase
coexistence line at the wetting transition,3 and ends at the
prewetting critical point PCP, analogously to bulk phase
criticality.

While theoretical calculations of the prewetting transi-
tion have been numerous since its prediction in 1977, its
detection in simulations and experiments has been more re-
cent. The first evidence for the existence of the prewetting
line was obtained by Nicolaides and Evans4 in a Monte Carlo
simulation of a confined lattice gas. In an extension of that
work, they determined the 2D Ising-like character of the
prewetting critical point.5 The first Monte Carlo simulation
of an unconfined system was performed by Finn and
Monson6 who determined a prewetting transition in a model
of fluid Ar and solid CO2. Velasco and Tarazona

7 performed
a density-functional calculation of the prewetting line for the
solid-fluid model studied by Finn and Monson, and they
found agreement for the surface critical point but not for the
wetting temperature. Experimental evidence for the prewet-
ting transition at a solid-fluid interface has been observed by
Rutledge and Taborek,8 who have studied the prewetting
phase transition of4He on Cs by using a quartz microbalance
technique, and Ketola, Wang and Hallock,9 who used the
technique of third sound to determine the prewetting transi-
tion in the same system. A prewetting transition has also
been reported from adsorption and ellipticity measurements
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at the interface of the silica/water-2,6-lutidine mixture,10 and
from adsorption measurements, in the silica-water-
2,5-lutidine system.11 Only recently has there been unam-
biguous evidence for the prewetting transition in fluid-fluid
interfaces. Kellay, Bonn and Meunier12 presented evidence
for the existence of a prewetting transition in a binary liquid
mixture of methanol and cyclohexane. They have confirmed
the tangential approach of the prewetting line to the three-
phase coexistence line at the wetting transition, as well as the
2D Ising-like character of the prewetting critical point.

In this paper, we develop a model mean-field excess
free-energy density, that is a functional of the system’s den-
sities, in order to study the prewetting transition and calcu-
late the boundary tension of the one-dimensional boundary
line that is created by the edge-on meeting of the two coex-

isting surface phases~fig. 1!. The boundary tensiontb is the
excess free energy associated with the density inhomogene-
ity in the boundary line, per unit length of that line. In the
van der Waals-like theory that we employ,13 the boundary
tensiontb is defined as:

tb5 min
r1 ,r2

F E
2`

`

dx F E
2`

`

dz CG2sG , ~1.1!

whereC is the model excess free-energy density that will be
defined in Sec. II ands is the surface tension of the two-
dimensional interface and is given by:

s5 min
r1 ,r2

E
2`

`

dz C , ~x→6`! . ~1.2!

In Eq. ~1.1!, C is a function ofx andz, the directions
parallel and perpendicular to the interface, respectively~fig.
1!. In the limits ofx→6`, i.e. very far from the boundary
line region, the functionalC becomes independent ofx. It is
that functional that is used in Eq.~1.2!. The functionsr1 and
r2 are the density profiles of the system’s two components.
In Eq. ~1.1!, they are two-dimensional, while in Eq.~1.2!,
they depend only on thez coordinate.

Related to the boundary tensiontb is the line tensiont
which is defined analogously totb in Eq. ~1.1!. The line
tensiont is the excess free energy due to the inhomogene-
ities in the three-phase contact line in the partially wet state
~states below theW point on the three-phase coexistence
curve in fig. 2!, per unit length of that line. The line and
boundary tensions become equal at the wetting
transition.14,15

Here we present numerical calculations~that are exact
for the model studied in the mean-field approximation! of the
boundary tension for a system of two fluid phases. The case
of a fluid on a solid substrate has been investigated
recently.16 We determinetb over the whole length of the
prewetting line, from the wetting transition to the prewetting
critical point. The boundary tension data points are extrapo-
lated with a form that is analogous to the one obtained by
Indekeu17 ~see also Ref. 16! and by Varea and Robledo18 to
give a finite and positivetb at the wetting transition. The
vanishing of the boundary tension at the prewetting critical
point is described with a mean-field exponent. Furthermore,
the surface phases are studied as the prewetting critical point
is approached. For completeness, we perform this analysis
on a system of a fluid phase on a solid substrate as well,
studied in detail by Blokhuis19 and Perkovic´, Blokhuis and
Han,16 within the van der Waals theory. Finally, we deter-
mine orders of magnitude for the boundary tensions, for the
system of two fluid phases and the system of a fluid phase on
a substrate, and compare them to experimental results for the
boundary tension of the boundary between two lipid mono-
layer domains at the air-water interface.20

II. MODEL FREE ENERGY

In this section, we define the model excess free-energy
density used to study the prewetting transition in a system of
two fluid phases, with a van der Waals-like theory.13 That

FIG. 1. A side view of two fluid surface phases coexisting at the prewetting
transition. On the right, a microscopic layer of ab2 like phase spreads at
theag interface, while no such layer exists at theag interface on the left.
The two interfaces meet edge-on to create the boundary line. The domain
represents the area in which the system of Euler-Lagrange equations~4.2!
and ~4.3! are solved for the densitiesr1(x,z) andr2(x,z).

FIG. 2. Generic phase diagram of a system of three phases.m1 andm2 are
any two thermodynamic fields such as the temperature and chemical poten-
tial difference of the two components. The solid curve is the three-phase
coexistence curve. The pointW represents the wetting transition. Below the
pointW, on the solid curve, in the stable states, theag interface is partially
wet, and above it, it is wet. The dashed curve, called the prewetting line,
represents the loci of prewetting transitions, where two different structures
of the ag interface coexist. The prewetting line meets the three-phase co-
existence line tangentially at the wetting transitionW, and terminates at the
other end in a prewetting critical point, PCP.
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theory postulates the existence of a free-energy densityC
which depends on the local densities of the system’s compo-
nents and on the spatial derivatives of these densities at the
same point.

Consider a system consisting of three fluid phases,a,
b andg, whereb is either a bulk phase at coexistence with
a andg, or an incipient layer at theag interface. For such
a system,C is a functional of the two densitiesr1 andr2 of
the system’s two components:

C~r1 ,r2!5F~r1 ,r2!1 1
2~~¹r1!

21~¹r2!
2!, ~2.1!

with

F516r2
2~r22b!21e~r1

221!21@r22c~r111!#2@r2

1b~r121!#21@r21c~r121!#2@r22b~r111!#2.

~2.2!

C is the free-energy density associated with the presence of
inhomogeneous regions, in excess of the free-energy density
in the bulk phases. It vanishes in the bulk phases, and has a
positive value within inhomogeneous regions, such as the
two-dimensional interface and the boundary line. The free-
energy densityF is the local free-energy that is in excess
from the free-energy in the bulk phases when the density is
constant in the neighbourhood of the local point. The gradi-
ent terms account for the free-energy excess associated with
the variation in density in the inhomogeneous regions. The
¹ gradient operator in Eq.~2.1! is one-dimensional in the
z-direction ~fig. 1!, if one is far from the boundary line re-
gion (x→6`) so thatr1 andr2 are functions ofz only. It is
two-dimensional in thex and thez directions~fig. 1!, when
one is close to the boundary line region.

The contour lines of the excess free-energy densityF in
Eq. ~2.2!, i.e. lines of constant free-energy density, are plot-
ted in Fig. 3a as a function of the densitiesr1 andr2 ~solid
curves!. The values of the three phenomenological param-
eters b, e and c are fixed at b50.50, e50.1553 and
c520.7. These parameters represent three thermodynamic
fields, such as the chemical potentials of the system’s two
components and the temperature. The two trajectories in fig.
3a ~dashed curves! represent the variation ofr1 with r2 ,
along thez coordinate~fig. 1!, for the two different structures
of the ag interface, coexisting at the prewetting transition.
This will be discussed further in Sec. III. In Fig. 3b, we plot
the same figure as in Fig. 3a, but with equalr1 andr2 scales,
and showing onlyr1.0. The model is symmetric, so for
r1,0, one has the mirror image of fig. 3b. The trajectories
are tangent to the long axes of the elliptical contours around
(r1 ,r2)5(1,0) ~shown in fig. 3b! and (r1 ,r2)5(21,0) ~by
symmetry!. The slight tilt from horizontal of the long axes of
these ellipses~although hardly visible on the scale of this
plot! is due to the parameterc520.7. For larger absolute
values ofc the tilt is greater. The fieldc has to be different
from 0, since only then are the elliptical contours around
(r1 ,r2)5(1,0) and (r1 ,r2)5(21,0) tilted. This tilt in the
contour lines enables the structures of the twoag surface
phases to become identical, thus producing a prewetting
critical point. If c50, the tilt in the elliptical contours disap-
pears, and there is no prewetting critical point in the modelF

in Eq. ~2.2!. Here, we only consider the case whereb.0 and
c,0 ~analogous results would be obtained forb,0 and
c.0!. The fielde in Eq. ~2.2! is a measure of the distance
from the three-phase coexistence curve. Fore50, the system
consists of three bulk phases at coexistence, while for
e.0, only thea andg phases are at bulk equilibrium. This
point is discussed in more detail below. The densities, dis-
tances and free energies in Eqs.~2.1! and~2.2! are scaled so
that they are all dimensionless. Furthermore, the densities
r1 andr2 are relative densities, and therefore can be nega-
tive.

Whene50, the excess free-energy densityF is positive
for all values of the densitiesr1 and r2 except for those

FIG. 3. ~a! Plot of the contours ofF from Eq. ~2.2! ~solid curves! with two
trajectories~dashed curves! representing coexistence of the two fluid surface
phases at the prewetting transition forb50.50, e50.1553 andc520.7 ~b!
Same as in~a!, but with equalr1 and r2 scales and forr1.0 only
(r1,0 is its mirror image!. The trajectories are tangential to the long axes
of the elliptical contours centered at the values ofr1 andr2 for thea and
g phases. Note that the contour interval has been changed between Figs. 3a
and 3b.
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values that describe the bulka, b andg phases. These den-
sities are given by:

~r1
a ,r2

a!5~1,0! , ~2.3!

~r1
b ,r2

b!5~0,b! , ~2.4!

~r1
g ,r2

g!5~21,0! , ~2.5!

where (r1
a ,r2

a) are the densities of components 1 and 2 in
the bulka phase, (r1

b ,r2
b) are the densities of components 1

and 2 in the bulkb phase and (r1
g ,r2

g) are the densities of
components 1 and 2 in the bulkg phase. At these values of
r1 and r2 , F50 and its partial derivatives with respect to
r1 andr2 vanish as well.

The form of the free energy in Eq.~2.2! is chosen for
reasons of mathematical simplicity and convenience. It is not
necessary to have a model of the free energy in which the
density of one component is equal in both phases while the
density of the other component is different in both phases.
The same results would be produced with different defini-
tions of the densities in the bulk phases.

When e.0, the excess free-energy densityF is still 0
and has vanishing partial derivatives with respect tor1 and
r2 in the a andg phases, but nowF has a local minimum
that is positive (F5e) for the values of (r1

b ,r2
b)5(0,b).

These values ofr1 andr2 describe the bulkb phase when
e50. Whene.0, theb phase is unstable as a bulk and it
does not coexist with thea and g phases, since its free
energy is slightly higher than the free energies of thea and
g phases. The system is off the three-phase coexistence line,
and is in the two-phaseag region in fig. 2.

As was mentioned in Sec. I, two thermodynamic fields
are sufficient to describe a system of three bulk phases un-
dergoing wetting and prewetting transitions. For that reason,
we keep one of the thermodynamic fields in our model free
energy Eq.~2.2! constant:c520.7, and we only vary the
values ofb ande in order to determine the prewetting line in
the phase diagram. The value ofc has to be different from
0, for the reason discussed above.

III. PREWETTING TRANSITION AND SURFACE
PHASES

The prewetting transition in a system of fluid phases is
the coexistence of two fluid surface phases of equal tension
but of different density profiles. One of the surface phases
~the ag* surface phase! consists of a microscopically thick
layer of an incipient phase, theb-like layer in fig. 1, at the
interface between the bulka andg phases, while the other
surface phase~the ag surface phase! has no such layer. If
sag is the surface tension of theag surface phase, while
sag* is the surface tension of theag* surface phase, the
condition for the prewetting transition is given by

sag5sag* . ~3.1!

The equilibrium surface tension and equilibrium density
profiles of theag interface are obtained by minimizing the
integral of the excess free-energy densityC(r1 ,r2) given in
Eq. ~2.1!, with respect to the densitiesr1 andr2 , far away
from the boundary line region (x→6` in fig. 1!,

s5 min
r1 ,r2

E
2`

`

dz C~r1 ,r2! , ~x→6`!, ~3.2!

wherez is the direction perpendicular to the interface. The
obtaineds is a function of the three thermodynamic fields,
b, c ande. At the prewetting transition, the surface tension
of theag andag* surface phases are equal for the same set
of thermodynamic fieldsb, c ande,

sag~b,c,e!5sag* ~b,c,e! . ~3.3!

Bothsag(b,c,e) andsag* (b,c,e) are obtained numerically,
using a conjugate gradient optimization algorithm.21 The
conjugate gradient method is an iterative method that mini-
mizes a functionp of N variables by starting at a pointp(N)
in the function’s space and performingN line minimizations
along the directions of mutually conjugate vectors. These
directions are ‘‘non-interfering’’ directions, i.e minimization
along one of the directions is not invalidated by subsequent
minimization along another direction. Furthermore, a sepa-
rate evaluation of the gradients allows for a decrease in the
number of minimizations required, fromN2 to N.21 In order
to use the conjugate gradient method, the integral in Eq.~3.2!
is approximated by a sum over 257~this number is important
for the calculation of the boundary tension in Sec. IV! evenly
spaced points in the interval210<z<10, wherez is scaled
so that it is dimensionless. We have used other intervals as
well: 25<z<5 with 129 points so that the spacing is the
same as in the above case, and26<z<6 with 257 points,
so that the spacing is smaller, with no significant differences
in the results. The values of the densitiesr1 andr2 at the end
points of the interval are chosen to be those of the bulka and
g phases: (r1

a ,r2
a)5(1,0) and (r1

g ,r2
g)5(21,0). The sum is

then minimized with respect to 255 values ofr1 and 255
values ofr2 . During the minimization process, we have kept
c constant atc520.7 and we have fixed the value ofb.
Then, we determinedsag andsag* for a set ofe values.
The prewetting transition is then determined graphically by
locating the value ofe for which Eq.~3.3! is valid. In fig. 4,

FIG. 4. Plot of the prewetting line in thee, b thermodynamic space, for
c520.7. The wetting transition is atb5bw50.6175 ande50 ~filled
circle!. The prewetting line terminates at the prewetting critical point
b5bcrit50.3993 ande5ecrit50.3745~filled circle!.
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we show a plot of the prewetting line determined by the
above method. The axes are the thermodynamic fieldse and
b, while c520.7. The data points, connected by a smooth
curve, represent states where two different structures of the
ag interface coexist. Below the prewetting line, and for
e.0, the thermodynamically stable states are the ones where
the ag interface is prewet by theb-like layer. Above the
prewetting line, the non-prewet state is thermodynamically
stable. The three bulk phasesa, b andg coexist ate50. For
b,bw , theb phase wets theag interface, and it does not
wet it for b.bw , wherebw50.6175 is the value ofb at
which the first-order wetting transition occurs.

The value ofb at the wetting transition,bw , is deter-
mined with the same conjugate gradient algorithm that was
used for the determination of the prewetting line. Going back
to the phase diagram in fig. 2, the partially wet state~below
the W point on the three-phase coexistence curve! is me-
chanically stable when22

sag,sab1sbg , ~3.4!

wheresag is the surface tension of theag interface,sab is
the surface tension of theab interface andsbg is the surface
tension of thebg interface. The wet state~above theW point
on the three-phase coexistence curve in fig. 2! is stable
when22

sag5sab1sbg . ~3.5!

The wetting transition occurs exactly when the equality sets
in ~if the transition is from the partially wet to the wet state!.
Using the expression for the surface tension in Eq.~3.2!,
where the coordinatez is perpendicular to each of the indi-
vidual interfaces~far from the contact line region! in turn,
and with the appropriate boundary conditions given by the
values of the density sets (r1 ,r2) in the bulk phases~Eqs.
~2.3!–~2.5!!, the conjugate gradient method is used to obtain
the surface tensions of the three interfaces as functions of the
field b (e50 at three phase coexistence andc520.7). The
method determines values forb at which the partially wet or
the wet states are stable. The value ofb at the wetting tran-
sition, bw , is obtained when

sag~bw!5sab~bw!1sbg~bw! . ~3.6!

This procedure givesbw50.6175.
The prewetting line is expected to approach the wetting

transition atbw50.6175 ande50 tangentially,3 but such an
approach is not discernible since the predicted tangency is
only logarithmic.3,23 If our data points for the prewetting line
are extrapolated linearly toe50, the extrapolated value ofb
at the wetting transition isbw

ext50.616, which is shown as a
filled circle on the three phase coexistence line (e50). The
value ofbw

ext is smaller than the value ofbw obtained with
the conjugate gradient method. This suggests that a tangen-
tial approach of the prewetting line to the three-phase coex-
istence line is plausible for this model, but not discernible for
the reason given above. The filled circle at the other end of
the prewetting line represents the location of the prewetting
critical point. Its value is obtained graphically from the
mean-field behaviour of the densityr2:

~r2
ag*2r2

ag!uz50;~ecrit2e!b , ~3.7!

and

~r2
ag*2r2

ag!uz50;~b2bcrit !
b , ~3.8!

at the prewetting line near the critical point. The exponent
b is the critical exponent, whose mean-field value is 1/2.

Using the above two expressions to graphically deter-
mine the values ofb ande ~for c520.7) at the prewetting
critical point, we obtain

bcrit50.3993 , ~3.9!

ecrit50.3745 . ~3.10!

The expressions in Eqs.~3.7! and ~3.8! are suitable
forms to accurately determinebcrit andecrit . However, they
are not the physical representation of the coexistence curves,
since the differencer2

ag*2r2
ag at z50, which is a measure

of the distance to the prewetting critical point, is chosen
arbitrarily and for convenience. The ‘‘physical’’ coexistence
curve is a plot of a thermodynamic density versus a thermo-
dynamic field. In a two-dimensional phase equilibrium, the
density is a surface density or adsorption~see Appendix 1 of
Ref. 22 for a review of these terms!. Using the prewetting
line equation given in Eq.~3.3!, and from the Gibbs adsorp-
tion equation,22 one representation of the coexistence curve
would be a plot ofe versus]s/]e, shown here in fig. 5. The
dotted line in that figure represents the value ofe at the
prewetting critical point. The lack of data points for the co-
existence curve ase→0 ande→ecrit is due to the inacurracy
of the calculation and is discussed in Sec. IV.

Far from the boundary region (x→6`), when two sur-
face phases coexist, the density profile pair
(r1

ag(z),r2
ag(z)) that minimizes the surface tensionsag and

the profile pair (r1
ag* (z),r2

ag* (z)) that minimizes the sur-
face tensionsag* , determine the structures of theag and
ag* interfaces, respectively. In fig. 6, we show the density
profiles r1

ag(z) at x→2` ~solid curve! and r1
ag* (z) at

x→` ~dashed curve!, for b50.59, e50.02324 and

FIG. 5. Plot of the coexistence curve of two surface phases at the prewetting
transition. The dotted line represents the value ofe at the prewetting critical
point, ecrit50.3745.
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c520.7. The density profilesr2
ag(z) at x→2` and

r2
ag* (z) at x→` are shown as the solid and dashed curves
respectively in fig. 7, for the same set of fieldsb, e andc as
in fig. 6.

If one eliminates thez variable betweenr1(z) and
r2(z), for a given surface phase, one obtains a trajectory in
ther1 , r2 plane that describes howr1 andr2 vary with each
other through the inhomogeneous region~the surface phase!
from one bulk phase to the other. In fig. 3a, we have plotted
the two trajectories~dashed curves! that represent the two
different structures of theag interface, coexisting at the
prewetting transition, in ther1 , r2 plane for b50.50,
e50.1553 andc520.7. These trajectories are plotted on
top of the contour lines~solid curves! of the model excess
free-energy densityF, for the same values of the thermody-
namic fields. The contour lines represent the lines of constant
free-energy density. The three minima inF are given by the
values ofr1 andr2 in Eqs.~2.3!–~2.5!. They are located in

the middle of the three elliptical contour lines in fig. 3a. The
upper trajectory in that figure describes theag* surface
phase, while the lower trajectory describes theag surface
phase. In figs. 8a–8c, we have plotted the trajectories and
contours ofF for b50.46, e50.2326 andc520.7 in fig.
8a; b50.42, e50.3227 and c520.7 in fig. 8b; and
b5bcrit50.3993,e5ecrit50.3745 andc520.7 in fig. 8c.
These plots clearly demonstrate that on approach to the
prewetting critical point, the two surface phasesag and
ag* are becoming more and more alike, to become identical
at the prewetting critical point~fig. 8c!. This phenomenon
would not have been observed had we taken the parameterc
to be 0.

As a comparison, we do the same analysis as the one
above for a model, studied by Blokhuis19 and Perkovic´,
Blokhuis and Han,16 that describes a fluid on a substrate
whose interface might become wet by another fluid phase.
We study the density profiles of the two surface phases in
coexistence at the prewetting transition. The substrate is
treated as a boundary condition which makes the system ef-
fectively of one component, of densityr. There are three
thermodynamic fieldsh1 , g andh which are analogous tob,
c and e, respectively. The fieldh1>0, g50 ~for conve-
nience! and h.0, measures the distance from the three-
phase coexistence line.

In fig. 9, we show a plot of the difference between the
density profiles of the two surface phases far from the bound-
ary line region, as a function of the coordinatez:
Dr(z)[rag* (z)2rag(z). As the prewetting critical point is
approached, h→hcrit5

4
9(3)

1/2;0.7698, (g50 and
h1,crit531/2), the two surface phases become more alike, and
their structures become identical at the prewetting critical
point ~as seen by the approach ofDr(z) to the value of 0!.

IV. BOUNDARY TENSION

At the prewetting transition, the two different structures
of the ag interface coexist by creating a one-dimensional
boundary between themselves~fig. 1!. Associated with that
boundary line is the tensiontb , cf. Eq. ~1.1!,

tb5 min
r1 ,r2

F E
2`

`

dxF E
2`

`

dz C~r1 ,r2!G2 s G , ~4.1!

where the density profilesr1 and r2 are now two-
dimensional functionsr1(x,z) andr2(x,z); the coordinatex
is parallel to theag interface and the coordinatez is perpen-
dicular to it ~fig. 1!; C(r1 ,r2) is given as in Eq.~2.1! and
s is the surface tension of the coexisting interfaces at the
prewetting transition as given by Eq.~3.2!. As in the previ-
ous section, the distances, densities and free energies are
scaled so that they are all dimensionless.

Minimization of Eq. ~4.1! with respect tor1 and r2
yields two Euler-Lagrange equations,

¹2r15
]F

]r1
, ~4.2!

¹2r25
]F

]r2
, ~4.3!

FIG. 6. Density profiler1(z) of theag* interface atx→` ~dashed curve!
and of theag interface atx→2` ~solid curve!, for b50.59, c520.7 and
e50.02324.

FIG. 7. Density profiler2(z) of theag* interface atx→` ~dashed curve!
and of theag interface atx→2` ~solid curve!, for b50.59, c520.7 and
e50.02324.
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whereF is given in Eq.~2.2! and the¹ gradient operator is
two-dimensional in thex and z directions. The boundary
conditions are given by the values of the densitiesr1 and
r2 at z→6`:

~r1 ,r2!5H ~1,0! ,

~21,0! ,

z→1`

z→2`
~4.4!

and the density profile pairs (r1(z),r2(z)) at x→6`. At
x→1`, the density profilesr1(z) andr2(z) are the profiles
that describe theag* interface at the prewetting transition
~dashed curves in fig. 6 and fig. 7 respectively!. Similarly, at
x→2`, the boundary condition is given by the density pro-
files r1(z) and r2(z) of the ag interface at the prewetting
transition~solid curves in fig. 6 and fig. 7 respectively!.

The integral in Eq.~4.1! converges sufficiently fast as
x,z→6` so that we can replace the infinite limits of inte-
gration with large, finite limits. Then, the area of integration
becomes a large, finite domain~fig. 1!, where the system of
the two Euler-Lagrange equations~~4.2! and ~4.3!! needs to
be solved for the densitiesr1(x,z) andr2(x,z).

FIG. 8. Plots of the contours ofF from Eq. ~2.2! ~solid curves! with two
trajectories~dashed curves! representing coexistence of the two fluid surface
phases at the prewetting transition forc520.7 and ~a! b50.46,
e50.2326; ~b! b50.42, e50.3227; ~c! b5bcrit50.3993,
e5ecrit50.3745. The two trajectories become identical at the prewetting
critical point.

FIG. 9. A plot of the difference between the two surface phase density
profiles for a system of one fluid phase on a substrate, as a function ofz, for
various values of the thermodynamic fieldh. The prewetting critical point
occurs athcrit5

4
9(3)

1/2;0.7698 andh1,crit531/2, wheng50 ~Ref. 19!.
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Equations~4.2! and~4.3! represent a system of two non-
linear partial differential equations with four Dirichlet
boundary conditions~eq. ~4.4! and the numerical profiles
r1(z) andr2(z) at x→6`). We have used a multigrid al-
gorithm to solve the above system for the densitiesr1(x,z)
andr2(x,z). The multigrid method is based on discretizing
the partial differential equations on grids of different levels
of coarseness. The system is iterated on the finest grid using
a traditional iteration~smoothing! method such as a Gauss-
Seidel method, until the iterations become very slowly con-
vergent. To speed-up the convergence rate, the density pro-
files are transferred onto the next coarser grid via a
restriction operator, and the smoothing procedure is contin-
ued. The restriction to coarser grids is continued until the
iterations converge or the coarsest grid is reached where the
solution to the discretized system of equations can be easily
obtained. Then, the density profiles are brought back to the
finest grid via a prolongation operator. This method has been
successfully applied in the calculation of the boundary and
line tensions in a system of two fluid phases on a substrate.16

There, however, only one non-linear partial differential equa-
tion had to be solved for the densityr of the system, with
one Neumann and three Dirichlet boundary conditions.

As in Ref. 16 we use the Full Approximation Storage
Algorithm ~FAS!.21 The smoothing at each grid level is
achieved with a red-black Gauss-Seidel relaxation method.
The restriction operator uses a half-weighting restriction,
while the prolongation operator is a bilinear interpolation.
The domain over which the two density profilesr1(x,z) and
r2(x,z) are determined is a square with 257 x 257 grid
points. Since the prolongation operator is a bilinear interpo-
lation, the number of points in one dimension is 2NG11,
whereNG is the number of discretization grids; in our case
NG58. Due to that constraint, the domain size and the grid
spacinghs are not independent of each other. The largest grid
spacing used ishs50.075.

In fig. 10 and fig. 11, we show examples of the two-
dimensional density profiles,r1(x,z) and r2(x,z) respec-
tively, for b50.59, c520.7 ande50.02324, obtained as
the solutions of the two Euler-Lagrange equations in Eqs.
~4.2! and ~4.3!. Using such density profiles, and with the

corresponding values for the fieldsb, c ande, the boundary
tensiontb is calculated from Eq.~4.1!. The open circles in
fig. 12 represent the data for the boundary tensiontb versus
e, the thermodynamic field that is a measure of the distance
from the three-phase coexistence curve. The value ofc is
fixed at c520.7 and the value ofb is obtained from the
prewetting line~fig. 4!. The solid curve is a smooth interpo-
lation between the data points. The error bars will be dis-
cussed below.

As the wetting transition is approached (e→0), the
boundary tension increases in magnitude. The increase is due
to an increase of the inhomogeneous region where the two
surface phases meet, as theag* surface phase becomes
thicker. In order to obtain a value fortb at the wetting tran-
sition, we fit the four data points for the boundary tension
closest to the wetting transition with the following form:

tb5tb,w2t1e1/2 , ~4.5!

FIG. 10. The density profiler1(x,z) at the prewetting transition, for
b50.59, c520.7 ande50.02324.

FIG. 11. The density profiler2(x,z) at the prewetting transition, for
b50.59, c520.7 ande50.02324.

FIG. 12. Plot of the boundary tensiontb versuse. The prewetting critical
point is atecrit50.3745~filled circle!, wheretb50. The value oftb at the
wetting transition (e50) is tb50.477~filled circle!. The error bars are the
standard deviation from the mean, calculated as described in the text. The
dash-dot-dash fits are described in the text as well.
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wheretb,w andt1 are fitting parameters. This form is analo-
gous to the expression fortb close to the wetting transition,
determined by Indekeu17 in the interface displacement
model, and by Varea and Robledo in numerical studies,18 for
a system of one fluid phase on a substrate~see also Ref. 16!.

The expression in Eq.~4.5! is valid only for very small
values ofe. The data points over which the fit is done are
assumed to meet that requirement, even though that is prob-
ably not accurate. The fitting parameters are obtained as:

tb,w50.477, ~4.6!

t151.15. ~4.7!

Therefore, at the wetting transition, the boundary tension
tb is finite and is equal totb,w50.477. The expression in
Eq. ~4.5!, with the values fortb,w andt1 given by Eqs.~4.6!
and ~4.7! respectively, is plotted as the dash-dot-dash curve
close to the wetting transition (e→0), in fig. 12. The filled
circle is attb,w . If we choose to fit five data points, rather
than four, with the same form as in Eq.~4.5!, the value of the
boundary tension at the wetting transition istb,w50.470.

Moving along the prewetting line from the wetting tran-
sition (e50) towards the prewetting critical point~filled
circle at e50.3745), where the two surface phases become
indistinguishable~see Sec. III!, the boundary tensiontb de-
creases in magnitude fromtb,w50.477 totb50. The bound-
ary tension vanishes at the prewetting critical point for the
same reason that the surface tension of an interface vanishes
at bulk criticality, since the boundary line is the two-
dimensional analogue of an interface in a three-dimensional
system. For that same reason, the boundary tensiontb is
always positive. Due to this analogy, the boundary tension
tb close to the prewetting critical point scales as

tb5Au~ecrit2e!/ecritum , ~4.8!

where~ecrit2e!/ecrit is a reduced field that measures the dis-
tance from the prewetting critical point,A is a proportional-
ity constant andm is the critical point exponent. Nakanishi
and Fisher24 conjectured from a theoretical analysis that the
prewetting critical point exhibits 2D Ising-like criticality.
This conjecture was verified by Nicolaides and Evans5 in
Monte Carlo simulations. Experimental study of the prewet-
ting critical region of the binary liquid mixture methanol-
cyclohexane by Kellay, Bonn and Meunier12 further verified
the 2D Ising-like character of the prewetting critical point.
Therefore,m51. This exponent was verified experimentally
by Benvegnu and McConnell,20 when they measured the ten-
sion between lipid monolayers at the air-water interface. Our
model, however, is mean-field and we expect that the bound-
ary tensiontb close to the prewetting critical point has a
mean-field critical point exponentm5 3

2. We conjecture such
a behaviour and determine the proportionality constantA
from the value of a single data point, the one closest to the
prewetting critical pointecrit50.3745. We obtainA50.098.
As in the fit close to the wetting transition, the assumption is
that the data point used is close enough to the prewetting
critical point to be in the asymptotic regime, even though
that is probably not accurate. The expression in Eq.~4.8! is
plotted in fig. 12 as the dash-dot-dash curve near the prewet-

ting critical point. The reason for not having more data
points close to the two limiting regimes of wetting and criti-
cality will be discussed later.

We now determine orders of magnitude for our dimen-
sionless boundary tensions by scaling them with a typical
force kT/d, wherek is Boltzmann’s constant,T is the tem-
perature andd is a typical length. We chooseT5300 K, and
a unit of length comparable to the order of molecular dimen-
sions,d510 Å. We obtain values for the boundary tension
going from 0 at the prewetting critical point to values of
O (10212) N, close to the wetting transition. This is the range
of values that Benvegnu and McConnell20 obtained from
their experimental determination of the boundary tension of
the boundary between two lipid monolayer domains at the
air-water interface. In their work, they measured the bound-
ary tension as a function of a surface pressureP, defined as
the difference between the surface tension of the air-water
interface and the surface tension of the air-water interface
containing a lipid monolayer. When the surface pressure
P50, the air-water interface has no lipid monolayer on it.
Such a state is analogous to bulk phase coexistence in our
model, whene50, when there is no surface phase coexist-
ence. Benvegnu and McConnell20 also determined the value
of P at the prewetting critical point,Pcrit510.5 dyne/cm,
which corresponds to the same state as described by
ecrit50.3745. Therefore, the reduced phenomenological pa-
rameter (ecrit2e!/ecrit can be viewed as a reduced surface
pressure (Pcrit2P!/Pcrit , since the two limiting cases of wet-
ting (e→0) and criticality can be mapped onto the two lim-
iting physical cases of an interface with no monolayer on it
(P→0) and 2D criticality, respectively. However, this type
of comparison is only qualitatively correct since the experi-
mental system studied by Benvegnu and McConnell20 in-
cludes the presence of long-ranged dipole interactions and
the boundary tension shows 2D Ising-like behaviour, close to
the prewetting critical point. Our model, on the other hand, is
mean-field and is restricted to short-ranged forces.

Using the same units of force and length as in the above
case, we obtain orders of magnitude for the boundary tension
tb in the system of a fluid phase on a substrate as well.16 The
boundary tension is ofO (10212) N close to the wetting tran-
sition, and goes to 0 at the prewetting critical point.

In order to determine the accuracy of the boundary ten-
sion calculation using the multigrid method, we have calcu-
lated the boundary tensiontb using two other formulas~Ap-
pendix A!, in addition to Eq.~4.1!. One of them is the
Kerins-Boiteux formula for the line tension:25

tb
K2B5E

2`

`

dxE
2`

`

dz @ 1
2~¹r1!

21 1
2~¹r2!

22F~r1 ,r2!# ,

~4.9!

and the other formula is:

tb5E
2`

`

dxE
2`

`

dz F S ]r1
]x D 21S ]r2

]x D 2G . ~4.10!

The integrals in Eqs.~4.9! and ~4.10! are not variational in-
tegrals, i.e., the values of the boundary tensions obtained
from these two integrals are not extrema whenr1(x,z) and
r2(x,z) are the equilibrium profiles.
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The boundary tensions are calculated by substituting
r1(x,z) andr2(x,z), obtained from the multigrid method, in
Eq. ~4.9! and ~4.10!. The difference in the values oftb ob-
tained from Eqs.~4.1!, ~4.9! and ~4.10! describes qualita-
tively how close the density profilesr1(x,z) and r2(x,z)
obtained from the multigrid algorithm are to the equilibrium
density profiles: if the boundary tensions obtained from Eqs.
~4.1!, ~4.9! and ~4.10! are equal, the multigrid density pro-
files are the equilibrium profiles. The error bars in fig. 12
represent the standard deviation from the average of the val-
ues oftb from Eqs.~4.1!, ~4.9! and ~4.10!. These error bars
are centered at the values oftb obtained from Eq.~4.1!, since
that equation is the one associated with the Euler-Lagrange
equations~4.2! and ~4.3! whose solutions give the exact
~within the numerical accuracy! density profilesr1(x,z) and
r2(x,z), and hence give the best estimate for the boundary
tensiontb . If no error bars are shown in fig. 12, the standard
deviation is within the size of the data point.

As the wetting transition is approached (e→0), the ac-
curacy in the calculation of the boundary tension decreases,
as suggested by the large error bars~fig. 12!. This is due to
the increase in the inhomogeneous boundary area as the
ag* interface becomes thicker. Therefore, the domain over
which the Euler-Lagrange equations~4.2! and ~4.3! have to
be solved is increased, leading to a larger grid spacinghs ,
since the number of grid points cannot be increased propor-
tionally due to computation time constraints. Consequently,
the accuracy in the calculated values of the boundary tension
decreases. Close to the prewetting critical point, the accuracy
decreases as well, but is not reflected by large error bars.
This is due to the very small values for the boundary tension.
Therefore, errors intb of the same order of magnitude as
tb will not be larger than the size of the data points in fig. 12.
In this case, however, the inaccuracy in the boundary tension
values occurs due to the increase in the domain size along
the x-axis only. This is in contrast to the domain increase in
both thex- andz-directions close to the wetting transition.

V. CONCLUSION

In this paper, we have presented numerically exact cal-
culations of the boundary tensiontb of the one-dimensional
boundary that is created when two surface phases meet
edge-on at the prewetting transition, in a system of two bulk
fluid phases, where a third phase might become bulk. The
prewetting line was determined from the wetting transition to
the prewetting critical point. Close to the wetting transition,
the boundary tension increases in magnitude and extrapolates
to a finite value at the wetting transition,tb,w50.477, if one
assumes the asymptotic form of Indekeu.17 Close to the
prewetting critical point, the boundary tension vanishes in a
conjectured mean-field manner, with the critical point expo-
nentm53/2. Scaling of the boundary tensions with a typical
unit of force yields an order of magnitude fortb of 10

212 N,
close to the wetting transition, and decreasing tensions to 0 at
the prewetting critical point. As the prewetting critical point
is approached, the two surface phases become more and
more alike, and become indentical at the prewetting critical
point.
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APPENDIX. KERINS-BOITEUX FORMULA FOR THE
BOUNDARY TENSION

In this appendix, we derive two different, but equivalent,
formulas for the boundary tensiontb along the prewetting
line, for the general case of ann-component two-phase sys-
tem. For a 2-component system, one of the formulas is the
Kerins-Boiteux formula25 for the line tension of three fluid
phases. It turns out that the same expression is valid for the
boundary tension as well.

The boundary tension is given by, cf. Eq.~4.1!,

tb5E
2`

`

dxF E
2`

`

dz F(
i51

n
1

2
~¹r i !

21F~r1 ,r2 ,...,rn!G
2 s G , ~A1!

where the density profilesr i5r i(x,z) are solutions of the
Euler-Lagrange equations, cf. Eq.~4.2!,

¹2r i5
]F

]r i
, i51,2,...,n ~A2!

with the boundary conditions given by the values of the den-
sities r i in the bulk phases and the density profilesr i(z)
across the interface, atx→6`.

Multiplying both sides of the Euler-Lagrange equation in
~A2! by ]r i /(]x), adding all the equations fori51,2,...,n
together and integrating overz from 2` to ` gives

E
2`

`

dz F(
i51

n F ]2r i
]x2

]r i
]x

1
]2r i
]z2

]r i
]x

2
]F

]r i

]r i
]x G G50 .

~A3!

Next, we partially integrate the second term and write the
other terms as derivatives,

E
2`

`

dz F(
i51

n F 12 ]

]x S ]r i
]x D 2

2
]r i
]z

]2r i
]x]zG

2
]

]x
F~r1 ,r2 ,...,rn!G52F(

i51

n
]r i
]z

]r i
]x G

z52`

z5`

50 ,

~A4!

where we have used the boundary conditions that the densi-
tiesr i are constant in the bulk phases~at z→6`), to derive
the last identity.
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We now write the second term in the sum on the left
hand side of Eq.~A4! as a derivative, integrate overx from
x8 to ` and subsequently drop the prime. We are then finally
left with

E
2`

`

dz F(
i51

n F 12S ]r i
]x D 2

2
1

2S ]r i
]z D 2G2F~r1 ,r2 ,...,rn!G

52 s, ~A5!

wheres5*2`
` dz @F(r1 ,r2 ,...,rn)1( i51

n 1
2(dr i /dz)

2].
A similar formula can be derived by performing an

analysis analogous to the one above, but now one multiplies
both sides of the Euler-Lagrange equation in Eq.~A2! by
]r i /(]z) and integrates overx from 2` to `. The analysis
follows exactly the same steps as the analysis above, so we
only give the final result:

E
2`

`

dx F(
i51

n F2
1

2S ]r i
]x D 2

1
1

2S ]r i
]z D 2G

2F~r1 ,r2 ,...,rn!G 50 . ~A6!

Integrating Eq.~A5! overx from2` to` and Eq.~A6! over
z from 2` to ` and adding the results to the expression for
the boundary tension in Eq.~A1! leaves us with the Kerins-
Boiteux formula forn components:

tb
K2B5E

2`

`

dxE
2`

`

dz F(
i51

n
1

2
~¹r i !

22F~r1 ,r2 ,...,rn!G .
~A7!

For n52, we recover the formula in Eq.~4.9!.
If one integrates Eq.~A5! over x from 2` to ` and

adds the result to the expression for the boundary tension in
Eq. ~A1!, one obtains

tb5E
2`

`

dxE
2`

`

dz F(
i51

n S ]r i
]x D 2G , ~A8!

which is the formula in Eq.~4.10!, for n52.
Although the formula in Eq.~A8! is even simpler than

the Kerins-Boiteux formula in Eq.~A7!, it is only valid as an
expression for the boundary tension, whereas the formula in
Eq. ~A7! is also valid for the line tension along partial
wetting.25
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