
J. Chem. Phys. 95, 6986 (1991); https://doi.org/10.1063/1.461509 95, 6986

© 1991 American Institute of Physics.

Microscopic expressions for the rigidity
constants of a simple liquid–vapor
interface
Cite as: J. Chem. Phys. 95, 6986 (1991); https://doi.org/10.1063/1.461509
Submitted: 18 July 1991 . Accepted: 19 August 1991 . Published Online: 31 August 1998

Edgar M. Blokhuis, and Dick Bedeaux

ARTICLES YOU MAY BE INTERESTED IN

Pressure tensor of a spherical interface
The Journal of Chemical Physics 97, 3576 (1992); https://doi.org/10.1063/1.462992

Determination of curvature corrections to the surface tension of a liquid–vapor interface
through molecular dynamics simulations
The Journal of Chemical Physics 116, 302 (2002); https://doi.org/10.1063/1.1423617

The Statistical Mechanical Theory of Surface Tension
The Journal of Chemical Physics 17, 338 (1949); https://doi.org/10.1063/1.1747248

https://images.scitation.org/redirect.spark?MID=176720&plid=1007006&setID=378408&channelID=0&CID=326229&banID=519800491&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=9f34f1cb620828b56eaf9bdebc7286d6c339bcff&location=
https://doi.org/10.1063/1.461509
https://doi.org/10.1063/1.461509
https://aip.scitation.org/author/Blokhuis%2C+Edgar+M
https://aip.scitation.org/author/Bedeaux%2C+Dick
https://doi.org/10.1063/1.461509
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.461509
https://aip.scitation.org/doi/10.1063/1.462992
https://doi.org/10.1063/1.462992
https://aip.scitation.org/doi/10.1063/1.1423617
https://aip.scitation.org/doi/10.1063/1.1423617
https://doi.org/10.1063/1.1423617
https://aip.scitation.org/doi/10.1063/1.1747248
https://doi.org/10.1063/1.1747248


LETTERS TO THE EDITOR 
The Letters to the Editor section is divided into four categories entitled Communications, Notes, Comments, and Errata. 
Communications are limited to three and one half journal pages, and Notes, Comments, and Errata are limited to one and 
three-fourths journal pages as described in the Announcement in the 1 July 1991 issue. 

COMMUNICATIONS 

Microscopic expressions for the rigidity constants of a simple liquid-vapor 
interface 

Edgar M. Blokhuis and Dick Bedeaux 
Department of Physical and Macromolecular Chemistry, Gorlaeus Laboratories, P. O. Box 9502, 
2300 RA Leiden, The Netherlands 

(Received 18 July 1991; accepted 19 August 1991) 

Of late there has been a growing interest in the under­
standing of curved interfaces. In particular, attention has 
focused on the influence of the rigidity constant of bending, 
k, and.!!Ie rigidity constant associated with Gaussian cur­
vature k, on the behavior of interfaces. For some properties 
of simple liquid interfaces these rigidity constants play a 
significant role. I

,2 In systems where for some reason the 
surface tension is small these rigidity constants even be­
come the dominant factor in understanding both the static 
and dynamic behavior of interfaces. In this communication 
we present expressions for the rigidity constants of an in­
terface by calculating the change in surface free energy 
under transformations which change both the surface area 
and radius of curvature but leave the volume of the system 
unchanged. 3 The resulting equations are analogous to the 
well-known microscopic expression for the surface tension 
derived in 1949 by Kirkwood and Buff.4 The formulas are 
subsequently simplified using an approximate expression 
for the curvature dependent density autocorrelation func­
tion near the interface. Explicit expressions for the rigidity 
constants far from the critical point as well as close to the 
critical point are given as integrals over the product of the 
interaction potential and the pair correlation function in 
the liquid phase. Values for the rigidity constants close to 
the critical point are calculated. 

The isothermal change in surface free energy of a 
spherical interface with radius R is given by5 

dFs=a(R)dA + C(R)A dR (sphere), (1) 

where a(R) and C(R) are the radius dependent surface 
tension and curvature term. In order for this expression to 
be the only contribution to the surface free energy we have 
chosen the position of the dividing surface such that there 
is no adsorption at the interface so that the total number of 
particles, N, equals p,V, + pgVg with P',g and V"g the den­
sity and volume of the liquid, gas phase. The surface free 
energy for a generally curved interface is given by6 

where C1 and C2 are the principal radii of local curvature. 
Equation (2) is an expansion to second order in t~ cur­
vature and defines the coefficients /0' Co, k, and k. The 
coefficient fo is related to the surface tension by fo 
+ (k/2) C6 = a and Co is the spontaneous curvature of the 

interface. For a sphere, where C1 = C2 = - 1/ R, we obtain 
for the radius dependent surface tension and curvature 
term using the above equation: 

1 ( 1 )2 
a(R)=a+ 2kC0 :R+(2k+k) :R ' 

C(R) = aa(R) I 
aR T 

(sphere) (3) 

For a one-component two-phase system in the canon­
ical ensemble where the total configurational energy is the 
sum of pair potentials the change in surface free energy 
generated by an arbitrary infinitesimal coordinate transfor­
mation r-+r + 8r is given by5 

(4) 

with p(2)(rl,r2) the density auto correlation function, 
rI2=r2-rl,r=lrl2i and u'(r) is the derivative with re­
spect to its argument of the pair interaction potential. To 
avoid bulk contributions to t3F we consider coordinate 
transformations which leave the bulk volumes unchanged. 
By calculating the change in free energy for two such 
transformations we derive the following expressions for 
a(R) and C(R): 
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(sphere) (5) 

where s=cos e12, Z2=ZI + sr and we have used the sphe!ical symmetry of the system to write p(2)(rl,r2) 

= ps( 2) ( I r 11 , I r21 ,r). In order to obtain expressions for k and k separately we perform an analogous calculation for a 
cylindrical interface. With CI = - l/R and C2=0 Eq. (2) yields 

1 k( 1)2 
a(R)=a+ kCo:R+'2:R ' 

Ja(R) (1)2 (1)3 
C(R)=-aR IT= -kC0:R -k:R . 

(cylinder) (6) 

Again using Eq. (4) we derive for the cylinder 

1 J J (2) [ ~J ( ZIZ2) r ~2 4 ] a(R) =4 dZI dr12u'(r)rpc (Zlh,r) (1 - 3s-) 1 + 2R2 + 32R2 (1 + 6s- - ISs) 
(cylinder) (7) 

Identifying the coefficients in the expansion inJIR with 
the thermodynamical quantities a, kCo, k and k by com­
paring Eqs. (5) and (7) with Eqs. (3) and (6), respec­
tively, one obtains the following formulas: 

1 J J ~ (2) a=4 dZI dr12u'(r)r(1 - 3s-)Pf ' 

1 J J ~ 1 (2) kCO=4 dZI dr12u'(r)r(1 - 3s-)'2 Ps,l , 

kCO=~ J dZI J dr12u'(r)r( 1 - 3;)p~y, 

1 J J 2 ZI + Z2 (2) kCo=4 dz\ dr12u'(r)r( 1 - 3s-) -2-Pf ' 

k=~ J dZI J dr\2U'(r)r[ (1 - 3;) 

X (2p~,2i + ZIZzPY» + ~ (1 + 6s2 - 15S4 )PY)]' 

1 f f [ (ZI + Z2 ) k=4 dZI dr\2u'(r)r (1- 3s2) -2-P~~ 

- Z\Z2 p(2») _ ~ (1 + 6; - 15s4 )p(2) 1 
2 I 16 I ' 

k =~ f dz\ f dr12U'(r)r[ (l - 3;)(p~,~) - 4p~:i 

- ZIZzPY» - ~ (3-6; - 5i)p?)], 

k=~ f dz\ f dr12U'(r)r[ (1 - 3;) CI ~ Z2[p~,~) 
- 2p~~)] + ZIZzPY») + ~ (3 - 6; - 5S4 )Pj2)], (8) 

where we have also expanded the correlation functions for 
the spherical and cylindrical interface up to second order 
in the inverse radius 

P(2) =p(2) + p(2) (~) + p(2) (~) 2 
s f s,l R s,2 R ' 

P(2) =p(2) + p(2) (~) + p(2) (~)2 
c f c,l R c,2 R . 

(9) 

Here PY) is the pair correlation function of the flat 
interface. For notational convenience we have left out the 
explicit dependence on ZI,z2 and r of the correlation func­
tions in the above equations. The expression for a is the 
well-known Kirkwood-Buff formula. The other expre~ 
sions are analogous rigorous expressions for kCo, k and k 
in terms of correlation functions. For kCo it is sufficient to 
know the correlation function of the flat interface and for k 
and k one needs the modification of the correlation func­
tions to first order in the inverse radius for the spherical 
and cylindrical interface. An unpleasant feature is the fact 
that not much is known about the curvature dependence of 
the correlation function. Using the equivalence of the three 
expressions for kCo we postulate the following relation 
which makes these expressions identical: 

P(2) = 2p(2) = (z + Z )p(2). 
5,1 c,l I 2 I (10) 

We have not been able to find a more fundamental justifi­
cation of this formula. 

For the auto correlation function of the flat interface 
we assume the following simple form: 

(11) 

where g(r) is the pair correlation function in the uniform 
liquid. Close to the critical point the pair correlation func­
tion in the liquid and vapor region become identical so that 
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this is a reasonable approximation. Far from the critical 
point this approximation, though widely used,5,7 is more 
questionable. For the density profile we first consider the 
well-known van der Waals form 

6.p 
p(z) =Pc - 2 tanh (z/25) , (12) 

where Pc = ~(pl + Pg), 6.p = (PI - pg) and g the bulk cor­
relation length which is a measure of the thickness of the 
interface. From the above equations one finds the follow­
ing. 

Far from the critical point (g -+0) 

O'=i 6.p2 J dr r4u'(r)g(r), 

1T 2J 6, k= 192 6.p dr r u (r)g(r), (13) 

- 1T 2J 6, 
k=2886.P dr r u (r)g(r). 

The first equation is the well-known Fowler formula for 
the surface tension.7 

Close to the critical point (g -+ 00 ) 

1T 6.p2 J 
0'= 45 T dr ~u'(r)g(r), 

k=2;0( ~ + 12)6.p25 J dr ~u'(r)g(r), (14) 

k=I;5(~-6)6.p25 J dr~u'(r)g(r). 
These last equations lead to the following expression for 
the critical rigidity constants: 

1 ~+ 12- (~ ) 2 
k="2 1f2 _ 6 k= 6 + 2 O'g. (15) 

The ratio Ru=0'521kBTc is a universal constant for the 
surface tension near the critical point. Experimentally one 
finds Ru = 0.10 while on the basis of renormalization 

group theory one calculates Ru = 0.128.8
•
9 The commonly 

accepted explanation for this difference is that capillary 
waves are not incorporated in the renormalization group 
calculation.9 Using the tanh profile and Ru = 0.128 we find 
as critical rigidity constants k = 0.467 kBTc and k = 0.165 
kBTc. Close to the critical point the Fisk-Widom profilelo 

is more appropriate than the tanh profile. The critical ri­
gidity constants are then found to be k = 0.631 kBTc and 
k = 0.239 kBTc where again Ru = 0.128 has been used. 

As the approximation in Eq. (11) is expected to hold 
near the critical point the critical rigidity constants are in 
fact found to be universal constants, Rk and Rf:, times 
kBTc provided that also Eq. (10) is valid for the dominant 
contribution in the critical point. The analysis thus seems 
to suggest universal values of Rk and RI:. An analysis of 
eIIipsometric data for binary liquids near the critical point 
gives a value Rk = 1.1 2 which, though being of the same 
order of magnitude, is clearly larger than the largest theo­
retical value Rk = 0.631. A more thorough calculation of 
Rk and R-;; would require a better understanding of the 
behavior of the density autocorrelation function in the vi­
cinity of the interface and in particular of the contribution 
due to capillary waves. The contribution of capillary waves 
to Rk is expected to increase Rk II and may therefore help 
to reduce this discrepancy. 

This work is part of the research program of the Lei­
den Material Science Center and of the "Stichting voor 
Fundamenteel Onderzoek der Materie" (FOM). 
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