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On the determination of the structure and tension of the interface
between a fluid and a curved hard wall
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Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA Leiden, The Netherlands
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The structure and tension of the interface between a fluid and a spherically shaped hard wall are
studied theoretically. The authors show the equivalence of different expressions for the surface
tension and Tolman length using the squared-gradient model and density functional theory with a
nonlocal, integral expression for the interaction between molecules. Even though both these models
yield equilibrium density profiles that do not satisfy the wall theorem, they still obey the basic
requirement of mechanical equilibrium. The authors trace back the origin of the difference between
these two observations to the �lack of� continuity of the cavity function at the hard wall. © 2007
American Institute of Physics. �DOI: 10.1063/1.2434161�

I. INTRODUCTION

For a fluid in contact with a �infinitely� hard wall, the
wall theorem �or contact theorem�1 states that its density at
the wall �w is linked to the pressure p as if it were an ideal
gas:

p = kBT�w, �1�

with T the absolute temperature and kB the Boltzmann con-
stant. This equation can be derived by considering the con-
dition of mechanical equilibrium between the solid wall and
the fluid phase. It is analogous to the condition of mechanical
equilibrium between a coexisting liquid and vapor phase,
p�= pv, with the role of the solid’s pressure taken over by
kBT�w. This is particularly evident when we consider a
spherically shaped hard wall. Henderson2,3 showed that in
that case,

− p + kBT�w =
2��R�

R
+ C�R� , �2�

where R is the hard wall radius, ��R� is the radius dependent
surface tension, and C�R��d��R� /dR. One recognizes the
right-hand side as the Laplace pressure difference for a liquid
droplet in contact with its vapor:4

�p = p� − pv =
2��R�

R
+ C�R� . �3�

As for a liquid droplet, one might expand the radius depen-
dent surface tension in large radii of curvature. To leading
order in 1/R, one has

��R� = ��1 −
2�

R
+ . . . � , �4�

where � is the surface tension in the planar limit and where
the leading order correction defines the so-called Tolman
length � introduced by Tolman in 1949.5 Inserting the ex-
panded ��R� into Eq. �2� gives

− p + kBT�w =
2�

R
�1 −

�

R
+ . . . � . �5�

The main purpose of this article are to investigate differ-
ent expressions for the Tolman length for a fluid near a hard
wall and to determine its value using density functional theo-
ries of varying degree of sophistication. In particular, we
discuss van der Waals squared-gradient theory4 and density
functional theory �DFT� with a nonlocal, integral expression
for the interaction between molecules.6–8 Using DFT, Stecki
and co-workers9,10 showed that for a fluid in contact with a
hard wall, the leading order Tolman correction, determined
from a plot of ��R� as a function of 1/R, is small and posi-
tive or negative depending on bulk density and temperature.
For the system of a hard sphere fluid near a hard wall, Bryk
et al.11 obtained a negative Tolman length, which they
showed to be in good agreement with results using “scaled
particle theory” �see also Ref. 12�.

We are interested in comparing the determination of the
Tolman length for the hard wall system with the determina-
tion of the Tolman length for a liquid droplet. We show that
the Tolman length for a fluid in contact with a hard wall can
be determined from the fluid density profile in contact with a
planar wall, just as it can in the case of a planar liquid-vapor
interface.13–16

A second important issue concerns mechanical equilib-
rium. The Laplace equation for a liquid droplet, Eq. �3�, re-
sults from a consideration of the mechanical equilibrium be-
tween the liquid and vapor phase. An important observation
is that for the density functional theories considered, the
Laplace equation for a liquid droplet still holds, whereas, in
general, they do not obey the wall theorem in Eq. �1� or
�2�.17 This result has also been observed in density functional
models for more complex systems in contact with a hard
wall.18 It is hard to imagine that the condition of mechanical
equilibrium may be violated in any reasonable theory. We
show that even though the wall theorem need not always be
satisfied, the condition of mechanical equilibrium remains
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valid. We further provide explicit expressions for the alter-
native value of the wall density.

This article is organized as follows: in the next section
we consider the thermodynamics necessary to study density
functional theories of hard wall systems. We consider quite
generally the derivation of the wall theorem for a planar or
spherical wall �Eqs. �1� and �2�� and show how the derivation
relates to the fundamental requirement of mechanical equi-
librium. In Secs. III and IV, we then consider explicitly two
density functional theories: squared-gradient theory �Sec. III�
and density functional theory that contains an integral
expression for the interaction between fluid molecules6–8

�Sec. IV�. In these two sections we further provide expres-
sions for the surface tension and Tolman length, which are
then numerically evaluated. A summary of results is provided
in Sec. V.

II. MECHANICAL EQUILIBRIUM
AND THE WALL THEOREM

There are some similarities but also some important dif-
ferences when we compare the situation of a fluid in contact
with a hard, spherically curved wall with that of a drop of
liquid in contact with its vapor.3,19

An important distinction between the fluid-wall system
and the liquid-vapor system is that one goes from a two-
phase system to essentially a one-phase system with the wall
merely present as a “spectator phase” �not of influence to the
thermodynamic state of the fluid phase surrounding it�.
When investigating a liquid droplet, it is either in a meta-
stable state, the so-called critical nucleus, or in stable equi-
librium due to the finite size of the containing vessel. The
radius of curvature is then varied either by changing the
chemical potential � or temperature T �assuming a one-
component system�. For the fluid in contact with a spherical
wall, the system is always in equilibrium and the radius of
curvature is simply varied as a boundary condition.

We envision the wall as being infinitely repulsive to the
fluid beyond some radius R; it acts on the fluid through an
external potential given by

Vext�r� = �0 when r � R

� when r � R .
	 �6�

This form of the external potential naturally leads us to de-
fine the radius R as the radial distance where the molecule’s
center of mass experiences an infinite repulsion. Some
authors11 introduce the location of the “actual surface” Ract to
account for the fact that the molecule’s center of mass is half
a diameter away from the surface when it interacts with the
hard wall, R=Ract+d /2. Naturally, all physically measurable
quantities cannot depend on the definition for the location of
the radius R, but in this case, it should be chosen such that it
reflects the volume available to the liquid’s molecules.

To elucidate this matter, let us consider the thermody-
namic expression for the free energy �grand potential� of a
fluid near a planar hard wall �with area A�

	 = − pV� + �A . �7�

In this expression, V� is the volume available to the fluid. If
one were to shift the location of the dividing surface, the
liquid’s volume is altered and the free energy is affected
accordingly:

�d	� = − pA�dh� , �8�

where dh is the height shift and where the square brackets
indicate that we are considering a “notional” shift in the lo-
cation of the dividing surface which corresponds to a redefi-
nition of the location of the dividing surface without affect-
ing the physical state of the system.4 Because the expression
for the free energy in Eq. �7� discards the physical properties
of the solid phase, we thus find that the free energy is not
invariant, �d	��0. This means that we are not free to
choose the location of the dividing surface at any position,
but should position it such that V� corresponds to the actual
volume available to the liquid.

Even though the free energy in Eq. �7� is not invariant to
a change in the chosen location of the dividing surface, the
consideration of a notional shift is useful to derive restric-
tions on more microscopic models for the free energy. To
show this, we consider a notional shift in the location of the
radius of a spherically shaped hard wall. The free energy and
its notional change are then given by

	 = − p�V −
4


3
R3� + ��R�4
R2,

�d	� = �p +
2��R�

R
+ C�R�	4
R2�dR� , �9�

where V is the system’s total volume. We compare the above
result from thermodynamics with a more microscopic model
for the free energy. Let us consider, quite generally, the free
energy as a functional of the liquid’s density ��r�. It can be
written as the sum of a term pertaining to the fluid only �	 f�
and a term describing the interaction of the fluid with the
wall:

	��� = 	 f��� +
 dr��r�Vext�r� . �10�

If we now consider a notional change in the hard wall radius,
�dR�, the first term in Eq. �10� is unaffected and the only
explicit dependence on R stems from the external potential
Vext�r�=Vext�r−R�. For a spherically shaped hard wall, we
then have

�d	� = 4


0

�

drr2��r�
dVext�r�

dR
�dR�

= − 4
R2�dR�

0

�

dr��r�Vext� �r� , �11�

where we used dVext�r−R� /dR=−dVext�r−R� /dr
�−Vext� �r−R� and made use of the fact that Vext� �r� is unequal
to zero only when r=R for the external potential in Eq. �6�.
The integration limits may therefore also be replaced by R−
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and R+, but we leave them as they are. Comparing Eq. �11�
with Eq. �9�, one finds

− p − 

0

�

dr��r�Vext� �r� =
2��R�

R
+ C�R� . �12�

This equation is an important result. The analogous consid-
eration of the notional change in the radius of a liquid droplet
in contact with its vapor leads to the Laplace equation �Eq.
�3��. For a planar surface �R→��, Eq. �12� reduces to17

p = − 

−�

�

dz��z�Vext� �z� . �13�

We shall refer to these two equations as the condition of
mechanical (or hydrostatic) equilibrium. They can be de-
rived by considering a notional shift of the surface, as we did
here, but they can equally well be derived from a consider-
ation of the condition of mechanical equilibrium expressed
in terms of the pressure tensor p4

� · p = − ��r�Vext� �r� . �14�

For instance, for the planar interface, the above equation re-
duces to

pN� �z� = − ��z�Vext� �z� , �15�

where pN�z� is the normal component of the pressure tensor
which reduces to the uniform pressure p in the bulk. Inte-
grating Eq. �15� over z then derives Eq. �13�.

We shall see that the important condition of mechanical
equilibrium given by Eq. �12� or �13� is satisfied for the
density functional theories that we will discuss in the next
sections. One may further note that these expressions for
mechanical equilibrium are very closely related to the wall
theorem expressed in Eqs. �1� and �2�. To show this we re-
write

Vext� �r� = − kBTeVext�r�/kBT d

dr
e−Vext�r�/kBT. �16�

The Boltzmann factor for the external potential equals the
Heaviside function with its derivative being equal to the
Dirac � function. Inserting Eq. �16� into Eq. �12�, we thus
have

− p + kBT

0

�

drn�r���r − R� =
2��R�

R
+ C�R� , �17�

where we introduced the so-called cavity function �or
y-function�, n�r�, defined as the product of the density and
the inverse Boltzmann factor for the external potential,

n�r� � ��r�eVext�r�/kBT. �18�

Only if the cavity function is continuous at r=R, i.e., n�R�
=n�R+�=��R+���w, are we able to carry out the integration
in Eq. �17� to arrive at Eq. �2�:

− p + kBT�w =
2��R�

R
+ C�R� . �19�

The only reason that the validity of Eqs. �12� and �13� in
the mean-field density functional theories considered does

not necessarily imply the validity of the wall theorem, thus,
hinges on whether the cavity function is continuous or not.17

The continuity of the cavity function is a fundamental statis-
tical mechanical property,20 but it need not necessarily hold
in approximate mean-field theories. We shall see that for the
density functional theories considered, the cavity function is
not continuous and the wall theorem is not satisfied. An ex-
ception are those density functional theories in which the
so-called weighted density approximation is made. These
theories are constructed such that the continuity of the cavity
function is implied by the Euler-Lagrange equation.7,9

As a side remark, we would like to mention that Lovett
and Baus21 showed that the wall theorem may also be de-
rived from a virial approach in such a way that nowhere in
the proof one needs to rely explicitly on the continuity of the
cavity function.

III. SQUARED-GRADIENT MODEL

In this section we consider the squared-gradient model
for the free energy of a liquid near a hard wall. The free
energy as a functional of the density is given by4

	��� =
 dr�m����r��2 + g��� + ��r�Vext�r�� , �20�

where m is the usual coefficient of the squared-gradient term
and g��� is the free energy �per unit volume� of a homoge-
neous fluid with density �. For explicit calculations, we take
g��� to be of the Carnahan-Starling form22

g��� = ghs��� − a�2

= kBT� ln��� − �� + kBT�
�4� − 3�2�

�1 − ��2 − a�2, �21�

where ���
 /6��d3 and a is the usual van der Waals param-
eter to account for the attractive interactions between mol-
ecules. The chemical potential � determines the bulk fluid
density �b, and it is convenient to use �b instead of � as the
state variable next to T. To determine the density profile near
a hard wall in squared-gradient theory, we first consider the
case of a planar hard wall. The free energy is then

	���
A

= 

−�

�

dz�m����z��2 + g��� + ��z�Vext�z�� . �22�

The infinite repulsion of the hard wall is taken into account
in two steps. First, we consider the following form for the
external potential:

Vext�z� = � 0 when z � 0

kBTV0 when z � 0,
	 �23�

where V0 is a very large constant; second, we take the limit
V0→�. The Euler-Lagrange equation to minimize the free
energy in Eq. �22� reads

2m���z� = g���� + Vext�z� . �24�

This differential equation indicates that because Vext�z� is
discontinuous, the resulting density profile exhibits a discon-
tinuous second derivative. However, the profile itself and its
first derivative are continuous at z=0:
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��0−� = ��0+� = �w, ���0−� = ���0+� . �25�

Integrating the Euler-Lagrange equation in Eq. �24� gives

m���z�2 = �g��� + c1 for z � 0

g��� + kBTV0��z� + c2 for z � 0.
	 �26�

The two integration constants c1,2 are determined by the be-
havior of the density profile in the two bulk regions far from
the interface. For z→�,

g��b� = − p ⇒ c1 = p . �27�

The fluid density in the solid region is exponentially small,
�s�exp�−V0�→0. This means that for z→−�,

g��s� � kBT�s ln��s� → 0 ⇒ c2 = 0. �28�

Thus we find,

m���z�2 = g��� + p, z � 0, �29�

m���z�2 = g��� + kBTV0��z�, z � 0. �30�

Due to the fact that the first derivative is continuous at z=0,
we have the condition that

g��w� + p = g��w� + kBTV0�w ⇒ �w =
p

kBTV0
→ 0. �31�

The conclusion is therefore

�w = 0, �32�

which is clearly not in accord with the wall theorem in Eq.
�1�. In hindsight we might have anticipated this result; it is
similar to the condition that the wave function is zero at the
boundaries when solving the Schrödinger equation for a par-
ticle in a box.

We found that the density profile obtained from the
squared-gradient model does not satisfy the wall theorem.
One may verify, however, that the squared-gradient model
does not violate the condition of mechanical equilibrium,
Eq. �13�:

p=
?

− 

−�

�

dz��z�Vext� �z� = 

−�

�

dz��z�kBTV0��z� = kBTV0�w,

�33�

which is indeed the case on account of Eq. �31�. That for the
squared-gradient model the cavity function n�z� is not con-
tinuous can also explicitly be verified from its definition in
Eq. �18� and the expression for the density at the wall in Eq.
�31�:

n�0−� �
p

kBTV0
eV0 → � ,

n�0+� �
p

kBTV0
→ 0. �34�

The full fluid density profile can now be determined by
taking the limit V0→�. For z�0, we have that ��z�=0,
whereas for z�0, the density profile is obtained by solving
the differential equation in Eq. �29� subject to the boundary
condition in Eq. �32�. Note that this implies that while for

finite V0 the first derivative of the density profile is always
continuous in z=0, in the limit of V0→�, it is not:

���0−� = 0, ���0+� = p

m
. �35�

It is interesting to compare the density profile obtained
in the squared-gradient model with the so-called Nakanishi-
Fisher model,23 which is designed to describe the interaction
of a fluid with a wall. Using this model, Nakanishi and
Fisher were able to construct a rich wetting phase diagram in
terms of two fluid-wall interaction parameters, h1 and g.23

Besides the presence of �attractive or repulsive� fluid-wall
interactions, an important difference with the analysis pre-
sented here is that the infinite “hardness” of the wall for z
�0 is taken into account simply by limiting the integration
of the free energy to the region z�0. The result is that if we
were to set the interaction with the wall to zero �h1=0, g
=0�, one obtains for the density profile ��z�=�b everywhere.
The Nakanishi-Fisher model is designed specifically to de-
scribe the interactions of a fluid with a wall. It is, however,
not suited to describe the limit where those interactions van-
ish.

The applicability of the Nakanishi-Fisher model can also
be regarded as a matter of length scales. Suppose we con-
struct a squared-gradient model in which the interaction with
the wall is described by an interaction potential with a cer-
tain shape and range for z�0, and which is strictly infinite
for z�0. The density profile calculated from such a model
could be described in terms of the Nakanishi-Fisher param-
eters for distances far �compared to the interaction range�
from the wall, but nearing the wall, the density profile nec-
essarily approaches zero.

The situation is similar to the theoretical description of a
polymer solution in contact with a wall. In the theoretical
treatment by de Gennes,24 the interaction with the wall is
modeled by the “extrapolation length” �1/d�, which is analo-
gous to the parameter h1 in the Nakanishi-Fisher model. Set-
ting 1/d=0 then again results in a flat monomer density pro-
file. This result is to be contrasted with the analysis by
Eisenriegler, who considers a polymer in contact with a
purely hard wall, and obtains the boundary condition of van-
ishing monomer density at the wall.25

To determine the radius dependent surface tension and
thus Tolman’s length, we next consider the spherically
shaped hard wall. In spherical coordinates the free energy is
given by

	��� = 4


0

�

drr2�m���r�2 + g��� + ��r�Vext�r�� , �36�

with the Euler-Lagrange equation

2m���r� = −
4m

r
���r� + g���� + Vext�r� . �37�

The presence of the infinitely hard wall again leads to the
boundary condition ��R�=�w=0. The radius dependent sur-
face tension ��R� is calculated by inserting the density pro-
file determined by the above differential equation into the
free energy:
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��R� = 

0

�

dz�1 +
z

R
�2

�m����z��2 + g��� + p� , �38�

where we have introduced z�r−R as the �radial� distance to
the wall. To determine the Tolman length, we expand ��R�
and the density profile in 1/R:

��z� = �0�z� + �1�z�
1

R
+ . . . . �39�

The derivation of explicit expressions for � and �� in terms
of the density profile follows very closely the analogous deri-
vation in Ref. 15 of these coefficients for a spherical liquid-
vapor surface. The only distinction lies in the fact that the
integration over the volume now runs from z=0 to z=�,
which is to be expected, and that there is no term associated
with �1, the leading order term in an expansion in 1/R of the
chemical potential. The latter is a direct consequence of the
fact that the chemical potential in the fluid is constant, inde-
pendent of the radius R.

From the analysis in Ref. 15, we conclude that the sur-
face tension of the planar interface and Tolman length are
thus given by

� = 2m

0

�

dz��0��z��2,

�� = − 2m

0

�

dzz��0��z��2. �40�

In the next section, these expressions are used to calculate �
and ��.

IV. DENSITY FUNCTIONAL THEORY

We showed that for the model considered in the previous
section, the density at the wall is identically zero. This is a
direct consequence of the presence of the squared-gradient
term, which gives an infinite contribution to the free energy
when the density profile is discontinuous. To allow for such a
discontinuity, it therefore seems appropriate to describe the
interactions between molecules with the full, non-local inte-
gral term:6,7

	��� =
 dr�ghs��� + ��r�Vext�r��

+ 1
2 
 dr1
 dr2U�r12���r1���r2� , �41�

where ghs��� is given by the expression in Eq. �21� and
U�r12� is the attractive part of the interaction potential be-
tween molecules at a distance r12��r2−r1�. For explicit cal-
culations, we take it to be of the following form:26

U�r12� = � 0 when r12 � d

− A�d/r12�6 when r12 � d
	 �42�

to mimic London-dispersion forces. By comparing the free
energy in Eq. �20� with Eq. �41�, making a gradient expan-
sion in the latter, one may express the parameters a and m in
terms of A and d:

a = −
1

2

 dr12U�r12� =

2


3
Ad3,

m = −
1

12

 dr12U�r12�r12

2 =



3
Ad5. �43�

It is convenient to express lengths in units of d and energies
in units of a /d3. The reduced temperature thus becomes T*

�kBTd3 /a.
Again we turn to the planar case first. The free energy is

then

	���
A

= 

−�

�

dz�ghs��� + ��z�Vext�z��

+
1

2



−�

�

dz1
 dr12U�r12���z1���z2� , �44�

with the Euler-Lagrange equation:

ghs� ��� + Vext�z1� +
 dr12U�r12���z2� = 0. �45�

For z�0, the density profile ��z�=0, and for z�0, one may
solve the above integral equation numerically. A typical den-
sity profile is shown in Fig. 1. One finds that, in contrast to
the squared-gradient model, the density at the wall, �w, is not
equal to zero, but it is also not equal to the value given by the
wall theorem in Eq. �1�. For the interaction potential in Eq.
�42�, this observation was already made by van Giessen et
al.26 In Appendix A, we show that the wall density is, in-
stead, determined by

p = − ghs��w� + �wghs� ��w� � phs��w� . �46�

This formula was first presented by Parry and Evans,27 but
there it was derived strictly in the context of the Sullivan
model6 for the interaction potential between fluid molecules.
The analysis in Appendix A shows that this result is inde-
pendent of the precise form of the interaction potential. The
point we like to stress, however, is that, as for the squared-
gradient model, the condition of mechanical equilibrium, Eq.
�12� or �13�, remains satisfied. This is shown explicitly in

FIG. 1. Density profiles ��z� �in units of 1 /d3� as a function of wall distance
z �in units of d� determined by squared-gradient theory �lower solid curve�
and density functional theory �upper solid curve�. In this example, T*

=0.16 and �b=0.05 �dashed line�. The solid point indicates the wall density
predicted by the wall theorem �Eq. �1��.
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Appendix A. Again, the conclusion is that for this model the
cavity function is not continuous at the wall.

To determine the radius dependent surface tension, we
now turn to the spherically shaped hard wall. In spherical
coordinates the free energy is then

	��� = 4


0

�

drr2�ghs��� + ��r�Vext�r��

+ 2


0

�

dr1r1
2
 dr12U�r12���r1���r2� , �47�

with the Euler-Lagrange equation now given by

ghs� ��� + Vext�r1� +
 dr12U�r12���r2� = 0. �48�

The radius dependent surface tension ��R� is derived by in-
serting the density profile determined by the above differen-
tial equation into the free energy:

��R� = 

0

�

dz�1 +
z

R
�2

�ghs��� − a�b
2 + p�

+
1

2



0

�

dz1�1 +
z1

R
�2
 dr12U�r12����r1���r2� − �b

2� .

�49�

To obtain explicit expressions for � and ��, one must again
expand ��R� and the density profile in 1/R. The derivation
follows very closely the analogous derivation in Ref. 28 of
these coefficients for a spherical liquid-vapor surface. Fol-
lowing Ref. 28, one finds

� = − 1
4


−�

�

dz1
 dr12U�r12�r12
2 �1 − s2��0��z1��0��z2� ,

�� = 1
4


−�

�

dz1
 dr12U�r12�r12
2 �1 − s2�z1�0��z1��0��z2� .

�50�

The above expression for � is similar to the
Triezenberg-Zwanzig29 formula for the surface tension.

The integration over z1 in Eq. �50� runs over the entire
volume, including the region of inhomogeneity. It therefore
includes the singular contribution from the derivative of the
density profile, ����z��sing=�w��z�. For numerical evaluation,
it is necessary to limit the integration to the liquid region and
explicitly take into account the singular contribution. This
leads to

� = −
1

4



0+

�

dz1

0+

dr12U�r12�r12
2 �1 − s2��0��z1��0��z2�

−
�w

2



0+
dr12U�r12�r12

2 �1 − s2��0��sr12�

−
��w�2

8

 dr12U�r12�r12,

�� =
1

4



0+

�

dz1

0+

dr12U�r12�r12
2 �1 − s2�z1�0��z1��0��z2�

+
�w

4



0+
dr12U�r12�r12

3 s�1 − s2��0��sr12� , �51�

where the lower limit, 0+, indicates that the integrals are
strictly limited to the regions z1�0 and z2�0. The above
expression for �, with the singular part explicitly evaluated,
is closely related to formula �45� derived by Parry and Evans
in Ref. 27.

In Fig. 2 we show, as the solid curves, the Tolman length
�in units of d�, numerically determined using the expressions
in Eq. �51�, as a function of bulk density at two temperatures,
one below and one above Tc. Also drawn in Fig. 2, as the
dashed curves, are the results for � derived from the squared-
gradient model �Eq. �40�� for the same set of parameters. The
curves are qualitatively similar to the DFT results and about
a factor of 2 larger. Above Tc the Tolman length is negative,
less than a molecule’s diameter, and it exhibits a maximum
as a function of the fluid’s bulk Tc the density range is lim-
ited by the densities of the coexisting liquid and vapor phase
��� and �v, vertical dashed lines�. On the vapor side, nothing
spectacular happens: the Tolman length is negative and less
than a molecule’s diameter in size. On the liquid side, how-
ever, on approaching the coexistence density, the Tolman
length diverges.

An interpretation for the divergence of the Tolman
length was provided by Evans and co-workers.30–32 They
showed that a “wetting” layer of vapor is formed between the

FIG. 2. Tolman length � �in units of d� as a function of bulk density �b �in
units of 1 /d3� determined by squared-gradient theory �dashed curves� and
density functional theory �solid curves� at two temperatures, one below Tc

*

=0.180 154 55. . . �T*=0.16� and one above Tc �T*=0.20�. The curves below
Tc are those on either side of the vertical dashed lines, which are the limiting
bulk densities at coexistence, �v=0.079 559 4. . . and ��=0.488 734 8. . .. The
curves above Tc are those that span the entire density range.
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liquid and the hard wall when the coexistence density is
approached on the liquid side. It was demonstrated that a
crossover radius Rc exists such that when R�Rc, nonanalytic
contributions to the surface tension ��R� are present. The
crossover radius Rc depends critically on the distance to the
coexistence density: Rc�2��v / ������, with ��v the liquid-
vapor surface tension at coexistence, ��=��−�v the liquid-
vapor density difference, and ��=�−�coex the chemical po-
tential distance to liquid-vapor coexistence. The consequence
is that while the Tolman length itself remains well defined on
approaching the coexistence density, its “usefulness” in the
expansion of ��R� in 1 /R is restricted to an increasing lim-
ited interval, 0�1/R�1/Rc.

Furthermore, at coexistence, we have 1/Rc=0 and the
expansion breaks down completely. The leading order cor-
rection to the surface tension is not of the Tolman length
form �1/R�; the precise expression to replace the Tolman
correction is given in Refs. 31 and 32 both for short-ranged
forces as well as algebraically decaying interaction forces
between fluid molecules. The Tolman length itself is no
longer welldefined in the limit �→�coex, which manifests
itself in the divergence of � as featured in Fig. 2. One may
show that the divergence of � follows the divergence of the
thickness of the intruding wetting layer. This implies that �
� ln���� for the short ranged forces of the squared-gradient
model31 �dashed line�, whereas �� ����−1/3, for the disper-
sion forces of the DFT Ref. 32 �solid line�.

It may also be convenient to express � and �� in terms
of the density profile itself—and not its derivative—to avoid
any singular contribution coming from �0��z�:

� = 1
4


0

�

dz1
 dr12U��r12�r12�1 − 3s2��0�z1��0�z2� ,

�� = − 1
8


0

�

dz1
 dr12U��r12�r12�1 − 3s2�

�z1 + z2��0�z1��0�z2� . �52�

As we show in Appendix B these expressions can either be
derived from the more general virial expressions for � and
��,14,33,34 which are valid also beyond the mean-field ap-
proximation, or they can be derived by repeated partial inte-
gration from Eq. �50�. For the results shown in Fig. 2, we
have checked that Eqs. �51� and �52� give the same value for
� and ��, within numerical accuracy.

As a further check on our numerical results, we have
verified that the Tolman length calculated from Eq. �51� �or
Eq. �52��, expressed in terms of the density profile of the
planar interface, is equal to the Tolman length obtained di-
rectly from the expansion of the radius dependent surface
tension, ��R�=�−2�� /R+. . .. In Fig. 3, we show ��R� cal-
culated using Eq. �49� with the density profile determined
from numerically solving the differential equation in Eq.
�48�. The shape of the graph is quite similar to that obtained
in Refs. 9 and 12 at low densities. The limiting slope of ��R�
near 1 /R=0 �−2��� agrees with the value calculated from
Eq. �51� �dashed line�.

V. SUMMARY

We have determined density profiles, surface tension,
and Tolman length for a fluid in contact with a hard wall
using the squared-gradient model and density functional
theory with a nonlocal, integral expression for the interaction
between molecules. Even though both these models yield
equilibrium density profiles which do not satisfy the wall
theorem, we showed that they do obey the basic requirement
of mechanical equilibrium, thus giving credence to the pre-
dictions made.

The expressions for the surface tension and Tolman
length are similar to those derived for a liquid-vapor
interface;15,28 in particular, the Tolman length may again be
expressed in terms of the density profile of the planar inter-
face. Furthermore, for the density functional theory, we
showed the equivalence between the Triezenberg-Zwanzig-
type expression and Kirkwood-Buff-type expression for �.

Qualitatively, the two models yield similar �numerical�
results for the Tolman length as a function of bulk density
and temperature: the Tolman length is negative and, gener-
ally, less than the molecule’s diameter. These results are
similar to density functional theory results for the Tolman
length of a liquid droplet surrounded by the vapor phase �for
a recent review see Ref. 35�. An exception is the behavior of
the Tolman length on approaching the coexistence density on
the liquid side of the phase diagram. Here, the Tolman length
diverges, as predicted by Evans and co-workers,30–32 due to
the formation of a wetting layer of vapor between the liquid
and the hard wall.
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APPENDIX A: VERIFICATION OF MECHANICAL
EQUILIBRIUM

In this section we derive Eq. �46� and explicitly verify
the validity of mechanical equilibrium, Eq. �13�, for the den-

FIG. 3. Radius dependent surface tension ��R� �in units of 10−3a /d5�, as a
function of the reciprocal radius 1/R of a spherical hard wall, determined by
density functional theory. In this example, T*=0.16 and �b=0.05. The
dashed line is ��1−2� /R�, with � and � obtained from the planar density
profiles �Eq. �51� or �52��.
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sity functional theory of Sec. IV. Both results are derived
from the Euler-Lagrange equation given in Eq. �45�:

ghs� ��� + Vext�z1� +
 dr12U�r12���z2� = 0. �A1�

We first derive Eq. �13�. This is done by multiplying all the
terms in the above Euler-Lagrange equation by ���z1� and
subsequently integrating them over z1:



−�

�

dz1ghs� ������z1� + 

−�

�

dz1Vext�z1����z1�

+ 

−�

�

dz1
 dr12U�r12����z1���z2� = 0. �A2�

It is important that the integration includes the region of
discontinuity at z=0, which we have assured by taking the
lower limit of the integration at z1=−�. The first term gives



−�

�

dz1ghs� ������z1� = �ghs����z1=−�
z1=� = − p + a�b

2. �A3�

The second term gives



−�

�

dz1Vext�z1����z1� = − 

−�

�

dz1Vext� �z1���z1� . �A4�

The last term gives



−�

�

dz1
 dr12U�r12����z1���z2�

= �
 dr12U�r12���z1���z2��
z1=−�

z1=�

− 

−�

�

dz1
 dr12U�r12���z1����z2�

= − 2a�b
2 − 


−�

�

dz1
 dr12U�r12����z1���z2� = − a�b
2.

�A5�

We have used 1↔2 symmetry to write the integral expres-
sion in the last line as �minus� the same term on the left-hand
side. Adding all three terms in Eqs. �A3�–�A5� recovers the
condition for mechanical equilibrium, Eq. �13�.

Next, we derive Eq. �46�. This is achieved by, again,
multiplying all the terms in the Euler-Lagrange equation in
Eq. �A1� by ���z1�, but now the integration over z1 is limited
to the fluid region:



0+

�

dz1ghs� ������z1� + 

0+

�

dz1
 dr12U�r12����z1���z2� = 0.

�A6�

The first term now gives



0+

�

dz1ghs� ������z1� = �ghs����z1=0+
z1=� = − p + a�b

2 − ghs��w� .

�A7�

The second term gives



0+

�

dz1
 dr12U�r12����z1���z2�

= �
 dr12U�r12���z1���z2��
z1=0+

z1=�

− 

0+

�

dz1
 dr12U�r12���z1����z2�

= − 2a�b
2 + �wghs� ��w�

− 

−�

�

dz1
 dr12U�r12���z1����z2� , �A8�

where we have made use of Eq. �A1� with z1=0+ inserted. A
subtle point in this derivation is that the integration over r12

is over the whole space, while the integration over z1 is lim-
ited to the fluid region and does not include the region of the
wall discontinuity. This breaks the 1↔2 symmetry. In order
to restore the symmetry, we have therefore extended the in-
tegration over z1 to the entire volume in the last term. Inter-
changing 1↔2 in this last term:

− 

−�

�

dz1
 dr12U�r12���z1����z2�

= − 

−�

�

dz1
 dr12U�r12����z1���z2�

= �wghs� ��w� − 

0+

�

dz1
 dr12U�r12����z1���z2� , �A9�

where we have used the singular contribution to ����z1��sing

=�w��z1�, and again used Eq. �A1� for z1=0+. Recognizing
that the last line contains the same term as the left-hand side
in Eq. �A8�, with a minus sign, we thus conclude for the
second term in Eq. �A6�:



0+

�

dz1
 dr12U�r12����z1���z2� = − a�b
2 + �wghs� ��w� .

�A10�

This result is added to the result in Eq. �A7� to arrive at Eq.
�46�:

p = − ghs��w� + �wghs� ��w� . �A11�

Note that this derivation does not make any assumption on
the precise form of the interaction potential U�r12� other than
that it should be sufficiently short ranged.

APPENDIX B: VIRIAL EXPRESSIONS FOR THE
SURFACE TENSION AND TOLMAN LENGTH

The virial expressions14,33,34 for the surface tension and
Tolman length of a liquid-vapor interface are given by
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� = 1
4


−�

�

dz1
 dr12U��r12�r12�1 − 3s2���2��z1,z2,r12�

�� = − 1
8


−�

�

dz1
 dr12U��r12�r12�1 − 3s2�

�z1 + z2���2��z1,z2,r12� , �B1�

where ��2��z1 ,z2 ,r12� is the pair density correlation function
for the planar liquid-vapor interface. The first of the above
expressions is known as the Kirkwood-Buff formula for the
surface tension.33 By making the following mean-field ap-
proximation for the pair density

��2��z1,z2,r12� � �0�z1��0�z2� , �B2�

we arrive at the expressions for � and �� in Eq. �52�:

� = 1
4


−�

�

dz1
 dr12U��r12�r12�1 − 3s2��0�z1��0�z2� ,

�� = − 1
8


−�

�

dz1
 dr12U��r12�r12�1 − 3s2�

�2z1 + sr12��0�z1��0�z2� , �B3�

where it is reminded that z2=z1+sr12, with s=cos �12. The
expressions for � and �� in Eqs. �B1� and �B3� are indepen-
dent of the type of interface; the difference only comes about
in the precise form of the pair density �Eq. �B1�� or density
profile �Eq. �B3��. For the case of the wall-fluid interface that
we consider here, we have that �0�z�=0 for z�0, so that we
might also set the lower limit of the z1 integration to z1=0. It
is, however, convenient to leave the integration over the en-
tire volume.

Our goal is to show the equivalence of the expressions
for � and �� in Eq. �B3� with those in Eq. �50�. We shall
limit ourselves to the derivation of the expression for ��,
however. The derivation of the expression for � follows in an
analogous way.

As a first step, the expression for �� in Eq. �B3� is
partially integrated over r12. The boundary term vanishes and
one finds that

�� = 1
4


−�

�

dz1
 dr12U�r12��1 − 3s2��3z1

+ 2sr12��0�z1��0�z2�

+ 1
8


−�

�

dz1
 dr12U�r12�sr12

�1 − 3s2��2z1 + sr12��0�z1��0��z2� . �B4�

The integrand in the first term in Eq. �B4� is written as the
derivative with respect to s:

�1 − 3s2��3z1 + 2sr12� =
d

ds
�3z1s�1 − s2�

+
r12

2
�1 + 2s2 − 3s4�� . �B5�

This result is used to partially integrate the first term in Eq.
�B4� over s. Combining the result with the second term in
Eq. �B4� gives

�� = − 1
8


−�

�

dz1
 dr12U�r12��4z1sr12

+ r12
2 �1 + s2���0�z1��0��z2� . �B6�

Next, we use 1↔2 symmetry

�� = − 1
8


−�

�

dz1
 dr12U�r12��− 4z1sr12

+ r12
2 �1 − 3s2���0��z1��0�z2� . �B7�

Again, the integrand is written as the derivative with respect
to s

− 4z1s + r12�1 − 3s2� =
d

ds
�2z1�1 − s2� + sr12�1 − s2�� ,

�B8�

which is used to perform yet another partial integration:

�� = 1
8


−�

�

dz1
 dr12U�r12�r12
2 �1 − s2�

�2z1 + sr12��0��z1��0��z2� . �B9�

Finally, we note that the sr12 term is antisymmetric when we
interchange 1↔2, so this term vanishes. We are then left
with the result for �� anticipated in Eq. �50�:

�� = 1
4


−�

�

dz1
 dr12U�r12�r12
2 �1 − s2�z1�0��z1��0��z2� .

�B10�

In connection with the symmetry argument used to de-
rive Eq. �B10� from Eq. �B9�, we should mention a subtle
point with regard to a similar term present in the expression
for �� in Eq. �B3�. Here, too, one could wonder whether the
same argument can be used to show that this term is zero and
replace the term �2z1+sr12� by 2z1. This turns out not to be
correct. The reason is that the integral over z1 in Eq. �B3� is
conditionally convergent: the integrand is zero at z1→� only
when first the integral over s is taken. To make the integral
explicitly convergent, it is therefore customary to subtract of
the bulk contribution:36

�� = − 1
8


−�

�

dz1
 dr12U��r12�r12�1 − 3s2��2z1 + sr12�

��0�z1��0�z2� − �b
2��z1�� . �B11�

The consequence, however, is that the presence of this bulk
term breaks the 1↔2 symmetry with the result that the sr12
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term in the above expression is not zero, as an explicit cal-
culation shows:

−
1

8



−�

�

dz1
 dr12U��r12�r12�1 − 3s2�sr12

��0�z1��0�z2� − �b
2��z1��

=
1↔21

8



−�

�

dz1
 dr12U��r12�r12�1 − 3s2�sr12

��0�z1��0�z2� − �b
2��z2��

=
1

8



−�

�

dz1
 dr12U��r12�r12�1 − 3s2�sr12

��0�z1��0�z2� − �b
2��z1��

+
�b

2

8



−�

�

dz1
 dr12U��r12�r12�1 − 3s2�sr12

 ���z1� − ��z2�� =
�b

2

60

 dr12U��r12�r12

3 . �B12�
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