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ASLU (Archaeological Studies Leiden University) is a series of the Faculty of 
Archaeology, Leiden University. The first volume of ASLU appeared in 1998. 
The series’ aim is to publish PhD theses and other research of the faculty. 
Since 2007 the series has been published as a printing on demand service at 
Leiden University Press.

The Netherlands are one of the few countries in Europe where predictive 
models play an important role in cultural heritage management. The 
models are used to predict archaeological site location in order to guide 
future developments in the modern landscape. Many scholars however 
consider the application of predictive models for this purpose highly 
controversial. Between 2002 and 2006 a team of Dutch researchers 
conducted strategic research into predictive modelling on behalf of Dutch 
cultural resource management. One of the goals was to develop best 
practices for the production and application of these models. This book is 
the second and final edited volume of publications of this Predictive 
Modelling project. It brings together technical papers on developing new methods 
for predictive modelling and applied, interdisciplinary ‘action research’ focusing on how 
the models are, or should be, used by stakeholders in cultural heritage management in the 
Netherlands.

Who should read this book? The main beneficiaries should be those who are 
involved in making and evaluating policies for the management of 
archaeological heritage: local and regional government planning 
officers, and external consultants. But also archaeologists, archaeology 
students, planners and politicians from the Netherlands as well as 
from other countries can learn from our efforts. Our experiences can, 
and already do, guide developments in other European countries and 
the rest of the world.
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Preface

This is the second and final edited volume of publications of a project called ‘Strategic research into, and 
development of best practice for, predictive modelling on behalf of Dutch cultural resource management’. The 
stated goals of the project, to conduct strategic research into predictive modelling on behalf of Dutch cultural 
resource management, and to develop best practice for it, were first approached broadly in order to set the 
international research agenda, and then by targeting specific topics and questions of practical interest to the 
main stakeholders in the management of the Dutch archaeological heritage.

This volume accordingly combines pure research into methods for predictive modelling of the 
distribution of archaeological remains in the Dutch soil, with an effort at interdisciplinary ‘action research’ 
into the use of such models by stakeholders in Dutch cultural heritage management. This latter approach, 
which lies at the heart of the BBO programme, brings with it a particular set of problems to do with learning 
to work with people who have very different goals, approaches, and languages from those in the safe academic 
environment. We would like to acknowledge here their often enthusiastic interest and participation, the insight 
they have given us both in their interests and in the limitations within which they must work - as well as our 
own. In particular, we want to thank the participants in the ‘uncertainty meeting’ of January 2005 and the 2nd 
project workshop of March 2006. We are grateful to RAAP Archeologisch Adviesbureau (directed by Marten 
Verbruggen) for hosting the 2005 meeting, to Leiden University for hosting the 2006 meeting and to NWO 
Geesteswetenschappen for providing the funding which made it all possible (grant no’s 014-18-800 and 240-
60-007). Last but not least we like to thank Kelly Fennema, Medy Oberendorff and Joanne Porck for their help 
with the production of this volume.

Who should read this book? The main beneficiaries, we believe, will be those who are involved in 
making and evaluating policies for the management of our archaeological heritage: local and regional government 
planning officers, and external consultants. We hope that the State Service for Archaeology, Cultural Landscapes 
and Built Heritage (RACM)1, which despite recent changes in the Dutch Monument and Historic Buildings 
Act is still very influential in promoting the use of predictive models in planning procedures, will respond to 
the issues raised in this volume. For easy reading, this volume is split into two parts, separating the material 
regarding the handling of risks associated with the presence of unknown archaeological remains in the realm of 
spatial planning and heritage management (Part I), from the more technical work on improvements to predictive 
modelling methodology (Part II).

By ‘risk’ we mean two types of risk. First the financial risk to the developer: the economic risk. 
Second the risk of having archaeology destroyed unnoticed: the scientific risk. Apparently the economic risk 
is not a big problem. Most of the time the costs of archaeological research are small compared with the overall 
development costs. Most developers do not worry about these costs. The second type of risk is in the perception 
of archaeologists very important. Missing archaeological information during the course of a project, either by 
missing the sites or by destruction of find spots, is one of the main reasons why predictive modelling has such 
a bad name. After all, the most important use of predictive modelling in Dutch cultural heritage management 
is as an instrument for selection.

The Editors: Hans Kamermans, Martijn van Leusen and Philip Verhagen

1	 Since 2006 the Dutch National Service for Archaeological Heritage (ROB) merged into the RACM, de Rijksdienst voor 
Archeologie, Cultuurlandschap en Monumenten, the National Service for Archaeology, Cultural Landscape and Built Heritage. 
Throughout this book we will use the name National Service for Archaeology, Cultural Landscape and Built Heritage and the 
abbreviation RACM.
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1. 	 Archaeological prediction and risk management
Hans Kamermans2, Martijn van Leusen3 and Philip Verhagen4

1.1 	 Introduction

Since the adoption of the European Convention on the Protection of the Archaeological Heritage on Malta in 
1992 (also known as ‘the Malta Convention’, ‘the Convention of Valletta’ or ‘the Valletta treaty’; Council of 
Europe 1992), archaeology in the Netherlands has not been the same. From then on, as a direct result of the 
Convention’s aim ‘to protect the archaeological heritage as a source of the European collective memory and as 
an instrument for historical and scientific study’, archaeology has played an important role in spatial planning. 
All over Europe, archaeology is under threat from development plans, and the Convention was drafted to remedy 
this. Article 5 reads: ‘Each Party undertakes: to seek to reconcile and combine the respective requirements of 
archaeology and development plans by ensuring that archaeologists participate in planning policies designed 
to ensure well‑balanced strategies for the protection, conservation and enhancement of sites of archaeological 
interest’. Whereas before, archaeology was about the past, it is now about the future.

And all of a sudden there was money for archaeological research. The Convention specifies that 
financing should be done by ‘taking suitable measures to ensure that provision is made in major public or 
private development schemes for covering, from public sector or private sector resources, as appropriate, the 
total costs of any necessary related archaeological operations’. Archaeology became ‘developer funded’. These 
changes in the position and funding of archaeologists brought about a profound shift in the archaeological 
profession. Archaeology was, and is, no longer the playground of a relatively small group of people who want to 
know about the past: it has become socially relevant, part of a world that is concerned about its future.

1.2 	T he Dutch situation

Across Europe, countries implemented the Malta Convention in their own specific manner (Willems 2007). 
Whilst all embrace the ‘developer funded’ principle, this is about the only thing they have in common. Spatial 
planning in the Netherlands has a long tradition, starting with the building of the first dikes circa 1000 AD. Being 
densely populated and under continual threat of flooding from the sea and the rivers, cooperative planning was 
needed to remain safe and avoid conflicts about the right to use the limited space available. Various governmental 
bodies were therefore formed very early on to produce spatial plans and to control their implementation. The 
management of our archaeological heritage has now become an integral part of this system.

Before ‘Malta’ the Dutch provinces together with the National Service for Archaeology, Cultural 
Landscape and Built Heritage (RACM) were responsible for the archaeology in the Dutch soil. Finds had to 
be reported and only government related agencies were allowed to do archaeological research. These agencies 
were the RACM, the National Museum of Antiquities, the Universities and some municipalities.

After ‘Malta’ for some years an interim situation existed. During this period developers who were about 
to disturb the soil were confronted with their responsibilities, archaeological companies were given access to an 
archaeological market, and the role of the provinces and the RACM became even more important. A whole set 
of techniques, rules and regulations were developed during this period.

Since the revised Monuments and Historic Building Act was passed (2007) ‘Malta’ is fully implemented 
in the Dutch system. Developers have to pay for the archaeological research and the main responsibility for 
archaeology is now in the hands of municipalities.

Since the 1990s archaeological predictive modelling has been used as a tool in an early stage of the 
archaeological heritage management cycle in the Netherlands. Predictive Modelling is a technique to predict, 

2	 Faculty of Archaeology, Leiden University, the Netherlands.
3	 GIA, Groningen University, the Netherlands.
4	 ACVU-HBS, Amsterdam, the Netherlands.



1 - Archaeological prediction and risk management

10

at a minimum, the location of archaeological sites or materials in a region, based either on the observed pattern 
in a sample or on assumptions about human behaviour (Kohler and Parker 1986: 400). There are two reasons to 
apply predictive modelling in archaeology:

to gain insight into former human behaviour in the landscape; an academic research application;•	
to predict archaeological site location to guide future developments in the modern landscape; an •	
archaeological heritage management application. 

Predictive modelling plays an important role in desk-based archaeological assessment studies, indicating 
where as yet unknown archaeological remains in the soil might affect spatial planning. In the Dutch ‘post-
Malta’ archaeological heritage management practice three parties or ‘stakeholders’ interact in a free market: 
the developer, the archaeological contractor, and the authorities. The developer needs archaeology to be dealt 
with; the archaeological contractor wants to do the archaeological research as efficiently as possible, and the 
authorities determine the desired quality of research, and perform quality control.

Predictive maps, indicating where there is archaeology in the soil or where it can be expected, now 
play a major role in spatial planning. By avoiding areas with a high ‘risk’ of archaeology, developers can 
reduce the costs involved for archaeological research. This is because predictive maps will always carry policy 
advice. In some areas, developers will not be obliged to do archaeological research. In others, they might 
avoid this by taking mitigating measures, like not disturbing the soil during building. And in other cases, 
archaeological research will be inevitable, in some cases leading to very expensive excavations. So one could 
say that archaeological predictive modelling is a condition without which archaeology could not be part of the 
spatial planning process. In the Netherlands, predictive maps are produced on two scales: national and regional. 
The National Service for Archaeology, Cultural Landscape and Built Heritage (RACM) has produced several 
versions of the Indicative Map of Archaeological Values of the Netherlands (IKAW). Commercial companies 
produce predictive maps on a regional or local scale – the latter typically covering a single large municipality 
or several smaller ones.

The fact that predictive maps play a role in this process and the fact that one of the consequences of this 
process is selection (some areas will be studied, others will not), the quality of the maps is very important since 
they are involved in what should be called a form of risk management.

1.3 	T he project

However, academic experts both in Europe and in North America have contested the use of predictive 
modelling in archaeological heritage management because of its theoretical and methodological shortcomings 
(cf. Ebert 2000; Wheatley 2003; Woodman and Woodward 2002; an overview can be found in Van Leusen 
and Kamermans 2005). Throughout the 1990s, the situation was characterised by separate ‘academic’ and 
‘management’ discourses. In 2001, the newly established national NWO-funded research programme ‘Protecting 
and Developing the Dutch Archaeological-Historical Landscape’ (BBO, Bloemers 2001) sponsored a group of 
Dutch researchers to begin a thorough study of archaeological prediction, and to establish a meaningful link 
between scientific knowledge, archaeological-historical heritage management and applied planning policy in 
the Netherlands The official name for the project was ‘Strategic research into, and development of best practice 
for, predictive modelling on behalf of Dutch cultural resource management’ (Kamermans et al. 2005). This 
project ran from 2002 to 2006 at the archaeological departments of the universities of Leiden and Groningen. 
Martijn van Leusen from the University of Groningen was appointed as a post-doc to be the main researcher. 
Philip Verhagen has a background in commercial archaeology and was paid by the project for several months to 
finish a chapter for his PhD thesis. Initially three researchers from the RACM, Jos Deeben, Daan Hallewas and 
Paul Zoetbrood were also involved. Hans Kamermans from Leiden University directed the project.

The first product of the project was the Baseline Report on Predictive Modelling for Archaeological 
Heritage Management in the Netherlands (Van Leusen et al. 2002), which summarizes and analyses current 
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national and international approaches to predictive modelling on the basis of a review of the available 
literature.
Six areas of concern were identified:

quality and quantity of archaeological input data;•	
relevance of the environmental input data;•	
need to incorporate social and cultural input data;•	
lack of temporal and/or spatial resolution;•	
use of spatial statistics; and•	
testing of predictive models.•	

Extensive comments were provided on the Baseline Report by a range of international experts invited to a 
meeting held at the offices of the RACM on 22 and 23 May 2003. The full scientific papers submitted by these 
experts were subsequently published together with the Baseline Report in an edited volume titled Predictive 
Modelling for Archaeological Heritage Management: A research agenda (Van Leusen and Kamermans 2005).

The subsequent research of the group focused mainly on aspects of the first and the two last topics. 
Martijn van Leusen investigated the role of expert judgement on the quality of archaeological input data (this 
volume chapter 9), Philip Verhagen examined the use of statistics and testing in predictive modelling (Verhagen 
2007, this volume chapter 8). For the third topic, the incorporation of social and cultural data into predictive 
models, the project tried in vain to find additional funding (Verhagen et al. in press). The research of Hans 
Peeters, although not part of the project, tackled the two remaining topics (Peeters 2007).

A complete list of publications by the research team can be found in the appendix of this chapter.

1.4 	T his volume

This book however starts with the experiences of the users. On the 1st and 2nd March 2006 a symposium on 
‘Archaeological Prediction and Risk Management’ was held in the Kamerlingh Onnes Building of Leiden 
University. Five experts, all professional users of predictive maps, were invited to present their views on the 
role of predictive models in Dutch archaeological heritage management. This meeting was intended as a form 
of ‘action research’, where problems are being solved in a collaborative context with researchers and other 
stakeholders. The written contributions of the participants, brief outlines of which are given below, form the 
first part of this volume.

Marten Verbruggen, director of RAAP, writes about the role of predictive models in prospective 
research in Dutch archaeological heritage management. After a first success of the small-scale and broad 
inductive predictive maps, the demand is increasing sharply for large-scale, detailed deductive maps. Nowadays 
municipalities are the main commissioners of these maps, as they have been given far-reaching powers in the 
field of the heritage management by the recent amendment to the Monuments and Historic Buildings Act. In the 
course of the more then 15 years that these maps have been around, it has however become clear that the aim 
with which these maps were made and the role they subsequently played in the decision-making process in the 
archaeological heritage management have changed radically.

In The high price or the first prize for the archaeological predictive model Martin Meffert, archaeologist 
for the province of Noord-Brabant, stresses the point that archaeological predictive models form the basis of 
practically all archaeological research in the Netherlands. He considers the production of predictive maps by 
archaeological companies undesirable because they could potentially profit from defining large areas with a high 
indicative value. The manufacturing of predictive maps should lie in the hands of a government institution that 
is able to operate independently of the market. And since most large university archaeological institutes have 
their own archaeological company that is dependent on commissions from the market, the universities have thus 
become structurally dependent on this non-government funding. That is the reason why, in Mefferts view, Dutch 
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universities can no longer take on this independent role either, and the only suitable candidate left would be the 
RACM. We would qualify Meffert’s conclusion on both counts: firstly, methodological research at universities 
certainly is not market-dependent, and secondly, the RACM as an institution is not really independent from the 
archaeological market either - it too profits from a broad definition of ‘areas of high indicative value’.

In Archaeology as a risk in spatial planning: manoeuvring between objectivity and subjectivity, René 
Isarin, Philip Verhagen and Boudewijn Goudswaard, all working for archaeological companies, highlight 
some of the risks in present-day Dutch archaeological heritage management. They consider the risk from 
the viewpoint of the civil contractor or initiator of a specific spatial development, and not as the risk for the 
archaeological remains in that specific area. Focusing on the risks related to the first phase of archaeological 
research (assessment studies), they discuss whether solutions for risk management may be found in the use of 
predictive modelling and in the development of reliable core sampling survey strategies. In the end the goal 
must be to reduce risk and uncertainty for the initiator to an acceptable level.

Whatever the shortcomings of current predictive models, they have become an accepted instrument in 
the planning process. Since no formal publications exist on the subject, the best way to assess the stakeholders’ 
(managers and authorities) views is to look at contested situations, where an attempt by one party to limit the 
rights of another to do damage to archaeological remains is contested in court. This usually revolves around 
planning permissions; a case brought before the Dutch Council of State by the municipality of Coevorden is 
used to illustrate the central role played by differences in interpretation of the IKAW.

The second part of this volume presents work by the project team on the two themes selected for in-depth study 
after the midterm review. The first two chapters discuss the testing of predictive models. The short rough guide 
(chapter 7) was written especially for the non-technical reader while a full discussion of the theme of testing 
predictive models can be found in chapter 8. The second set of chapters presents new approaches to predictive 
modelling, in which the relation between expert knowledge and archaeological input data is redefined.

In chapter 7 and 8, Philip Verhagen explains that archaeological predictive modelling is an essential 
instrument for archaeological heritage management in the Netherlands. It is used to decide where to conduct 
archaeological survey in the case of development plans. However, very little attention is paid to testing the 
predictions made. Model quality is established by means of peer review, rather than by quantitative criteria. 
In Verhagen’s first chapter, Testing archaeological predictive models: a rough guide, the main issues involved 
with predictive model testing are discussed. The potential of resampling methods for improving predictive 
model quality is investigated, and the problems associated with obtaining representative test data sets are 
highlighted. The commissioned chapter Predictive models put to the test, published previously as a part of 
Verhagen’s (2007) PhD thesis, investigates in more detail how one could test predictive models in a quantitative 
manner, using either old or new archaeological data. Both chapters give some serious warnings concerning the 
current use of predictive models in the Netherlands: without quantitative quality norms, the models will remain 
uncontrollable.

The project team considered reasoning with uncertainty a major research theme for the second phase 
of the project. A pilot study on this theme was organised from 17th to 21st January 2005 in Amsterdam, in 
the offices of RAAP Archeologisch Adviesbureau. Two experts in spatial statistics from Germany (Benjamin 
Ducke) and the UK (Andrew Millard) together with experts in Dutch archaeology (Bert Groenewoudt, Roy van 
Beek and Huub Scholte Lubberink), tried to improve the predictive models for a study area in the eastern part of 
the Netherlands with the application of Bayesian inference statistics and Dempster-Shafer belief and plausibility 
models. Martijn van Leusen, Benjamin Ducke and Andrew R. Millard publish the results of this study in chapter 
9: Dealing with uncertainty in archaeological prediction. They created a worked example based on a widely 
published Dutch case study (Rijssen-Wierden) (Ankum and Groenewoudt 1990; Brandt et al. 1992), in such a 
way that the benefits of these new approaches could be made clear to non-technical readers as well as to those 
working in heritage management positions. The chapter aims to demonstrate that these approaches can result 
in useful models for CRM decision support (hopefully more useful than the existing traditional models), and 
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that concepts of expertise and uncertainty can be given a place in formal models without compromising on 
robustness and replicability, and hence can provide the link to concepts of (financial) risk employed by the 
people who use these models in the real world.

All these contributions show the application of predictive modelling in archaeology is a fascinating 
one but not without its problems. It is clear that there is a future for the use of this technique in archaeological 
heritage management.
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2. 	 The future of archaeological predictive modelling5

Philip Verhagen6, Hans Kamermans7 and Martijn van Leusen8

2.1 	 Introduction

In general, academic archaeologists have been sceptical of, and sometimes even averse to, predictive modelling 
as practiced in archaeological heritage management (AHM) (see Van Leusen et al. 2005). The models produced 
and used in AHM are not considered sophisticated enough, and many of the methodological and theoretical 
problems associated with predictive modelling have not been taken aboard in AHM. At the same time, the 
production and use of predictive models has become a standard procedure in Dutch AHM (Deeben et al. 1997; 
2002; Deeben 2008), and it has clearly attracted interest in other countries as well.

The main reason for using predictive models in AHM is efficiency. In ‘post-Malta’ archaeology, the 
financial, human and technical resources allocated to archaeology have increased enormously. But at the same 
time, these resources have to be spent both effectively and efficiently. So why not create and use tools that will 
allow us to do so? Archaeological predictive models will tell us where we have the best chances of encountering 
archaeology. Searching for archaeology in the high probability areas will ‘pay off’, as more archaeology will be 
found there than in low probability zones. It is a matter of priorities: we can not survey everything, and we do 
not want to spend money and energy on finding nothing. And there is also the political dimension: the general 
public wants something in return for the taxpayers’ money invested in archaeology. It’s not much use telling 
politicians to spend money on research that will not deliver an ‘archaeological return’. But how can we be so 
sure that the low probability zones are really not interesting? And where do we draw the line between interesting 
and not interesting? These are hard choices indeed for those involved in AHM. Archaeologists who do not have 
to make these choices have an easy job: they can criticize the current approach to predictive modelling from the 
sidelines, and do not have to come up with an alternative. 

Within the BBO program we have been trying to provide such an alternative to the archaeological 
community (Kamermans et al. 2005). However, at the end of the project, we have to conclude that we have only 
been partly successful. We have done a fair amount of research, published three books and many papers, made 
the problems with predictive modelling internationally visible but failed to change the procedures of predictive 
modelling in the Netherlands. In this paper we venture to offer some explanations for the lack of success of new 
approaches to predictive modelling in AHM in the Netherlands up to now. And finally, we will try to sketch the 
future of archaeological predictive modelling, for which we can see three distinct scenarios.

2.2 	 Problems and solutions

Over the past twenty-five years, archaeological predictive modelling has been debated within the larger context 
of GIS applications in archaeology, and the processual/post-processual controversy that has dominated the 
archaeological theoretical debate since the late 1980s (see Van Leusen et al. 2005). Predictive modelling is 
rooted in the processual tradition, with its emphasis on generalization and quantitative ‘objective’ methods, and 
its lack of interest in the subjective and individual dimensions of archaeology. In itself, this is not a matter of 
‘bad’ versus ‘good’ archaeology. Within the context of AHM, generalized maps are necessary tools to reduce 
the enormous complexity of archaeology to manageable proportions. However, the lack of real interest in using 
spatial technology and statistical methods in post-processual academic archaeology has certainly slowed down 
the development of predictive modelling as a scientific method. The feeling that processual approaches no 
longer offered a real contribution to the advancement of archaeological science has left predictive modelling 

5 	 A slightly different version of this chapter has been published as Verhagen et al. 2008.
6	 ACVU-HBS, Amsterdam, the Netherlands.
7	 Faculty of Archaeology, Leiden University, the Netherlands.
8	 GIA, Groningen University, the Netherlands.
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somewhat ‘lost in space’ it seems. Which is a pity, because even if we do not want to use predictive modelling 
in an AHM context, there still is a lot of potential in spatial technologies (‘GIS’) to develop and test theories of 
spatial patterning of settlements and human activities.

The criticism of predictive modelling in scientific literature has focused on three main issues: statistics, 
theory and data. In all three areas, predictive modelling as it stands today is considered by various authors to 
insufficiently address the complexity of the matter. Statistical methods are used uncritically, often using a limited 
number of techniques that are not the best suited around. Archaeological theory, especially where it concerns 
the human and temporal factors in site placement, only plays a marginal role in selecting the variables used for 
predictive modelling. And archaeological data, which we all know have various degrees of reliability, are used 
without much source criticism. And while this is all very much true, and many archaeological predictive maps 
are rather coarse representations of a complex archaeological reality, these criticisms mask a more fundamental 
question: what is the quality that is needed of a predictive model? Because this is precisely why models are made 
that are not very sophisticated from a scientific point of view: they are considered good enough for the purposes 
they are made for9.

Our one fundamental problem with predictive modelling is therefore this issue of quality. No one seems 
to know what constitutes a ‘good’ model, and no tools are available and used to make explicit the quality of 
the models. Within our research project, we have tried to focus on these issues by looking at the potential of 
new statistical techniques for incorporating uncertainty in the predictions, and by studying the best ways of 
testing the models (this volume chapters 7 and 8). Our first foray into the uncharted waters of model quality 
concerned the role of expert judgement in a quantitative framework. When the first criticisms of predictive 
modelling appeared in the late 1980s, it quickly became clear that a fully ‘inductive’ approach was in many 
cases unsatisfactory. The lack of reliable survey data in many areas of the world basically ruled out a rigorous 
statistical approach, unless vast amounts of money were invested in survey. The pragmatic solution therefore 
was to stop using statistical methods for developing predictive models, but instead rely on expert judgement, and 
see if the experts’ views were corroborated by the available archaeological data. However, in doing so, a major 
advantage of statistical methods was thrown overboard: the ability to come up with estimates of for instance 
site density, in real numbers, and the calculation of confidence intervals around the estimates. Expert judgement 
models only classify the landscape into zones of low, medium and high probability without specifying the 
numbers involved. How many archaeological sites can we expect in a high probability zone? And how certain 
can we be of this estimate with the available data? Statistical methods will provide these numbers, expert 
judgement will not. 

It turns out that Bayesian statistical techniques are very well suited to provide numerical estimates and 
confidence intervals on the basis of both expert judgement and data (Millard 2005; Verhagen 2006; Finke et al. 
2008). However, they have not been used in anger in predictive modelling so far. This is probably because of the 
relative complexity of the calculations involved. There are very few archaeologists in the world that can perform 
these calculations, even though computing power is now no longer an obstacle. We have however proved that 
it can be done, and we see Bayesian statistics as a very powerful and useful tool for predictive model building 
(this volume chapter 9). 

We also tested the potential of Dempster-Shafer modelling (this volume chapter 9), which has been 
suggested as an alternative to ‘standard’ statistical methods as well (Ejstrud 2003; 2005). While the results of 
earlier modelling studies indicated that it performed better than most statistical tools including Bayesian analysis 
it is only partly suitable to include expert judgement. Furthermore, its conceptual basis is rather complex. We 
will not go into detail here; suffice it to say that Dempster-Shafer modelling is more controversial in statistical 
science than Bayesian statistics, and it is more difficult to understand.

However, even if tools like Bayesian statistics can build a bridge between expert judgement and 
quantification, we still need reliable data to have it delivering its potential. The testing issue is therefore of 

9	 However not all users consider the maps good enough (see this volume chapter 6).
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primary importance to predictive modelling. What is probably most problematic in this respect is the lack of 
attention by archaeologists to the simple statistical principle of data representativity. Nobody seems to wonder 
if the available archaeological sample represents in any way the original archaeological population. No matter 
what statistical method is used, this issue needs to be addressed first before attempting to produce a numerical 
estimate of any kind. And while it is possible to reduce the bias encountered in existing archaeological survey 
data to an acceptable level, in order to have reliable archaeological predictive models we also need to survey 
the low probability zones. So here we are facing a real paradox: predictive models are developed to reduce the 
amount of survey (or even skip it) in low probability zones, yet statistical rigour tells us to do survey there as 
well.

Our approach has been to re-assess the value of using statistical methods in predictive modelling 
(this volume chapters 7 and 8). We are convinced that this re-assessment is necessary, and think that it can 
offer a valuable contribution to AHM as well. If we can base the models on sophisticated statistical methods 
and reliable data, then we can really start using predictive models as archaeological and/or economic risk 
management tools. 

In the end, we have not been able to get this message across to the AHM community in the Netherlands 
yet. While we have not done an exhaustive survey among our colleagues, we think that the following reasons 
may be responsible for it:

the innovations suggested are too complex. While it is sometimes said that statistics are not very 1.	
difficult, but only very subtle, in practice most archaeologists are not working with it on a daily basis. 
Some even have difficulty grasping the most fundamental principles of quantitative methods. This 
makes it hard to get the message across, as it does not really help when we have to bridge a large gap in 
knowledge between the statistical experts and the people who have to use the end results of statistical 
models.
shifting from the current expert judgement approach to a more sophisticated statistical approach is too 2.	
expensive. Improving the models in the way we suggest does not replace anything in the current way 
of dealing with predictive modelling, it only adds to it. So, on top of the things we already do, like 
gathering and digitising all the available information, and interviewing the experts, we now also need 
to have a statistical expert doing the modelling, a data analysis programme to detect and reduce survey 
bias, and perhaps even a test survey as well.
it is irrelevant. While academic researchers may be bothered with the quality of the models, most end 3.	
users are not. They trust the experts. Especially those responsible for political decision making will not 
care, as they only need clear lines drawn on a map, that will tell them where to do survey and where 
not. If the archaeologists are happy with it, then they are as well.
and this ties in to our last explanation: archaeologists may have reason to be afraid for more transparent 4.	
methods that will give insight into the uncertainties of predictive models to non-archaeologists. When 
anyone can judge model quality, they will lose their position of power in dealing with politicians and 
developers.

2.3 	R ecommendations

For the moment we have not been able to convince our AHM colleagues of the need to improve predictive 
modelling along the lines suggested. We certainly did not have enough time and money to fully develop these 
new approaches into practical working solutions, but at least we have showed some promising avenues to follow. 
From our research, a number of recommendations result for each of the themes originally identified in the 
baseline report (van Leusen et al. 2005).
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Concerning the quality and quantity of archaeological input data we recommend:
to use sophisticated statistical methods (Bayesian statistics, Dempster-Shafer modelling) to integrate •	
expert judgement and archaeological data in one quantitative framework
to improve the way of registering archaeological fieldwork data, including the methods of data gathering, •	
and the location of areas where no archaeological remains were found
to analyse archaeological fieldwork data for the presence of systematic biases that are either the •	
consequence of data collection strategies, or of geological conditions, and use methods for correcting 
these biases to come up with more representative data sets

Concerning the relevance of environmental input data we recommend:
to use new relevant data sources like LIDAR elevation models, geological borehole databases, historical •	
maps and remote sensing images
to explicitly describe and judge the quality and reliability of environmental input data•	

Concerning the need to incorporate social and cultural input data we recommend:
to take a critical look at modern archaeological theory, and see where the social and cultural factors •	
involved in site location can be translated into spatial predictive models

Concerning the lack of temporal and/or spatial resolution we recommend:
to always produce ‘diachronic’ predictive models, in which both environmental and cultural dynamics •	
over the long term are represented
to adapt the scale of the mapping to the intended use; maps that are only meant to provide a baseline for •	
spatial planning zoning can be less detailed than maps that should also provide detailed advice on the 
type of archaeological research that should be done in those zones

Concerning the use of spatial statistics we recommend:
to apply appropriate statistical  methods for modelling (like Dempster-Shafer modelling) and testing •	
(like resampling), in order to prevent creating spurious correlations and over-optimistic views of model 
quality

Concerning the testing of predictive models we recommend:
to set up long-term field testing programs, focusing on the areas where uncertainties are highest•	
to use appropriate statistical methods to judge the quality of predictive models•	

Most of these recommendations will not come as a surprise, even though we place a stronger emphasis on 
statistical rigour than is currently usual. Improvements in the quality of the environmental input data and the 
temporal and spatial resolution of predictive modelling are already clearly observed over the past few years. 
Even the inclusion of social and cultural factors in predictive models is now gradually becoming a feasible 
option, and can easily fit into academic research projects. In contrast, the rigorous testing of predictive models 
is still far from becoming a standard procedure. The reasons for this are on the one hand found in the highly 
scattered nature of ‘post-Malta’ archaeological prospection that is only done in high-probability areas were 
survey is enforced. Field testing, while sometimes part of a predictive modelling project, is usually only done 
to check the modelling assumptions: are e.g. the geomorphological units mapped correctly, and where are the 
highly disturbed zones? Systematic collection and analysis of survey results is a time-consuming task, and 
when it is done, it is primarily used to produce up-to-date catalogues of archaeological finds, rather than for 
purposes of model development and testing – which in many cases would imply collecting data for larger areas 
than the region modelled. On the other hand we observe a lack of interest in the issue of model quality by 
authorities from the national to the local level. This may partly be attributed to the fact that archaeology is not 
such a big economic risk after all; developers and authorities do not expect a direct benefit from investing in risk 
management methods. The scientific risk involved however should worry all archaeologists.

There is no way to prevent the development of a highly biased archaeological record if we do not 
take the issue of predictive model quality and testing seriously. This is primarily a task for the archaeological 
community itself, including companies, universities and the national archaeological service. And yes, it will 
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need money – which implies defining different priorities and making different choices when applying for funding 
and when spending budgets. The current procedures in Dutch archaeological heritage management however 
preclude prioritising this kind of research, as they are purely focused on selecting and eventually excavating 
individual archaeological sites. The recently published National Archaeological Research Agenda will probably 
only reinforce the focus on localized interpretive archaeological research, rather than on methodological 
improvement and synthetic research.

2.4 	C onclusions

What will be the future of predictive modelling in AHM in the Netherlands? We think that there are three 
scenarios that may be followed in the next ten years or so. The first one is a scenario of ‘business as usual’. 
There are some points that speak in favour of this option. First of all, predictive maps are fully accepted by the 
Dutch archaeological community and are relatively well embedded in planning procedures. Secondly, as far 
as is known, the use of the predictive maps that are currently around has not led to archaeological disasters, 
even though some grumbling is occasionally heard about the quality of the maps. Rather, it is the other way 
around. Predictive maps, in spite of there theoretical and methodological shortcomings, are more than effective 
in protecting the archaeological heritage: they over-protect. This of course is an unwanted situation. In practice, 
municipal authorities commissioning predictive maps for their own territory do this with the explicit aim of 
reducing the area where preliminary research is needed. We might be heading to a future where commercial 
predictive modelling will have as its highest aim the reduction of the zones of high archaeological probability – 
without having the tools to judge whether this reduction is supported by the archaeological data.

Cautious archaeologists would therefore certainly prefer the second possible scenario: this is, to stop 
using predictive models, and do a full survey of all the threatened areas. Obviously there are many countries 
in the world that can do archaeological heritage management without predictive maps. Even in the United 
States, full survey is sometimes seen as a feasible alternative. In its favour speaks the reassuring thought that 
all archaeological remains present will be detected, and if necessary protected or excavated. However, this 
scenario is a political impossibility in the Netherlands, for the reasons mentioned above: politicians want less 
money to be spent on archaeology, not more. And even in countries where full survey is supposedly done, as in 
France or the United Kingdom, preliminary selection by means of desk-based assessment plays an important 
role in deciding where to do what kind of archaeological research. The question then is: is the Dutch method of 
selection by means of predictive maps better than doing the desk-based assessments that are common practice 
in France and the United Kingdom?

There is no way we can escape doing selections in archaeological heritage management. However, 
we need adequate tools on which to base these selections. Which brings us to the third scenario: the further 
development of predictive models into true risk assessment tools? There are, we feel, at least three supporting 
arguments for moving towards quantitative mapping of model uncertainty. First of all, there is the question 
of model quality and testing we already discussed. At the moment, expert judgment is among the inputs used 
to determine whether a zone is placed into high, medium of low probability, and uncertainties regarding this 
classification are never specified. However, expert judgment can never serve as an independent criterion of model 
quality. For independent model testing, we need data sets based on representative samples of the archaeological 
site types predicted. Secondly, the absence of estimates of the uncertainties in predictive models may lead to 
‘writing off’ zones of low probability that are in fact zones where little archaeological research has been done. 
By including uncertainty measures in the models, it may be possible to break through the vicious circle of self-
fulfilling prophecies that is created by doing ever more surveys in zones of high probability. And thirdly, the use 
of true statistical estimates and confidence intervals brings with it the perspective of making risk assessments 
in euros, rather than in relative qualifications of site density. Predictive modelling then may provide a first 
assessment of the bandwidth of the archaeological costs of a development plan.
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3. 	 On costs and benefits in archaeological prospection
Marten Verbruggen10 

3.1 	 Introduction

in Dutch archaeological heritage management, an important role is given to prospective research. Due to the 
implementation in Dutch legislation of the Treaty of Malta, project developers are obliged to have archaeological 
sites mapped at their cost. Cost-benefit analysis, with the question whether the financial efforts weigh up 
against the archaeological results, has thus entered archaeology. After a first success of the small-scale and 
broad inductive predictive maps, the demand is increasing sharply for large-scale, detailed deductive maps. 
Municipalities are the main commissioners of these maps as they have been given far-reaching powers in the 
field of the preservation of monuments by the recent amendment of the law. It looks as if the success of the 
inductive predictive maps has to come to an end in favour of large-scale deductive maps.

3.2 	C osts and benefits in archaeological research

Anybody involved in scientific research knows that choices have to be made continuously. As the resources for 
research are always restricted, every researcher will have to limit himself in the choice of problem statements 
and research methods to ensure that the results will be available within the agreed time. Choices will not only 
have to be made at the start of the research but also during the execution, as research rarely runs exactly as 
thought or hoped. The choices in principle deal with questions within the research and questions about the 
research. The questions within the research, centre on which research method is appropriate and attainable, 
how large a sample should be, how the reliability can be increased, etc. The questions about the research are 
usually limited to the key question whether all the efforts will make up for the expected results. In fact this is a 
cost-benefit analysis that should be completed favourably prior to the research. But also during the research this 
question can be topical, for instance when the interim results are disappointing or when the efforts are much 
greater than assumed earlier.

When the researcher has been given a grant for his research, he (or she) is responsible for the budget and 
in principle he is ‘his own master’ over his research. He is autonomous in making choices in his ‘own’ research, 
based on scientific considerations. The only obligation he has is to account for his choices in the research report 
and to underpin these scientifically. 

From the moment that the archaeologist carries out developer-funded research, he is no longer master 
of the research. This situation often prevails in Dutch archaeological heritage management, where the project 
developer is obliged to have prospective research carried out in order to map archaeological values. The project 
developer bears the costs of the research and the government decides the requirements to be fulfilled by the 
research. The researcher is required to adhere to certain quality requirements. In practice this means following 
the procedures and specifications of the Dutch Archaeology Quality Standard (Kwaliteitsnorm Nederlandse 
Archeologie, usually referred to as the KNA, version 3.1; SIKB 2006).

In prospective research in Dutch archaeology, there are thus generally three parties involved, the 
interests of whom could be incompatible. The interest of the government is to make a well-founded (selection) 
decision based on research regarding the sites found; the researcher wants above all that his research meets all 
scientific requirements, and the project developer wants to ‘buy in’ research at as low a price as possible, and of 
a standard that will be fully acceptable to the government. As a consequence, the researcher will have to justify 
all choices in his research. Crucial here is a balancing of costs and benefits. Archaeological predictive maps can 
play a prominent role here.

10	 RAAP Archeologisch Adviesbureau (RAAP archaeological consultancy). Amsterdam, the Netherlands.
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3.3 	 Predictive modelling

The introduction of predictive modelling and more specifically of predictive maps is in the Netherlands closely 
linked to the discussion on costs and benefits in prospective research. The ‘product’ predictive map is relatively 
new in Dutch archaeology. The first map was published only in 1990 – it concerned a so-called potential 
map of the Rijssen-Wierden area – (Ankum and Groenewoudt 1990). At that time, many large-scale land 
consolidations were carried out and there was a risk that many archaeological sites would be destroyed by 
earthmovers. To prevent this from happening, the whole surface of thousands of hectares would have to be 
investigated archaeologically, with resulting high costs. As the Government Service for Land Management 
(Landinrichtingsdienst) would bear 90% of the costs, it came as no surprise that this same service became the 
commissioner of the map mentioned earlier. The main aim was to divide the area into zones of high and low 
archaeological potential. Subsequently, field research would only be carried out in the zones of high potential. 
Clearly the aim was a sound deployment of scarce resources. At the end of the summary of the accompanying 
report, the motivation of the research is plainly stated: “Analysis of location factors and the use of predictive 
models can increase the yield of archaeological inventories”. We are clearly dealing here with a cost-benefit 
analysis and that is a very legitimate aim. But what exactly is ‘the return’ of a predictive map in prospective 
research? Does the emphasis lay here solely on the number of archaeological sites or on the quality thereof?
		  Since the initial research of RAAP, many maps have been published, special mention deserve the 
Indicative Map of Archaeological Values (Indicatieve Kaart van Archeologische Waarden, IKAW first, second 
and third generation, Deeben et al. 1997; 2002; Deeben 2008), the series of provincial cultural-historical value 
maps, and dozens of local authority predictive maps (cf. Jansen & Roymans 2002; Lotte and Tebbens (red) 2005; 
Van Wijk and Van Hoof 2005). In addition, a steady flow of scientific publications on predictive modelling started 
up (see Deeben et al. 2002). Hence predictive maps play a role in Dutch archaeological heritage management 
that cannot be overlooked. In the course of the more then 15 years that these maps have been around, it has 
however become clear that the aim with which these maps were made and the role they subsequently played in 
the decision-making process in the archaeological heritage management have changed radically.

3.3.1 	 Inductive predictive maps

At the time of the introduction of inductive predictive maps, the State and the provinces mainly decided the 
policy of archaeological monument preservation. From their responsibility arose a strong desire for a reliable 
picture of the existing and to-be-expected archaeological sites. Due to the availability of an extensive dataset of 
archaeological find spots (the national database for archaeological find spots ARCHIS) and qualitatively good 
soil maps, small-scale inductive predictive maps of the entire Dutch territory could be made quickly and simply 
with the use of a Geographic Information System (GIS). Thus between 1996 and 2002 two versions of the 
IKAW appeared (Deeben et al. 1997; 2002), and in its wake a series of provincial predictive maps. These maps 
were very successful, as for policy makers at state and provincial level they offered exactly the information 
required for their decision-making process; the question in which areas prospective research should or should 
not be carried out was generally the most important reason for consulting the IKAW. The scale, and the simple 
and orderly legend structure of the IKAW were clear advantages for this type of user. With one glance at the 
map it could be decided in which areas the chance of the presence of archaeological sites was high (red), low 
(yellow), or intermediate (orange). In the weighing of where prospective research should be carried out, the 
legend colours soon became guiding: in the (red) areas with high expected densities research was carried out, 
and in orange areas building activities had to be supervised archaeologically. Yellow areas were released for 
development without any form of research.

The scientifically minded archaeologists were less happy with these inductive maps (see Van Leusen 
and Kamermans 2005). Their main objection was that the dataset used for the production of the IKAW was 
heavily distorted by an overrepresentation of sites on or close to the surface. These could be found in particular 
in the Pleistocene part of the country, where characteristically many of these sites had been heavily affected 
by cultivation or other disturbances. Sites in the Holocene part of the country were strongly underrepresented 
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due to their poor visibility as a result of covering sediments. Based on palaeogeographical research and some 
chance finds, it had in the meantime become known that many sites should be present in the Holocene part of the 
country, with the advantage that these sites would undoubtedly be very complete due to their location several 
metres deep under the surface. Unfortunately they were in the yellow IKAW areas where research generally was 
not enforced by the higher authorities.

In daily practice, areas with a low indicative value were not investigated further and areas with a high 
one were. The predictive maps of the RACM and provinces (also with a small map scale) were used as ‘decision 
rule’, with a very restricted interpretation of the notion of yield: the expected number of find spots were guiding 
in the choice whether or not prospective research was required. The result was that in the past years many 
find spots worthy of preservation have been lost because they ‘were unlucky enough’ to lie in zones with a 
low indicative value. Instead of increasing the ‘archaeological return’, the predictive map had soon become a 
means to save costs. And in the end it even decreases the archaeological return, if we may assume that in areas 
with a high indicative value, the number of (partly disturbed) find spots not worthy of preservation is relatively 
high11. 

However, the success of the inductive predictive maps seems to come to an end due to the recent change 
in the monuments legislation, in favour of deductive predictive maps, where expert judgement has been used.

3.3.2 	D eductive predictive maps

Coinciding with the appearance of the IKAW and the provincial predictive maps, the contours became visible of 
the new legislation on archaeological monument preservation in the Netherlands. The most important changes 
were decentralization of policy, and privatisation of archaeological research that in the past was reserved for the 
authorities and universities. Two new groups of commissioners arose. The first group consisted of the nearly 
450 municipalities in the Netherlands. These took over the authority from the State and provinces regarding 
archaeological monument preservation and the concomitant research. Municipalities required in particular 
detailed maps for their relatively small territory. With it, the interest in ‘densities of sites’ shifted to ‘quality 
of sites’. This was because municipalities were not motivated to enforce a research obligation in the complex 
process of weighing of interests if there is little chance of sites worthy of preservation. Hence, interest went 
increasingly to the sites that were in the orange and yellow zones on the inductive maps.
		  The second group consisted of a motley collection of so-called ‘developers’. That is to say, anybody 
initiating a soil disturbance: project developers, farmers, small private individuals, etc. Also this group had a 
need in particular for detailed maps for their planning, something in which inductive maps could not oblige. 
		T  he combination of wishes from municipalities and developers resulted in a steady stream of deductive 
predictive maps with the advantages of great detail and attention to the quality of sites instead of quantity. The 
detailed maps provided yet another advantage that was connected with the stepped process of archaeological 
prospection. It became possible to carry out again and again a cost-benefit analysis during the research process. 
These analyses do however have the consequence that the results of inventorizing field research cannot be used 
directly as input in inductive predictive models. I will come back to this at the end of this paper.

3.4 	T he dutch archaeology quality standard (Kwaliteitsnorm Nederlandse Archeologie, KNA)
In 2001, and in advance of the new legislation, the Dutch Archaeology Quality Standard (Kwaliteitsnorm 
Nederlandse Archeologie, KNA) was introduced (Voorbereidingscommissie Kwaliteitszorg Archeologie 
2001). The backbone of this standard was the detailed description of the process of archaeological monument 
preservation in several protocols. Thus the research prior to the decision to excavate, protect or release the 
planned area was split up into the protocols of desk research and inventorizing field research. Within these 
protocols several prospection techniques were described, with the requirement that the selection of a technique 

11	 The proportion of find spots not worthy of preservation will be more or less the same in areas with a low, medium or high 
indicative value, but the absolute number of find spots will be higher in an area with a high density of find spots (HK).
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should be substantiated on the basis of a specified archaeological expectation that was the result of the desk 
research. In the specified expectation the aim was explicitly not at the different expected densities of sites, but 
at the prospection characteristics thereof. These characteristics (size, depth location, type and density of the 
expected finds) after all determined the choice between the various prospection techniques, such as surface 
mapping, trial trenches or augering research. Apart from a subdivision in techniques, a distinction was also 
made into an exploratory, a mapping and an evaluation phase. The exploratory phase was meant to gain more 
insight into the geology of the planned area, with the aim of making a distinction between areas with a high 
chance and a low chance on archaeological finds. In a way, the result of this phase is a (deductive) predictive map, 
with the characteristic that it concerns a relatively small area and that the degree of detail is large compared to 
the traditional inductive maps. The mapping phase was meant to locate the findspots, and the evaluating phase 
to evaluate the located find spots. This splitting up into phases made it possible to evaluate the previous phase 
time and again and to decide whether a continuation was desirable. It became thus possible to carry out a cost-
benefit analysis at several instances in the archaeological process, with the key question: continue or stop.
For this analysis the following notions were introduced:

necessity•	 . At the base of every research in the Dutch archaeological heritage management is the 
question whether there is an obligation for the developer (the disturber) to have research carried out. 
The necessity arises from legislation and regulation. From the principle of necessity follows also that 
the research may not be more extensive than is legitimised.
effectiveness. •	 A prospection method ought to do what it promises to do, i.e. that the intended aim – the 
tracing of archaeological sites – can be achieved with the means.
proportionality.•	  A universal point of departure is that the aim is a proper balance between effort 
and expected results. This dilemma was discussed at the beginning of this chapter. Here the costs 
oppose the scientific yields. These advantages and disadvantages are however distributed unequally 
in archaeological heritage management – and in the eye of the disturber unfairly. However it is not 
possible to set rules in advance for what will be seen as proportional or disproportional by all parties. 
Yet, apparently “we” always seem to work it out through negotiation and we may trust to find the 
middle ground by the effect of precedent.
subsidiarity•	 . The principle means that always the least severe (but effective) method should be chosen. 
An example: if a percentage of cover of 5% for trial trenches suffices, it cannot be defended to opt for 
a percentage of 10%.

In daily practice the above notions are used as balancing framework for the beginning of the research and during 
decision moments between the exploratory and mapping phases, and between the mapping and evaluation 
phases. Again and again the question is at the forefront whether (subsequent) research is worth the effort and 
which research method should be chosen. Once a research has started, it does not in any way mean that it 
will actually be finished. After every phase the decision can be made to stop. One element that will play an 
increasingly important role in the balancing framework in the coming years is the question whether it is desirable 
to trace all archaeological sites expected in the planned area, or that there is a preference for a selection thereof. 
The difference in costs between tracing large or very small sites is such that a cost-benefit analysis can also be 
carried out here. The consequence of the above is that the result of an inventorizing field research cannot simply 
be interpreted as presence or absence of sites. It is always:

a result of an earlier policy choice (on the basis of for instance a predictive map) regarding the necessity •	
of research, linked to the question of which types of sites should be traced, and
the result of a number of decision moments in which the notions of effectiveness, proportionality and •	
subsidiarity are decisive.
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The result of carrying out the above weighing is that the outcome of an inventorizing field research cannot be 
used without restrictions as input for a statistical model for the purpose of predictive modelling.

3.5 	C onclusions

Predictive modelling is an important tool in Dutch archaeological heritage management. It is used in the first 
phase of research as a tool for prospection but also for selection. As a consequence of the revised Monument 
and Historic Buildings Act the small-scale inductive maps are no longer relevant. The now popular large-scale 
deductive maps pay more attention to the quality of sites then of the quantity. These detailed maps can also 
be used for a cost-benefit analysis. The consequence of the fact that predictive maps play a role in the process 
of selection is that after the phase of inventorizing field research we still do not have a complete picture of the 
present or absence and the distribution of sites in a region.
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4. 	 The high price or the first prize for the archaeological 
predictive model
Martin Meffert12

4.1 	S ummary

The Dutch national archaeological knowledge centre, the National Service for Archaeology, Cultural Landscape 
and Built Heritage (RACM) has formulated an archaeological predictive model: the Indicative Map of 
Archaeological Values (Indicatieve Kaart Archeologische Waarden, IKAW, Deeben et al. 1997; 2002; Deeben 
2008). In a short time, this map has had far-reaching consequences for spatial planning in the Netherlands. At 
the beginning of the 21st century, a large number of provinces in the Netherlands legally established this map for 
their territory in the framework of the Spatial Planning Act (Wet Ruimtelijke Ordening). The IKAW has since 
been applied as policy instrument in spatial planning. With this, ‘archaeological boundaries’ in the Netherlands 
have been fixed spatially for the first time in history, boundaries with unknown archaeological values. For an 
developer drawing up spatial plans, these boundaries make the difference between archaeological research or 
not, and between archaeological costs or not.

As is the case in all scientific models, also this model will have to be continually improved. The 
boundaries between areas with a high, medium or low indicative values for archaeological remains will 
therefore shift. These shifts will have as a consequence an increase or decrease in the scale of the archaeological 
research, and thus in the number of commissions in the archaeological market, and will therefore influence the 
archaeological employment situation. At the same time these boundary shifts will have an influence on the − 
higher or lower – costs in the realization of building projects.

Outside the archaeological world, these archaeological boundaries are, for the time being, seen 
as static. From the moment this is no longer the case, the instrument of the predictive map will be brought 
into action as a financial steering instrument. Those agencies with the opportunity to make archaeological 
predictive models, have therefore a powerful and precious weapon in their hands. And who in the Netherlands 
is actually not authorized to produce a predictive map? Regulatory measures have become necessary, also 
because in the new Monument Act the legislator did not define the notion of ‘expected archaeological values’ 
or ‘expected archaeological monuments’. However the legislator did make them something worth preserving 
and/or obligatory for further research. This chapter will discuss the possibilities and impossibilities regarding 
regulatory measures concerning the production of archaeological predictive maps.

4.2 	 Introduction

At the beginning of this century, the Dutch government has created an archaeological market for her territory. 
In the Dutch system of the archaeological heritage management almost all archaeological research is carried 
out by commercial companies or by independent non-profit institutions. But also these institutions will have 
to keep their head above water on the archaeological market without public money. The only exceptions to this 
are the small inner-city excavations in large towns with a town archaeologist, and excavations carried out by 
universities as part of training. The national archaeological predictive model Indicative Map of Archaeological 
Values (IKAW) has played a large role as policy instrument in the creation of this archaeological market. 
Basically it indicates where it is unreasonable (areas with a low probability of finding archaeological remains), 
but especially where it is reasonable (areas with a high or medium-high probability of finding archaeological 
remains) to make archaeological investigation compulsory in the Netherlands.

12	 Provincial archaeologist of Noord-Brabant, the Netherlands.
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The IKAW is the best-known archaeological predictive model in the Netherlands and was designed by the 
archaeological knowledge centre of the state, the RACM (Deeben et al. 1997). At present, the authorities are 
mainly using version 2 of this predictive model (Deeben et al. 2002). Recently a third version has been published 
(Deeben 2008).

In a short time, the IKAW has had far-reaching consequences for spatial planning in the Netherlands. 
At the beginning of the 21st century, a large number of provinces legally established this map for their territory 
in the framework of the Spatial Planning Act. This has often taken place in the framework of their spatial- or 
regional plans (Provinciale Staten van Noord-Brabant 2002, 64-66). The predictive map has since been applied 
as policy instrument. The provinces have hereby for the first time in the history of the Netherlands spatially 
fixed the boundaries of areas with unknown archaeological values. This will have far-reaching spatial and thus 
financial consequences, not only for society as a whole, but also for the private initiators.

The Netherlands has been divided into areas with four different indications for finding archaeological 
material: areas with a high indicative value13, with a medium indicative value, with a low indicative value, 
and areas with a very low indicative value. The boundaries between these areas make the difference between 
archaeological costs or not for an developer when producing spatial plans. These boundaries make the difference 
of a compulsory archaeological preliminary investigation or not, prior to the submission of a zoning scheme 
with the provincial authorities, in which a request is made to change to a certain use of an area (Van Leusen 
et al. 2005, 48-49; Provinciale Staten van Noord-Brabant 2002, 64-66). For instance before agricultural land 
can be transformed into a new housing area or into a golf course, the aspect of archaeology will first have to be 
mapped and valued. In the framework of the Spatial Planning Act, provinces will only then make a consideration 
of interests. In this consideration of interests, all spatial aspects will be weighed concerning the planning area, 
including the aspect of the archaeology of the area, in order to reach a spatial decision. Point of departure here 
is that the archaeological values should in principle be preserved in situ. If this proves to be impossible, then 
excavating the area archaeologically is a good second choice (Provinciale Staten van Noord-Brabant 2002, 64; 
Council of Europe 1992). The aspect of archaeology is introduced through an archaeological report. In this 
report, the results are presented of the inventorial and valuational archaeological preliminary investigation of 
the planning area, on which the spatial planning decision will have to be made. The requirements to be fulfilled 
by these investigations are laid down in the Dutch Archaeology Quality Standard (Kwaliteitsnorm Nederlandse 
Archeologie, KNA14, SIKB 2006).

4.3 	T he economic effect of the predictive model

By its introduction as a policy instrument by the provinces, the IKAW has greatly influenced the archaeological 
employment situation in the Netherlands (Rijksinspectie voor de Archeologie 2003: 9). However, the IKAW 
is a scientific model (Deeben et al. 2002), and, as is the case with all other scientific models, this model is 
continually subject to improvements. The archaeological boundaries will therefore inevitably shift in the future. 
These boundary shifts could as a consequence mean an increase or decrease in the scale of archaeological 
research in the Netherlands. And hence they will directly influence the number of archaeological commissions 
to be put on the archaeological market, which will have to be carried out by archaeological companies.

At the end of the 20th century, excavating in the Netherlands was, as a rule, a seasonal activity. The 
authorities mainly carried out this activity. The RACM, a number of municipalities and universities looked 
after the great majority of excavations in the Netherlands. At present, archaeological investigations take place 
all year round and are carried out for the major part by companies that depend on the supply of archaeological 
investigations in the excavation market. In the year 2006 for instance, there was an overstretched market 
situation: demand exceeds supply. The number of archaeologists supplied by Dutch universities is insufficient 
to meet the demand from the market. I observe that not only the mapping of archaeological boundaries of 

13	 Indicative value: the probability of or predictive value for finding archaeological remains in the soil (Deeben et al. 2002).
14	 www.sikb.nl
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unknown archaeological values has resulted in much archaeological employment in the Netherlands, but also 
that the drawing of these boundaries influences directly the costs to be made in the spatial planning when 
making and executing spatial plans. These costs will have a direct effect on the price of the structures to be 
developed. The desire to build in an area with a high indicative value will mean by definition that costs will have 
to be made for the aspect of archaeology in the preliminary investigation, and that there is a good chance – and 
thus a financial risk – that, prior to the execution of the building project, an archaeological excavation will have 
to take place. The costs of an archaeological excavation can form a substantial part of the total building costs 
of a project (Anonymous 2005a, 3). Besides this obligation to have an archaeological investigation undertaken, 
the Dutch government has also introduced the ‘developer funded’ principle for the Archaeological Heritage 
Management: the initiator pays. Both principles have led to archaeological heritage having become calculable 
in a building project and has thus become a financial-economic consideration in the realization of building 
projects. With making the archaeological heritage a monetary issue (excavation costs), the chance has increased 
that the objective of the preservation of the archaeological heritage in situ can be realized in a market economy, 
where in principle every piece of land has its price (Berben 2003, 4; Anonymous 2005b). And this kind of 
conservation is exactly what the European treaty regarding the preservation of archaeological heritage wants to 
accomplish. Precisely to this objective much weight is given in the Valletta Convention, because this will form 
a guarantee that the archaeological heritage will remain present in the ground as tangible proof, to be studied 
by future generations (Council of Europe 1992, Articles 2 and 4).

Due to the fact that archaeological predictive maps form the beginning of the archaeological 
investigation process, this means automatically that whoever controls this instrument, can also control the 
costs of the archaeological aspect of a building project. A shift in the boundaries of archaeological expectation 
areas directly influences the costs to be made within the spatial planning in the making and execution of spatial 
plans. These archaeological boundary shifts on the archaeological predictive maps, which are used as policy 
instruments, will also influence the archaeological employment situation in the Netherlands.

4.4 	T he archaeological inside and outside world

In the archaeological outside world, archaeological boundaries on predictive maps are seen as static for the time 
being. The archaeological inside world, however, has known for years that these boundaries are flexible. We 
can already state that more detailed predictive maps almost always lead to a larger surface of areas with a high 
or medium indicative value. And a larger surface area of these areas means more archaeological preliminary 
investigations and thus more supplementary commissions for business. The result is that the archaeological 
market can thus be increased. 

The number of people presently employed in the Netherlands in the field of archaeology has in a short 
time increased nearly five-fold, to more than 1000 due to making archaeological investigation by provinces 
compulsory (Fokkens 2005, 3; Rijksinspectie voor de Archeologie 2003, 9). If however a trend can move one 
way, it can of course also move the other way. In view of the number of people now employed in the field, there is 
more at stake than solely the archaeological interest. The change in the Monuments and Historic Buildings Act 
and the new Law Spatial Planning will mean that the responsibility for the producing – and legally determining 
– of archaeological predictive maps will move from the provinces to the municipalities.

As soon as the archaeological outside world discovers that the archaeological boundaries are flexible, 
the instrument of the expectation map will inevitably be launched as a cost-saving instrument. Variables, 
confidence limits, chances of being hit and assumptions will change. What we are waiting for is the moment 
that the more detailed predictive maps – which, due to the change in the law, will be drawn up by municipalities 
and initiators of large projects – will lead to a larger area of archaeological expectation areas with a low 
archaeological expectation value. And a larger surface area of these areas will mean fewer archaeological 
preliminary investigations and thus fewer supplementary commissions. The result of this will be that the 
archaeological market will shrink.
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Those who have the opportunity to make archaeological predictive models will therefore have a powerful and 
precious weapon in their hands. Knowledge of GIS and/or geo-statistics is actually not required for making such 
predictive models. At the moment anyone in the Netherlands is allowed to carry out an archaeological desktop 
study, so anyone is allowed to make an archaeological predictive model.

4.5 	 Possibilities in the field of regulatory measures: the balance of power

The question whether the makers of archaeological predictive models should meet certain requirements, and if 
so which ones, is perfectly valid. This question is expedient especially now as predictive maps can be powerful 
and at the same time ‘valuable’ instruments15. Yet this question does not in fact go far enough, in view of the 
implications – as discussed above – of archaeological predictive models. What of course matters in the end is 
the quality of the archaeological predictive models, not that of the makers, as evidently well-trained makers are 
required for good predictive models. But in the question as formulated at present, the makers of the expectation 
models are the focus and not the product. I would argue for not focusing on the maker but on the product.

I have already established above that the archaeological commercial community, and hence also the 
predictors employed by these companies, depend on the commissions from the market with regard to their 
job. In this market situation, it is in my view too dangerous to allow a caste of archaeological IT specialists to 
come into existence, which albeit would have to meet high standards but which would also be allowed to have a 
monopoly on making predictive maps.

My postulate is that archaeologists are not better people than people in other professional groups. 
Apart from the fact whether it would actually be possible to allow such a new ‘caste of priests’ to come into 
existence in present-day Europe, we will have to ask ourselves the question whether this is desirable. Although 
the endeavour is sincere, as archaeological world we should never let this work be monopolised. If only from a 
standpoint of development and quality contol we ought not to want this happen. All research topics that are too 
isolated carry the risk to come to a standstill. I would plead for the setting up of a system of ‘balance of power’, 
a system in which the controlling body and the line of business balance each other out, and keep each other 
sharp. A balance of power, through which quality improvement can take place on all fronts, both quality-wise 
and personnel-wise. At the same time, I would argue that the construction of archaeological predictive models 
be included as a separate issue of the Dutch Archaeology Quality Standard, and that in large spatial projects the 
construction of a predictive model will compulsorily be accompanied by a controlled sample16. This controlled 
sample serves as test (falsification or verification) of the formulated predictive model.

In a system of balance of power in which the one power is inevitably the archaeological commercial 
community, the other power will inevitably have to be, in my view, a government institution that is also able to 
operate independently of the market. Why independently? By definition we cannot expect the archaeological 
commercial community to be independent. And now that all large university archaeological institutes have an 
archaeological foundation that is dependent on commissions from the market, and the universities have thus 
become structurally dependent on this non-government funding, the universities have, as has the commercial 
companies, the appearance against them. That is the reason why also Dutch universities can no longer take on 
this independent role. Besides the archaeological commercial community, also universities have a financial 
advantage in making the areas in which archaeological research has to be carried out obligatory as large as 
possible in order to maximize the chance of supplementary commissions.

4.6  	 Improvement of archaeological predictive models

Would it be possible in Dutch archaeology to lay an extra controlling task with a government institution that is 
also capable of operating independently in the market? Apart from a possible newly-to-be-founded institution, 

15	 This question was therefore justly raised by the organizers of the symposium Archeologische Voorspelling en 
Risicobeheersing (Archaeological Prediction and Risk Management), held at Leiden University the 1st and 2nd of March 2006.

16	 www.sikb.nl
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this independent archaeological institution could in my view only be the The National Service for Archaeology, 
Cultural Landscape and Built Heritage (RACM – Rijksdienst voor Archeologie, Cultuurlandschap en 
Monumenten). Why?

On the one hand because the RACM does not really have a commercial interest in an enlargement of the 
archaeologically likely areas, on the other hand because the RACM – as executive department of the Ministry of 
Education, Culture and Science – is also in the position to determine with large projects, via the Environmental 
Impact Assessment (EIA in Dutch MER - Milieu Effect Rapportage) procedures, which archaeological data 
should be part of the to be drawn up EIA (Eerste Kamer der Staten-Generaal 2006, Article III, A to E). It is 
precisely with these large projects that new predictive models are commonly formulated.

In addition, with these projects in particular are the interests and opportunities greatest to deploy an 
archaeological expectation map as a financial regulatory instrument. The RACM could as a norm demand from 
EIA compulsory projects to supply a detailed predictive model including one or more controlling samples to test 
this model. These controlling samples should be carried out in all parts of the planning area in order to improve 
the (newly) drawn-up archaeological expectation model.

4.7 	A  plea for an independent and controlling archaeological knowledge centre 
If a system could be realized within Dutch archaeology, in which a controlling government body itself would 
be able, and has been charged with formulating, prescribing (including a controlled sample) and verifying 
predictive models, this will have two big advantages for the existing archaeological order. On the one hand, it 
will break through the present self-fulfilling prophecy in Dutch archaeology that areas with a low indicative 
value will not be investigated and will become, from an archaeological point of view, emptier and emptier, and 
planologically more and more filled up, as it is cheaper to develop spatial plans in an area with a low indicative 
value. On the other hand, the know-how of making and controlling predictive maps will (also) remain in the 
hands of an independent body.

To make a controlling sample compulsory with large projects (EIA projects) in all areas with an 
archaeological indicative value has two big advantages. This compulsory sample will not only result in that 
the detailed predictive models becoming more underpinned and justified, but will also have the result that the 
development of the national Indicative Map Archaeological Values (IKAW) will not have to come to a standstill 
through a lack of archaeological information from areas which on the basis of the same predictive model are 
exempted – already sometimes for more than six years − from systematic archaeological research (areas with 
a low indicative value). That fieldwork for the benefit of these samples, which will be carried out in selected 
areas, will be carried out soundly has already been regulated in the new disposition of the Dutch Archaeological 
Heritage Management. The Heritage Inspection will oversee this (Rijksinspectie voor de Archeologie 2003: 
supplement 2)17.

Companies will produce new archaeological predictive models for the benefit of EIA compulsory 
projects. However, in view of the big spatial and financial consequences of such a model, I am in favour of such 
a model always being recalculated and checked – in view of the large scale – by the RACM. Why would the 
authorities ask for an auditors’ certificate for settlement of government subsidies of € 20,000 or more and not ask 
for a ‘declaration of verification’ in calculations of areas where archaeological investigation should take place. 
The research costs arising from this easily exceed € 20,000.

Such an independent institute could also provide second opinions for, for instance local authorities. 
Due to the changes accepted in the Monuments and Historic Buildings Act in 2006, in which local authorities 
will be forced to take into account the archaeological monuments either present in the ground or to be expected, 
and thus are stimulated to formulate an archaeological policy, notably local authorities will in future become 
large customers of predictive models. Instead of one national predictive model, a mosaic will be created in 
the Netherlands of local authority predictive models. Many local authorities will not have the know-how of 

17	 www.Erfgoedinspectie.nl



4 - The high price or the first prize for the archaeological predictive model

38

judging these models on their merits. Both for local authorities, and for the sake of archaeology, the presence 
of an independent government body in the existing archaeological order, which can pass an independent 
judgement on the newly formulated predictive models, could be a large cornerstone for the confidence in the 
archaeological branch. In particular because the legislator has not only made it compulsory for local authorities 
to take into account the archaeological values actually present in the ground, but also the archaeological values 
to be expected in the ground. This latter category has however not been defined by the legislator. It is therefore 
unclear when an area is expected to be archaeologically valuable c.q. when it is a question of to be expected 
archaeological monuments.

In the field of the environment, for years we have known in the Netherlands such an independed institute: 
the National Institute for Public Health and the Environment (RIVM –Rijksinstituut voor Volksgezondheid en 
Milieu). This government institute not only looks after the information and the monitoring of the Public Health 
and Environment policy at a national level in the Netherlands, but also provides the scientific underpinning of 
this policy in the Netherlands. The recent change in the Monuments Act will lead to the Minister of Education, 
Culture and Science to be involved with the National Environmetal Policy Plan and with the RIVM report to be 
submitted every four years. This Minister has been given the authority to designate government bodies which 
should be involved by the RIVM in the drafting of the RIVM report, which in turn will play an important part 
in the preparation of the National Environmetal Policy Plan (Tweede Kamer der Staten-Generaal 2006: Article 
III, B). It is obvious that the Minister will designate the RACM as government body that will have to be brought 
in by the RIVM.

The RACM should develop into a knowledge institute equal to the RIVM but then for the monument, 
landscape and archaeology policy. This Dutch state institute would be responsible for the scientific underpinning 
of the monument, landscape and archaeology policy in the Netherlands and would also provide the information 
and monitoring of this selfsame policy. An important part thereof should be the testing of the quality of the 
archaeological predictive models, because these models form the basis of the execution of archaeological 
investigations in the Netherlands.

This would also be in line with the view of Dutch parliament that – by passing amendment 30 to the 
change of the Monuments and Historic Buildings Act – has pronounced on the scientific nature of archaeology. 
Parliament is of the opinion that archaeological investigations in relation to excavations and the execution of 
excavations should satisfy the requirements of scientific prudence and scientific relevance (Tweede Kamer 
der Staten-Generaal 2006). In the explanation of this amendment it is explicitly stated that this amendment 
to the law implies that scientific criteria shall be the basis of the Dutch archaeological policy. The basis of the 
archaeological policy is in most cases an archaeological predictive map. This deserves therefore to be launched 
with the utmost prudence.
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5. 	 Archaeology as a risk in spatial planning: manoeuvring 
between objectivity and subjectivity
René Isarin18, Philip Verhagen19 and Boudewijn Goudswaard20

5.1 	 Introduction

The recent revision of the Dutch Monuments and Historic Buildings Act, which implements the ratification of 
the Valletta Convention by the Dutch parliament has left the archaeological sector in a somewhat confused state, 
even though not all archaeologists recognize and accept this. There are three major changes resulting from the 
new legislation. Firstly, archaeology is now part of a larger democratic process of decision making, in which it is 
only one of many spatial factors to be taken into account. It is treated just like soil, water and air quality, ecology 
and noise pollution. Secondly, this transformation from an inward-facing and ‘sectoral’ attitude to archaeology 
to an integral spatial planning approach is accompanied by a shift from purely academic to more practical 
‘public’ archaeology and a change from government-based funding to a commercial, market-based system. 
Furthermore, decision-making has shifted from the national and/or provincial level to the local, municipal 
level. The archaeological sector still has to come to terms with this new situation, and the resulting confusion 
is mainly felt by civic initiators and contractors who now are officially and legally obliged to deal with and take 
care of archaeology in their specific development area.

The primary reason for the current confusion is the fact that the Dutch national government deliberately 
chose not to prescribe quantitative and qualitative archaeological norms. There are no norms to decide what 
kind of archaeology is important, rare and worth preserving, or to what level of detail excavation data should 
be analysed and reported. More often than not, decisions on these issues are based solely on expert judgement, 
instead of on objective and predefined criteria. This subjectivity is the source of many risks in archaeological 
heritage management for civil initiators, as it may seriously affect the time and costs involved in dealing with 
archaeology. 

In this chapter, we will highlight some of the risks in present-day Dutch archaeological heritage 
management. We stress that we will consider the risk from the viewpoint of the civil contractor or initiator 
of a specific spatial development, and not as the risk for the archaeological remains in that specific area. We 
will focus on the risks related to the phase of inventory research, and will discuss possible solutions for risk 
management that may be found (1) in the use of predictive modelling and (2) in the necessary development of 
reliable core sampling survey strategies. 

5.2 	T he process of archaeological heritage management in the netherlands

The process of archaeological heritage management (AHM) in the Netherlands is now generally accepted and 
common practice for archaeologists. It is designed to ensure that archaeology is integrated in spatial planning 
in an early stage. Activities potentially threatening the archaeological heritage (i.e. all activities likely to disturb 
the soil, like the construction of houses) are accompanied by archaeological research from the start. Figure 5.1 
shows the various steps that have to be taken in order to arrive at a decision on what to do with archaeology. It 
can be seen as a process of stepwise intensification of archaeological research. Starting out with a desktop study 
of the complete area under development, in each subsequent step decisions are made on if and where to intensify 
research. This intensification moves from reconnaissance survey (most often by means of core sampling) to 
trenching campaigns. The latter, more detailed investigations will only be done in the areas that were decided 
to be archaeologically ‘valuable’ in the preceding step. This ‘zooming in’ on the areas of interest will then lead 

18	 Past2Present-ArcheoLogic, Woerden, the Netherlands.
19	 ACVU-HBS, Amsterdam, the Netherlands.
20	 Past2Present-ArcheoLogic, Woerden, the Netherlands.
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to a final valuation of the archaeological remains found. By using a multi-criteria decision making framework 
(SIKB 2006), the results of the archaeological research are evaluated. The horizontal and vertical dimensions 
of the site and its intrinsic value must be clear, and on the basis of the valuation a decision is made on how to 
preserve the valuable archaeology present: by mitigation, excavation, or supervision21.

1. Inventory phase

2. Valuation & selection

3. Measures / action

Plan adjustment
in situ preservation

Full-scale excavation Limited excavation & 
archaeological supervision

I. Desk research

II. Inventory
    �eldresearch

Coring

Trenching

Other

Figure 5.1 The various steps that have to be taken in order to arrive at a decision on what to do with archaeology. 

We stress that this concerns a decision: due to the lack of norms on how to deal with archaeology (see next 
section) there is no single possible outcome of the decision-making process. The valuation scheme used is far 
from objective or transparent. Furthermore, the criteria and norms used for deciding on where to intensify 
research (i.e. in the stages before valuation) are not very well defined either. Instead, decisions are arrived at 
through negotiation and will inevitably result in a selection as not all the valuable archaeology can or has to 
be preserved in situ or excavated. A research agenda may serve as a policy instrument to include or exclude 
specific archaeological periods or research themes for the next 5 years or so, or for a specific project. But since 
well-defined research agendas are at the moment virtually non-existent, selection is in many cases based on the 
judgement of the archaeologists employed by the authorities to execute the Monuments and Historic Buildings 
Act.

21	 Supervision (or monitoring) is a cheap alternative to excavation, comparable to the watching briefs in English archaeological 
heritage management.
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5.2.1 	A  lack of norms

Given the general absence of objective and transparent valuation criteria, it can be hard for initiators to deal with 
archaeology. After all, the revised Monuments and Historic Buildings Act does not prescribe any specific norms 
for protection of the archaeological heritage. This situation closely resembles the way in which environmental 
issues were incorporated in spatial planning in the late 1980s and early 1990s. Questions arose on how to 
measure pollution and assess its potential hazard for public health, and it was only after a decade of debate that 
norms were established and incorporated in daily practice. Nowadays, archaeologists have to answer similar 
questions about the value of archaeological sites: is it worth spending money on, and if so, is it better to excavate 
or preserve?

We already showed that the AHM process consists of several decision-making moments. In practice, 
we can distinguish four critical steps (figure 5.2), all of them potentially giving rise to debate and conflict. The 
first one is the decision whether archaeology is in fact present at a specific location. This decision is based on 
the results of desk-top study and reconnaissance survey. The second step is the decision on the size and value of 
the archaeological remains under consideration. This is based on the multi-criteria valuation scheme mentioned 
in the preceding section. Thirdly, a decision has to be made on how to realize site preservation: mitigation, 
excavation and/or supervision. And finally, a decision has to be made on the extent of the selected preservation 
measures. The level of detail of analysis and publication can be basic, but on the other hand an excavation may 
harvest enough data for someone to write a PhD thesis!

Inventory phase

Inevitable choices to be made after the inventory phase...

Valuation & Selection Measure / Action

Is it (what ?) worth preserving and what do we preserve? How do we preserve?      
 

Basic documentation 
or PhD thesis?

? ? ?or or or

Site or not? Shape and size of 
the site to be preserved ?

In situ preservation by plan
adjustment or physical 
protection; excavation; 
supervision?

Boundary conditions
 & demands for the 
measures ?

Sup.Sup.
Exc.

Exc.

In situ
pres.

In situ
pres.

figure 5.2 The four critical steps of decision-making in the archaeological heritage management process.
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In practice, the currently employed non-normative system frequently evokes debate between the ‘antagonists’ 
in archaeological heritage management: the initiators of spatial developments and the municipal, provincial or 
national authorities. The developers will benefit from clearly predefined and objective criteria in order to control 
and direct time and money in a development project. After all, archaeology is only one of the conditions they have 
to deal with. The authorities on the other hand have the legal obligation to protect the archaeological heritage, 
and will have to provide the developers, preferably beforehand, with norms for dealing with archaeology in a 
specific project. This clearly may lead to conflicts of interest and to discussions on the validity of the outcome 
of the valuation. This is exacerbated by the fact that the archaeological companies doing the research also bring 
their own opinions. Commercial advisors acting as mediators between developer and authorities are also adding 
to the debate. Obviously, the different value systems employed by the various parties involved in archaeological 
heritage management can easily lead to miscommunication and emotional debates.

For this reason, we feel that we should try to minimize the grounds for misunderstanding, by introducing 
more objective and transparent valuation criteria, and clear norms on where to draw the line between ‘important’ 
and ‘not important’, thus between valuable and not valuable.

5.2.2 	D ealing with risk in archaeological heritage management

In the remainder of this paper, we will focus on the first decision-making step of deciding whether we are 
dealing with archaeology or not. It is probably the most debated and crucial issue in Dutch archaeological 
heritage management at the moment: decisions made in the beginning of a project cannot easily be reverted in a 
later stage. Furthermore, we feel it is an issue where recent scientific research in especially predictive modelling 
and archaeological survey has come to a stage where we can actually start to implement the desired objective 
decision-making criteria in practice. In order to do so however, we will first have a look at the concept of risk in 
archaeological heritage management.

We can look at risk from two different angles: first of all, it can mean the risk that archaeological 
remains are destroyed without any form of intervention. This is what most archaeologists will understand by 
risk in the context of archaeological heritage management. However, from the point of view of the developer, 
there are very different risks involved. Firstly, there is the risk of delay of the development plans. Carrying out 
archaeological research and obtaining permits from the authorities takes time. Secondly, there is the financial 
risk: if (unexpected) archaeology is present in the development area, the developer may have to pay for more 
research than anticipated. In practice, developers do not have many options to control these risks. They are 
dependent on the authorities for obtaining permits, and given the absence of norms, the authorities can pretty 
much do as they like, in some cases downright obstructing development plans or forcing developers to carry the 
costs of very expensive research. In our view, the key issue is that no one seems to be able to tell whether the 
(perceived) archaeological risk justifies the decisions made by the authorities.

If we look at the tools currently available to control the archaeological risk, we have to conclude that 
these are not very well suited for an assessment of either the archaeological or the developer’s risk. Predictive 
models are employed to enforce survey in medium and high probability zones, but the models used do not say 
anything about the potential number and nature of the archaeological sites that may be found. So, the developer 
will only know that a survey needs to be carried out, but not what the result of the survey may be in financial and 
temporal terms. Similarly, core sampling is often enforced as the survey method of choice for reconnaissance 
survey, but without specifying the probability that certain types of sites may be missed. Furthermore, it doesn’t 
take into account the possibility that the archaeological indicators found are not sites at all, but for example, 
reworked artefacts. As a consequence, survey results may show site contours that have little meaning, and in 
later phases sites may pop up that were not detected during survey. In those circumstances, the authorities will 
usually demand for new research. The key question is: who is responsible for the delay and costs?
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5.2.3 	P redictive modelling and risk assessment

To make predictive models a more useful tool for risk assessment, we have to stop being vague about the 
meaning of low, medium and high probability. A predictive map will only tell whether survey is necessary or 
not. It is a norm, based on (usually) an expert judgement assessment of the relative density of archaeological 
sites. It does not tell the developer how much of the area surveyed will be selected for further investigation. 
So, the only risk that can be established with some reliability is the amount of time and money that will go into 
reconnaissance survey.

Actually calculating the potential number and nature of sites that may be encountered during survey 
is far from trivial, but it is not impossible. Recent developments in statistics like resampling (see chapter 8) and 
Bayesian statistics (see chapter 9) now enable us to get a firmer grip on the numbers involved, and the associated 
uncertainties. Unfortunately, these techniques still need further study and development before they can be 
implemented in practice.

We can however also use a more pragmatic approach by analysing the surveys done in the past, and 
calculate the area that was selected for further investigation. Some of these data were collected by us, and show 
that in a sample of 23 projects, 23.9% of the area surveyed was selected for further archaeological research. 
Students from the University of Groningen (Schepers and Vosselman 2005) did a similar exercise for the 
province of Drenthe in the years 2003-2004. They concluded that for high probability areas 23% of the area 
surveyed was selected for further research; for low and medium probability areas this was 18%. While this is 
useful information in itself, a bandwidth for these figures would even be more helpful. For our own data, we 
calculated that there is a 97.5% probability that the area selected for further research will be less than 37.2% 
(see chapter 8, 111).

Obviously, this is only a first step towards a financial risk assessment that will be helpful to the 
developers and provide a necessary counterweight for the more subjective and emotional alternative. For that, 
we also need more information on the actual costs of dealing with different aspects of archaeology, and an 
assessment of the probability of particularly expensive types of research being necessary. This in turn implies 
that risk assessment studies must be carried out at a wider scale than the current development project, as we 
need to have comparative data. Who should pay for this kind of research, and how do we make the necessary 
data available?

5.2.4 	 Interpreting survey results

The principal method used for reconnaissance survey in the Netherlands is core sampling. For many years, 
core sampling was applied without a clear idea of its limitations. Research by Tol et al. (2004) shows that core 
sampling will never guarantee a complete detection of archaeological sites, because of its restriction to very 
small sampling units that are relatively widely spaced (see also Verhagen 2005). Core sampling survey results 
can be manipulated by changing the density and configuration of the sampling grid, and by taking smaller or 
larger cores. However, sites that are characterized by a low density of artefacts are typically very difficult to 
detect. Furthermore, core sampling survey will not always be able to tell whether the artefacts encountered are 
‘in situ’. So, core sampling may both under- and overestimate the actual extent of archaeological remains in a 
study area.

From the point of view of the developer this is hardly satisfying, because it will cost time and money in 
both cases. Undetected sites that pop up in a later stage will usually prompt the authorities to demand additional 
research, whereas erroneously interpreted non-sites will waste precious research money and time.

The problem of non-detection is extensively discussed by Tol et al. (2004). They suggest that the choice 
for a particular survey strategy should be based on a hypothesis about the type of site that can be expected in 
a study region. This is called a ‘specified prediction’, and determines what survey method should be used, as 
not all sites are equally easy to detect. Their suggestion has currently been added as a guideline to the Dutch 
Archaeology Quality Standard for Archaeology (KNA version 3.1; SIKB 2006). Using this guideline, we can 
judge the probability of detecting site type A or B using a specific survey method. For example, if we want to 
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have an 80% probability of detecting a medium-sized Stone Age site, we need a 20x25 core sampling grid, using 
a 15 cm diameter core, and a 3 mm sieve for detection of the flints (Tol et al. 2006).

Despite this important step forward, a norm for detection probability is still missing: is 80% an 
acceptable limit for the specific authority (municipal, provincial, national) and developer? After all, it implies 
that 20% of the sites we are looking for will not be detected. And if we accept an 80% detection probability, does 
this mean that we will not spend any money even when we find the other 20% in a later stage of the development 
plan? So, while using objective and transparent criteria is necessary, establishing norms based on these criteria 
is even more crucial. Most crucial however is accepting the possibility that archaeology may be missed and, 
despite this, accepting the fact that the developer is not liable for the consequences.

Even then, the 80% detection limit only tells us that we will be able to detect the expected artefact 
concentration 4 out of 5 times. It will not allow us to correctly delimit a site. When we have struck an artefact, 
this will be a reason to look closer, by taking more samples in the vicinity of the find location and trying 
to establish a site contour in this way. This approach is also known as adaptive sampling (see Orton 2000). 
However, since we are dealing with imperfect detectability of the artefacts, the neighbouring samples will also 
be empty 1 out of 5 times – and this is assuming that we are still dealing with the same artefact density. So here 
we have a classical Catch 22-situation: we do not actually know what artefact density we are dealing with, so 
how can we be sure that a non-artefact observation is proof of the absence of a site?

In fact, the only reliable method for establishing site contours is trial trenching. Yet site contours are 
still drawn on the basis of core sampling surveys as if they constitute real boundaries, and trial trenching, when 
advised, is usually limited to those zones. Furthermore, in some cases artefact concentrations may not even be 
sites at all. A flexible approach should be applied instead: we should dig the trenches as far as is needed. In some 
cases this will be a more limited zone than the survey contour indicates, because the artefacts found were not an 
indication of an archaeological site. In other cases it will be more extended, because the site contains features 
that were not detected during survey. However, this will put the developer in a difficult position, as it means 
that a ‘worst case’ scenario will have to be adopted in order to assess the risks involved. It also complicates the 
situation for archaeological companies doing the research, as they will have to take into account the possibility 
that they will only have to do a small part of the original project proposal. And they will also have to evaluate 
the results of their research in the field, and keep in close contact with the developer and authorities during the 
fieldwork.

Bayesian statistical methods may be helpful in this context for establishing the risks involved. Nicholson 
et al. (2000) discuss the problem of trying to estimate the risk that archaeological remains of a certain size 
may be missed given a specific research intensity. For example, when using classical statistical methods, the 
probability of not detecting remains with a size of 1% of the study area (e.g. a 100 m2 site in a 100x100 m survey 
area) is still 61% when taking 50 samples. However, since we have started our survey with a specific hypothesis 
in mind about the type of sites we’re looking for, we might as well use Bayesian statistics to come up with a more 
realistic estimate. For that, we need to specify the smallest area of archaeological remains that we want to detect. 
The problem of imperfect detection is tackled by dividing this area by the detection probability involved. So, in 
the case of the medium-sized Stone Age site with a 80% detection probability, we should reduce the ‘site area’ to 
200*0.8 = 160 m2. We also have to specify an assessment of the probability that these remains are present at all. 
For the purpose of illustration, let’s assume that earlier research indicated that in 10% of cases, these remains 
were actually found. This means that the initial probability of such sites being present is 3.7%. When taking 50 
‘empty’ samples in the survey area, this risk is reduced to 1.0% (for the actual mathematics, see Nicholson et al. 
2000). The risk that we missed two of these is then 0.3%. Such an approach seems helpful in analyzing the risks 
involved with archaeological survey, but it implies that sufficient data should be collected to estimate our prior 
assumptions on the presence and size of archaeological remains. The method described also has to be translated 
to real situations, and evaluated for its effectiveness.
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5.3 	C oncluding remarks

No doubt, archaeology is a true risk to civil developers. In our experience, it is not the amount of money going 
into archaeology that most annoys the developers. Instead, they are frustrated by the fact that the ‘rules of the 
game’ are continuously changed during the AHM process, and that decisions are based on expert judgement 
without a clear scientific vision on the value of archaeology. As a result, the whole process may look like an 
endless tunnel, and archaeology is seen as a planning condition that is completely out of control. In comparison 
with other environmental factors like ecology, noise pollution and soil quality, archaeology lacks a clear degree 
of objectivity and thus professionalism. At least four non-normative steps in the AHM process can give rise to 
potential debate and conflicts between developers and municipal, provincial or national authorities. Decision 
making in archaeology is largely a subjective process.

To a certain extent, the use of expert judgement in decision making is inevitable, as not all aspects 
involved in valuating archaeology can, at the current state of knowledge, be translated into objective decision 
making schemes and norms. But even ‘subjective’ norms and criteria can in most cases be formulated in a 
transparent way. And in our view, we also have to move toward using more objective and quantitative criteria. 
Even at the current state of affairs, at least some objective norms can be defined at the start of a project, for 
example by selecting a preferred research theme based on an objective inventory of local or regional lacunae in 
archaeological knowledge.

Furthermore, it is essential to focus our attention on the first step in AHM of deciding whether we are 
dealing with archaeology or not, the most debated and crucial issue at the moment. It is not only necessary to 
arrive at a norm for detection probability, whether this be 70, 80 or 82.34%. We also have to learn to live with 
the consequences of establishing norms. This means accepting, as a rule of the game, that the developer is not 
liable when, because of using predefined norms, a certain portion of the archaeology is missed.

Finally, it is necessary to find financing for research that can help to control the risks involved in 
AHM. At the moment, hardly any funding is available for this type of research, most probably because the 
need for it is not generally recognized by the archaeological sector. This may to a certain extent be due to 
the mathematical and statistical character of this type of research – not the most sexy form of science to the 
conventional archaeologist. It may therefore very well be necessary to turn to the world of contractors and 
spatial planners to get the necessary funding.



5 - Archaeology as a risk in spatial planning  

48 

References

Nicholson, M., J. Barry and C. Orton 2000. Did the Burglar Steal my Car Keys? Controlling the Risk of Remains 
Being Missed in Archaeological Surveys. Paper presented at the Institute of Field Archaeologists Conference, 
Brighton, April 2000. UCL Eprints, University College London, London
http://eprints.ucl.ac.uk/archive/00002738/01/2738.pdf

Orton, C. 2000. Sampling in Archaeology. Cambridge: Cambridge University Press 

Schepers, M. and J. Vosselman 2005. Archeologisch booronderzoek in Drenthe. Een onderzoek naar 
archeologisch prospectief booronderzoek in Drenthe in de jaren 2003-2004. Student report, Groningen: 
University of Groningen
http://members.home.nl/kwassink/1.%20archeologisch%20booronderzoek%20in%20Drenthe.pdf

SIKB 2006. Kwaliteitsnorm Nederlandse Archeologie (KNA). Ontwerp herziening versie 3.1. Gouda: SIKB

Tol, A., Ph. Verhagen, A. Borsboom and M. Verbruggen 2004. Prospectief boren. Een studie naar de 
betrouwbaarheid en toepasbaarheid van booronderzoek in de prospectiearcheologie. RAAP-rapport 1000. 
Amsterdam: RAAP Archeologisch Adviesbureau

Tol, A., Ph. Verhagen, and M. Verbruggen 2006. Leidraad inventariserend veldonderzoek. Deel: karterend 
booronderzoek. Gouda: SIKB

Verhagen, Ph. 2005. Prospecting Strategies and Archaeological Predictive Modelling. In M. van Leusen and 
H. Kamermans (eds), Predictive Modelling for Archaeological Heritage Management: A research agenda. 
Nederlandse Archeologische Rapporten 29, 109-121. Amersfoort: Rijksdienst voor het Oudheidkundig 
Bodemonderzoek



49

6. 	 Archaeological predictions contested: the role of the 
Dutch Indicative Map of Archaeological Values (IKAW) 
in local planning procedures
Martijn van Leusen22

6.1 	 Introduction

Predictive models may, at least in the Netherlands, play a role in the spatial planning process in the guise of maps 
depicting archaeological values. In such cases the predictive map is not seen as a visualisation of a scientific 
model, but as a planning policy map. Having been given a formal role in spatial planning procedures, the map 
inevitably gets drawn into conflicts between stakeholders in the future allocation of limited space – civilians, 
companies, and government. The attitudes of each of these segments of society towards archaeological predictions 
become clear when we study what happens when municipal planning policy documents get contested.

Municipal planning policies are set, and regularly updated, in formal documents called zoning schemes23. 
Before getting legal status they are tested by the next higher level of government, the provincial authorities, 
and if these reject – in whole or in part – a zoning scheme it often gives rise to a dispute in administrative law24 
at the Council of State25. During these proceedings, stakeholders can argue their objections to any part of the 
provincial authorities’ decision that they find unjust. Inasmuch as these objections are related to the presence 
or absence of archaeological values, the full transcripts of cases brought before the Council of State (which can 
be found at www.raadvanstate.nl/uitspraken) may shed light on the actual opinions of all involved parties. This 
therefore presents an excellent opportunity for finding out how aggrieved private citizens and companies, as 
well as representatives of local and regional government, view archaeological predictive maps. 

During the course of the BBO project on predictive modelling an interesting case developed in the 
municipality of Coevorden (Drenthe province, figure 6.1). Provincial planning authorities had refused to approve 
a revised zoning scheme for an area called Coevorden-Dalen, because in their opinion it provided not enough 
protection to zones of medium to high value depicted on the Indicative Map of Archaeological Values (IKAW) 
produced by the National Service for Archaeology, Cultural Landscape and Built Heritage (RACM). In the 
next section Ms Annet Boon (Planning Office, municipality of Coevorden) argues the case for the municipality 
of Coevorden. As a result of this case, which was handled on March 17th, 2006, before the Council of State, 
some earlier cases in which archaeological predictions were relevant to the review of zoning schemes were also 
looked at (figure 6.1):

Groningen, zoning scheme Airpark Eelde (ABRS, 22 oktober 2003)1.	
Buren, zoning scheme Golf course ‘de Batouwe’ (ABRS, 16 juni 2003)2.	
Zoning scheme Buitengebied Gemert-Bakel (ABRS, 17 juli 2002)3.	

In section 6.3 we summarise and compare the four Council decisions. In view of the length of the full decisions 
and the use of specialised legal language, only the immediately relevant passages are reproduced here in Dutch 
(see appendix 1-4).

22	 GIA, Groningen University, the Netherlands.
23	 In Dutch “bestemmingsplannen”.
24	 In Dutch “bestuursrechtelijke geschilprocedure”.
25	 In Dutch “Raad van State”.
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6.2 	T he case of coevorden-dalen, a position statement26

The municipality of Coevorden is in the process of reviewing its zoning schemes, and in particular has 
developed a new zoning scheme for the rural area of Dalen. This new zoning scheme also makes arrangements 
for the protection of the archaeological heritage. The following discusses the effects of the Malta agreements on 
municipal zoning schemes in the Netherlands, using Dalen as a case study.

Coevorden

Eelde

Gemert

Buren

figure 6.1 Locations of the four case studies discussed in the text.

6.2.1 	A rchaeological maps

To work archaeology into zoning schemes, use can be made of two maps developed jointly by the RACM and 
the provinces: the Map of Archaeological Monuments (AMK) and the Indicative Map of Archaeological Values 
(IKAW) (Deeben et al. 1997; 2002; Deeben 2008). The AMK contains all listed terrains containing known 
archaeological remains to be protected. The IKAW attempts to depict the unknown archaeological heritage by 
indicating the probability that archaeological remains will be found. 

6.2.2 	 Zoning scheme of drenthe province

The current provincial zoning scheme for the province of Drenthe (POP II) states that the consideration of 
archaeological interests at an early stage in the planning process is one of the basic principles of the Malta 
Convention. This means that municipal planning officers, when developing zoning schemes, must take into 
account both known and expected archaeological values. When some spatial development is intended outside 
a registered building plot, and in an area containing medium to high archaeological values, a preliminary 
archaeological assessment (IVO) is required.

6.2.3 	A rchaeology and zoning schemes

The protection of archaeological values can be arranged in a zoning scheme in various ways; this depends on the 
type of zoning scheme, which may serve to consolidate the current situation in the municipality27 or to prepare 
for new developments28. In the case of terrains listed on the AMK it is clear that these may be put in conservation 

26	 Section 6.2 was written by Ms Annet Boon, Couvorden, planning office, 27 Februari 2006.
27	 In Dutch “consoliderend bestemmingsplan”.
28	 In Dutch “ontwikkelingsgericht bestemmingsplan”.
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zones with associated protective measures, such as a system of construction permits29 or a construction ban with 
possibility of exemption30. The IKAW is an uncertain factor because of its predictive character, necessitating 
research to establish the presence of archaeological remains that are worth protecting. 

A consolidating zoning scheme is protective in character, and is not intended to enable radical new 
developments. In particular, there is no room for new housing developments – if these are desired, a separate 
scheme must be made. The preservation of archaeological remains in this kind of scheme is mainly guaranteed 
by the fact that no radical soil disturbing activities are foreseen. A zoning scheme aimed at enabling development, 
however, prepares for radical spatial developments in, for example, housing or restructuring of rural space. Here 
it is important that archaeological values are attended to at a very early stage.

6.2.4	C oevorden - Dalen

The figure below shows the situation of the rural zoning area Dalen, some 60 sq km in size and largely consisting 
of agricultural land. Small population centres and one large recreation park were excluded from the scheme. 

We used the following principles in deciding on the regulations for the protection of the archaeological 
values in this area:

protection of known values (AMK terrains) and plaggen soils1.	 31 through the exclusion of building 
activities outside designated building parcels, and the obligation to obtain permits for several types of 
soil disturbance. On plaggen soils this also serves to protect landscape values and culture-historical 
values.
in areas with a medium to high indicative value on the IKAW, spatial development is only allowed 2.	
if, following preliminary archaeological assessment (IVO), an exemption is obtained or a request for 
modification is granted32.
for the remaining areas of high indicative value, there is currently insufficient reason to insist on 3.	
regulations for the protection of archaeological values. Nor is it felt that they require protection, since 
the zoning scheme consolidates existing land use: the current zoning poses no threat to archaeological 
remains that are potentially present. A further substantiation/refining of the IKAW (or, alternatively, an 
extension of the AMK) will be needed for this to change.

6.2.5 	C onflicting views

The province of Drenthe feels that the above set of regulations does not provide sufficient protection for the 
archaeology in areas indicated by the IKAW. It therefore wants to impose on the municipality a system of 
construction permits in areas with a high indicative value33. The municipality, however, questions the validity 
of such a system for the protection of archaeological values that are not in fact known to be present. It is also 
concerned that the imposing of such a system will diminish its citizens’ support for archaeological research and 
management activities.

The crucial point in the whole issue of withholding consent for areas with a high indicative value (other 
than man-made soils) is, the municipality feels, whether the presence of indicative values is sufficient for the 
imposition of a system of permits. After all, the existence of archaeological values in these areas has not yet been 
attested by actual research. Coevorden objects to the fact that a system of permits for any soil disturbance going 
deeper than 30cm would impose a heavy burden (in terms of time and costs) on the operational management of 
the owners and users of these areas. Areas, again, that are not known to contain archaeological values.

29	 In Dutch “aanlegvergunningstelsel”.
30	 In Dutch “bouwverbod met vrijstelling”.
31	 A plaggen soils is a man-made (anthropogenic) soil consisting of sods brought in from surrounding areas to improve fertility. 

These thick soils cover, and therefore preserve, the original surface along with its archaeological remains.
32	 According to article 11 of the Spatial Planning Act (WRO).
33	 According to article 28 of the Spatial Planning Act (WRO).
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The municipality acknowledges the added value that an improved or refined map of archaeological monuments 
would have, but feels that this should not be linked to the consolidating zoning scheme Dalen – which does 
not allow any development - at this time. The production of such an improved or refined map would be very 
costly and time-consuming, and in any case would have to be made for the whole municipal territory (or 
better yet, the whole province) rather than for Dalen alone. The municipality believes that it is the government, 
and not individual citizens, that is primarily responsible for the production of such base data regarding the 
archaeological heritage. Only then can it expect to obtain support for the imposition of a permit system such as 
is already in place for terrains containing archaeological monuments.

We believe that the IKAW is not suitable for use at the municipal zoning scheme level for the following 
reasons:

it is based on a limited data set, consisting of soil data and the ARCHIS database of known archaeological •	
sites. Other relevant data, such as elevation data, cadastral minutes, aerial photographs and historical 
maps (also important for the precise delimitation of man-made soils) have not been used.
the resolution of the IKAW map is too low to be used at the level of individual parcels or the scale of •	
municipal zoning schemes.
it remains unclear by what criteria the high, medium and low indicative values were assigned; the •	
accompanying manual mentions no decision rules.
it is a predictive map, that does not tell us anything about the actual presence of archaeological sites or •	
about their size.

We therefore believe that, by withholding consent to large sections of the zoning map (including building 
parcels) and imposing a system of permits, the province of Drenthe is using heavy-handed and unjust means to 
protect archaeological values whose existence has not even been proved by actual observation.

6.3 	C ontesting policies based on the ikaw

6.3.1 	C oevorden-Dalen

In the case of Coevorden-Dalen, a new ‘consolidating’ zoning scheme was made for the agricultural zone 
of Dalen, which allows for development within areas indicated as of high or medium value in the IKAW on 
condition that appropriate exemptions to or modifications of zoning decisions are obtained34. The province of 
Drenthe has checked whether this scheme complies with the Provincial Zoning Scheme (POP II) and found that, 
under it, IKAW zones of high indicative value were insufficiently protected. An additional active measure35 was 
needed. The municipality feels that this is not justified in the case of expected (hence not proven) values.

Specifically with respect to the IKAW, the municipality is of the opinion that neither the mapping scale 
nor the construction and division of the indicative values into low-medium-high zones are sufficiently well-
founded, or are simply not applicable at the scale of typical zoning schemes. These criticisms have been shown 
to be valid by our research group.

The municipality furthermore is of the opinion that the existence of a merely potential site presence, as 
depicted by the IKAW, is insufficient reason to protect an area with a system of permits.

The Council of State opines that the presence of areas of high indicative value requires that the 
municipality conduct further archaeological assessments before deciding whether special zoning regulations are 
needed; since the municipality has not done this, provincial authorities were justified in withholding approval. It 
therefore rules that a new zoning scheme must be submitted.

34	 Following procedures described in article 11 of the Spatial Planning Act (WRO).
35	 A system of permits as described in article 28 of the Spatial Planning Act (WRO).
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6.3.2 	G roningen airport Eelde

In the case of “Groningen Airport Eelde grounds” the province of Drenthe approved the zoning scheme submitted 
by the municipality of Tynaarlo, whereas appellants including IVN (Society for Environmental Education, 
department of Eelde-Paterswolde) allege that this cannot be justified for land parcel D2905, the ecological and 
culture-historical values of which would be damaged.

The Council of State agrees with the appellants’ position because both a provincial report on archaeology 
and culture-history of plaggen soils (Spek and Ufkes 1995) and the IKAW show that, whilst this land parcel lies 
within an archaeologically valuable area, the lack of a preliminary archaeological assessment (IVO) means that 
these values are not protected by the regulations associated with the zoning scheme. Such a study should have 
been conducted in order to assess the significance of the potentially present archaeological values; and since it 
did not happen, provincial authorities should have withheld consent for this section of the zoning scheme.

In their written defence, the province of Drenthe state that it was the relatively low value of the plaggen 
soil in question that made them decide that no preliminary archaeological assessment was needed for this 
particular section of the zoning scheme – which was therefore approved. From this we can deduce that the 
province would, in the case of a man-made soil with a high indicative value, have withheld approval unless an 
assessment had taken place. In contrast, the Council opines that available data including the IKAW already 
show that the land parcel in question may be archaeologically valuable, hence an archaeological assessment 
exercise should have been conducted prior to the provincial review of the zoning scheme anyway.

6.3.3 	G olf course ‘de Batouwe’
In the case “Golfbaan de Batouwe”, appellant claims that the province of Gelderland has wrongfully withheld 
approval to part of the zoning scheme “De Batouwe 2002” submitted by the municipality of Buren. Specifically, 
the province withheld approval for the part containing the extension of the golf course, because the municipality 
wrongfully did not conduct an assessment of one of two terrains of archaeological value within the extension, 
nor did it have the remainder of the extension assessed – for which the IKAW indicates a medium-high value. 
The map belonging with the current municipal rural zoning scheme “Buitengebied 1997” indicates that the area 
of the extension is ‘of archaeological value’ besides being designated ‘Agricultural Zone’, hence there is the 
additional statutory duty to conduct an Environmental Impact Assessment (EIA)36. The appellant argues that 
the municipality did, in fact, conduct sufficient research into potentially present archaeological values in the 
part of the planning zone involving the golf course extension.

The Council of State, however, agrees with the position of the province, namely that the medium high 
archaeological potential indicated by the IKAW means that the whole of the area of the extension should have 
been assessed, rather than just one terrain. In view of this, the province was unable to establish whether the 
golf course extension complies with the 1996 provincial directive on the value, protection and strengthening of 
archaeological values; provincial approval was therefore withheld appropriately.

This case is therefore almost identical to the previous one, except for the fact that the Council, given 
the existing provincial directive, now evidently considers that a medium high indicative value on the IKAW 
is sufficient to stipulate archaeological assessment as a condition for zoning scheme approval. The indicated 
medium high value, in this case, obviously received additional weight from the presence of two terrains of 
archaeological value37.

6.3.4 	G emert-Bakel rural zoning scheme

The Council of State ruling on the zoning scheme “Buitengebied gemeente Gemert-Bakel 1998” is a rather 
complex one because of the large number of appellants and the diverse nature of the objections submitted. 
However, there was only one appellant whose objections to the approval of this zoning scheme by the province 

36	 In Dutch MER - Milieu Effect Rapportage.
37	 As registered in the Central Archive of Monuments (in Dutch “CMA-terreinen”).
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of Noord-Brabant are relevant for our purposes. This appellant objects to the fact that his properties were co-
designated an ‘archaeologically valuable terrain’, on the grounds that a) this designation puts too many restrictions 
on his agricultural practice (keeping dairy cattle), and b) the area does not in fact have an archaeological 
value.

The province argues that, in view of the medium high IKAW value, the finding in 1972 of Mesolithic 
materials, and the soil type ‘plaggen soils’, the co-designation as archaeologically valuable terrain with all 
its attendant rights and duties was justified. The Council agrees with these arguments and opines that the 
institution of normal exemption procedures does not unjustly burden the appellant or the requirement to obtain 
construction permits. It therefore rejects the appeal.

In this case, too, the medium high or high IKAW value is supported by the fact that archaeological finds 
had already been made in the vicinity.

6.4 	C onclusion

It is important to realise, in reading about these cases brought before the Dutch Council of State, that its 
remit is simply to check whether provincial authorities have abided by the pertinent laws and regulations, and 
whether they have done so in fairness. The Council does not concern itself with the accuracy or fairness of 
the archaeological values expressed in the IKAW. If it is not a specific policy of a province to require further 
research within areas of medium high indicative value before any zoning designations may be changed, then 
the province cannot appeal to such a requirement when withholding all or part of a zoning scheme. Conversely, 
objections concerning the content of the IKAW – such as the ones the municipality of Coevorden adduces 
in section 6.2 above – will not be considered by the Council as long as the IKAW is a policy map by formal 
decree38 of the province. It is therefore only during procedures for the determination of new provincial policies 
that an opportunity exists to successfully object to the contents and quality of the IKAW.

38	 In Dutch “vastgestelde beleidskaart”.
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Appendix 1 - Extract from Council of State ruling in case 200507106/1 (26 April 2006): Coevorden-
Dalen

Zaak 200507106/1: appellanten tegen gedeputeerde staten van Drenthe
Datum uitspraak: 26 april 2006

Standpunt van appellanten ten aanzien van de IKAW

2.8. Appellanten stellen in beroep dat verweerder ten onrechte goedkeuring heeft onthouden aan de plandelen 
op de plankaart die samenvallen met de gronden die op de Indicatieve Kaart Archeologische Waarden (hierna: 
IKAW) de aanduiding “hoge trefkans” hebben, onder gelijktijdige oplegging van een aanlegvergunningenstelsel 
voor elke bodembewerking dieper dan 30 centimeter.

Appellanten hebben aangevoerd dat de in de desbetreffende gronden aanwezige waarden geen aanleg-
vergunningenstelsel rechtvaardigen. Een stelsel waarbij aan het college van burgemeester en wethouders een 
vrijstellingsbevoegdheid is verleend of een bevoegdheid tot wijziging van een bestemmingsplan met daaraan 
verbonden een vereiste van voorafgaand archeologisch onderzoek biedt voldoende bescherming aan eventuele 
archeologische waarden in die gronden aldus appellanten.

Standpunt van verweerder

2.9. Verweerder heeft de plandelen die op de plankaart rood omlijnd zijn in strijd geacht met de goede ruimtelijke 
ordening en heeft daaraan goedkeuring onthouden. Hij stelt zich op het standpunt dat de gemeenteraad niet 
heeft gemotiveerd waarom de waarden in de binnen die plandelen gelegen gronden met de aanduiding “hoge 
trefkans” op de IKAW niet worden beschermd tegen bodemkundige bewerkingen. Volgens verweerder dienen 
deze gronden eveneens te worden bestemd voor behoud en herstel van de hierin aanwezige archeologische 
waarden.

Voor de gebieden waaraan goedkeuring is onthouden heeft verweerder met toepassing van artikel 28, vierde 
lid, van de WRO, een aanlegvergunningenstelsel opgelegd. Daartoe heeft hij een voorschrift gegeven waarin is 
bepaald dat een aanlegvergunningenstelsel van toepassing is, zoals opgenomen in de artikelen 3 tot en met 9 van 
de planvoorschriften en aanvullend ten aanzien van elke bodemkundige bewerking dieper dan 30 centimeter, 
waartoe worden gerekend het ophogen, afgraven, woelen, mengen, diepploegen, egaliseren en ontginnen van 
de gronden, alsmede het vergraven, verruimen en dempen van sloten en andere watergangen en het aanleggen 
van drainage, voor zover het gaat om de bescherming van archeologische waarden, categorie hoge trefkans/
verwachting (buiten de essen) en zoals nader is omschreven op kaartje B1 in oranje met geruite arcering/hoge 
verwachting (indicatieve kaart van archeologische waarden).

De vaststelling van de feiten

2.10. Een groot deel van de gronden in het plangebied heeft op de IKAW de aanduiding “hoge trefkans”.

2.10.1. Uit de plantoelichting volgt en ter zitting is bevestigd dat de gemeenteraad heeft beoogd de archeologische 
waarden in al deze gebieden te beschermen door alleen ruimtelijke ontwikkelingen mogelijk te maken 
nadat toepassing is gegeven aan een vrijstellingsbevoegdheid als bedoeld in artikel 15 van de WRO of een 
wijzigingsbevoegdheid als bedoeld in artikel 11 van de WRO, met de daaraan verbonden voorwaarde dat een 
gevraagde vrijstelling eerst kan worden verleend, dan wel het bestemmingsplan eerst kan worden gewijzigd 
nadat archeologisch onderzoek heeft plaatsgevonden. Het college van burgemeester en wethouders heeft in zijn 
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beroepschrift erkend dat verzuimd is een dergelijke regeling in de planvoorschriften op te nemen.

Uit de plantoelichting noch uit de planvoorschriften volgt dat de gemeenteraad heeft beoogd deze gebieden te 
beschermen tegen bodembewerkingen.

Het oordeel van de Afdeling

2.11. Het standpunt van verweerder dat de gebieden die op de IKAW de aanduiding “hoge trefkans” hebben, 
archeologische waarden kunnen bevatten acht de Afdeling niet onredelijk. Voorts is aannemelijk dat 
bouwwerkzaamheden en werkzaamheden als ophogen, afgraven, woelen, mengen, diepploegen, egaliseren 
en ontginnen van gronden, alsmede het vergraven, verruimen of dempen van sloten en andere watergangen 
en het aanleggen van drainage het bodemarchief onherstelbaar kunnen beschadigen en de daarin opgeslagen 
informatie verloren kunnen doen gaan.

Gelet op de stukken en het verhandelde ter zitting heeft de gemeenteraad beoogd aan de archeologische 
waarden in die gebieden bescherming te bieden tegen ruimtelijke ontwikkelingen (bebouwing) door dergelijke 
ontwikkelingen slechts mogelijk te maken na toepassing van een aan het college van burgemeester en wethouders 
te verlenen vrijstellingsbevoegdheid als bedoeld in artikel 15 van de WRO, dan wel een wijzigingsbevoegdheid 
als bedoeld in artikel 11 van de WRO.

Wat betreft bodemkundige bewerkingen bevat het plan geen voorschriften die aan de archeologische waarden in 
dat opzicht bescherming bieden. De gemeenteraad heeft in het besluit tot vaststelling van het bestemmingsplan 
niet gemotiveerd waarom geen bescherming van de archeologische waarden tegen bodemkundige bewerkingen 
behoeft te worden geboden, terwijl dat wel het geval is bij bouwkundige werkzaamheden. De in beroep door 
het college van burgemeester en wethouders aangevoerde stelling dat slechts sprake is van een verwachting van 
archeologische waarden en nog niet door onderzoek is aangetoond dat daarvan daadwerkelijk sprake is, is in 
dit verband niet deugdelijk, te minder nu de gemeenteraad zich blijkens het vorenstaande op het standpunt heeft 
gesteld dat aan de archeologische waarden wel bescherming toekomt. Gelet hierop heeft verweerder zich in 
redelijkheid op het standpunt kunnen stellen dat het besluit tot vaststelling van het bestemmingsplan in zoverre 
onvoldoende deugdelijk is gemotiveerd.

Verweerder heeft in de mogelijk aanwezige archeologische waarden een voldoende rechtvaardiging 
kunnen vinden voor het standpunt dat een aanlegvergunningenstelsel voor de bescherming daarvan tegen 
bodembewerkingen is aangewezen. Voor zover appellanten hebben aangevoerd dat het door verweerder 
opgelegde aanlegvergunningenstelsel, voor zover dit ziet op elke bodemkundige bewerkingen dieper dan 30 
centimeter, een onevenredige belemmering vormt voor de agrarische bedrijfsvoering, overweegt de Afdeling 
dat appellanten niet aannemelijk hebben gemaakt dat dergelijke bodemkundige bewerkingen noodzakelijk zijn 
binnen de reguliere agrarische bedrijfsvoering.

Voor zover appellant sub 1 heeft aangevoerd dat de begrenzing van de plandelen waaraan goedkeuring is 
onthouden zodanig is gekozen dat die zich uitstrekt over gebieden waar geen sprake is van een hoge trefkans, 
overweegt de Afdeling dat verweerder in dit verband is uitgegaan van ruimtelijke eenheden waarin gronden 
liggen met de aanduiding “hoge trefkans” op de IKAW. Uit de bij het bestreden besluit gevoegde kaart B1 blijkt 
dat de gekozen begrenzing niet tot gevolg heeft dat aan op zichzelf staande ruimtelijke eenheden waarin geen 
sprake is van een hoge trefkans volgens de IKAW goedkeuring is onthouden, zodat geen grond bestaat voor het 
oordeel dat verweerder niet in redelijkheid voor deze begrenzing heeft kunnen kiezen.
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Voor zover appellant sub 1 heeft aangevoerd dat de onthouding van goedkeuring aan de plandelen ten onrechte 
ook ziet op de bouwpercelen overweegt de Afdeling dat op de plankaart geen bouwpercelen zijn aangegeven, 
zodat verweerder daarmee bij de omlijning op de plankaart van de plandelen waaraan hij goedkeuring heeft 
onthouden geen rekening heeft kunnen houden. In de planvoorschriften zijn weliswaar voor alle bestemmingen 
afzonderlijke bebouwingsvoorschriften opgenomen, maar daarin zijn evenmin de locaties van de bouwpercelen 
aangegeven, zodat het voor verweerder in zoverre evenmin mogelijk was de gronden waarop de bouwpercelen 
liggen van de onthouding van goedkeuring uit te sluiten. Evenwel heeft verweerder blijkens het bestreden 
besluit geen bezwaar tegen de planvoorschriften inzake vaststelling van de bouwpercelen en evenmin tegen 
bouwwerkzaamheden op die bouwpercelen. Gelet op het bepaalde in artikel 30, eerste lid, van de WRO, dient de 
gemeenteraad na onthouding van goedkeuring aan het plan door verweerder, met inachtneming van het besluit 
van verweerder, binnen de in dat artikel genoemde termijn een nieuw plan vast te stellen. De gemeenteraad 
dient daarbij in acht te nemen dat verweerder geen bezwaar heeft tegen de planvoorschriften inzake vaststelling 
van de bouwpercelen en evenmin tegen bouwwerkzaamheden op die bouwpercelen. Wat betreft de periode 
dat de gemeenteraad nog geen nieuw besluit heeft genomen overweegt de Afdeling dat appellant sub 1 geen 
concrete bouw- en uitbreidingsplannen heeft gesteld waarvoor de onthouding van goedkeuring een belemmering 
vormt.



6 - Archaeological predictions contested

59

Appendix 2 - Extract from Council of State ruling in case 200205094/1 (22 October 2003): Groningen 
Airport Eelde 

Zaak 200205094/1: appellanten tegen Gedeputeerde Staten van Drenthe
Datum uitspraak: 22 oktober 2003

Ten aanzien van de cultuurhistorische waarden overweegt de Afdeling als volgt.

Blijkens de stukken maakt het perceel D2905 deel uit van de essen ten westen van Oosterbroek. In het provinciale 
rapport “Archeologie en Cultuurhistorie van essen in de provincie Drenthe” uit 1995 is de archeologische 
waarde van dit gebied omschreven als “Es of randzone bevat een waardevol(le) archeologische vindplaats of 
monument”. Voorts blijkt uit de Indicatieve Kaart Archeologische Waarden van de provincie Drenthe dat dit 
perceel wat betreft archeologische vindplaatsen voor het grootste deel een hoge verwachtingsgraad heeft en 
voor een klein deel een middelmatige verwachtingsgraad.

De Afdeling stelt vast dat ten tijde van het nemen van het bestreden besluit geen verkennend archeologisch 
onderzoek was verricht. Weliswaar heeft verweerder de gemeenteraad verzocht dit alsnog te doen alvorens tot 
uitvoering van het bestemmingsplan over te gaan, maar blijkens de stukken kan bescherming van eventuele 
naderhand opgespoorde waarden uitsluitend plaatsvinden door overleg met de projectontwikkelaar en niet op 
basis van een planvoorschrift.

Mede nu aan perceel D2905 wat betreft archeologische vindplaatsen grotendeels een hoge verwachtingsgraad 
is toegekend, acht de Afdeling deze vorm van bescherming, zonder dat ten tijde van het bestreden besluit op 
basis van een verkennend onderzoek inzicht was verkregen in mogelijk te beschermen archeologische waarden, 
ontoereikend.

Gelet op het ontbreken van de uitkomsten van het verkennende onderzoek ontbrak bij de voorbereiding van 
het bestreden besluit de nodige kennis omtrent de relevante feiten en af te wegen belangen ten aanzien van de 
(mogelijke) archeologische waarden ter plaatse van perceel D2905.

Het beroep van [appellanten sub 5] is in zoverre en het beroep van IVN Eelde-Paterswolde en andere is geheel 
gegrond, zodat het bestreden besluit op dit punt wegens strijd met artikel 3:2 van de Algemene wet bestuursrecht 
dient te worden vernietigd.

Gelet op voorgaande behoeven de overige bezwaren van appellanten ten aanzien van perceel D2905 geen 
bespreking meer.
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Appendix 3 - Extract from Council of State ruling in case 200206125/1 (16 July 2003): Golfbaan de 
Batouwe

Zaak 200206125/1: appellanten tegen Gedeputeerde Staten van Gelderland
Datum uitspraak: 16 juli 2003

2.5. Verweerder heeft reden gezien het plandeel dat betrekking heeft op de uitbreiding van de golfbaan in 
strijd met een goede ruimtelijke ordening te achten en heeft hieraan goedkeuring onthouden. Hij stelt zich op 
het standpunt dat ten onrechte geen onderzoek is gedaan naar het andere terrein van archeologische waarde 
binnen het deel van de uitbreiding, met cma-code 39B-A28. Verder is ten onrechte geen onderzoek gedaan 
naar het overige deel van de uitbreiding, waarvoor op grond van de Indicatieve Kaart Archeologische Waarden 
(IKAW) een middelhoge verwachtingswaarde geldt. Verweerder heeft voorts overwogen dat voor het deel van 
de uitbreiding met cma-code 39B-102 een m.e.r.-beoordelingsplicht geldt, nu deze gronden blijkens de plankaart 
van het geldende bestemmingsplan “Buitengebied 1997” zijn voorzien van de aanduiding “van archeologische 
waarde (AW)” naast de toegekende bestemming “Agrarisch Gebied A”. Hij stelt zich tot slot op het standpunt 
dat in relatie tot het draagvlakcriterium een gedegen onderbouwing van de uitbreidingsbehoefte van appellante 
in de plantoelichting ontbreekt.

2.6. Mede gelet op het advies van de Stichting Advisering Bestuursrechtspraak voor Milieu en Ruimtelijke 
Ordening van 4 april 2003 stelt de Afdeling vast dat blijkens de Archeologische Monumentenkaart (AMK) binnen 
het gedeelte dat voor de uitbreiding van de golfbaan is bestemd één terrein van hoge archeologische waarde is 
gesitueerd en verder nog een ander terrein van archeologische waarde aanwezig is. Deze terreinen zijn aangeduid 
met cma-code 39B-102 en 39B-A28. Blijkens de stukken heeft RAAP Archeologisch Adviesbureau in opdracht 
van de gemeente Buren een Aanvullende Archeologische Inventarisatie d.d. 16 maart 2000 uitgevoerd, waarbij 
alleen het terrein met cma-code 39B-102 is onderzocht. Appellante betoogt hierbij dat verweerder in het kader 
van het overleg ingevolge artikel 10 van het Besluit op de ruimtelijke ordening 1985 heeft geadviseerd alleen 
het terrein met cma-code 39B-102 te laten onderzoeken. Verweerder stelt zich daarentegen op het standpunt 
dat hij tijdens dit overleg voldoende duidelijk heeft gemaakt dat naar de gehele uitbreiding van de golfbaan 
archeologisch onderzoek dient te worden verricht.

De Afdeling is ongeacht deze communicatie tussen appellante en verweerder van oordeel, dat verweerder zich 
terecht op het standpunt heeft gesteld dat het uitgevoerde archeologisch onderzoek te beperkt is, nu niet het 
gehele uitbreidingsgebied is onderzocht. Dit gezien de middelhoge verwachting van archeologische vindplaatsen 
en het andere terrein van archeologische waarde met cma-code 39B-A28 binnen het gebied. Verweerder is 
derhalve niet in staat geweest om te beoordelen of de gehele uitbreiding van de golfbaan in overeenstemming is 
met de in het Streekplan Gelderland 1996 opgenomen essentiële beleidsuitspraak voor het landelijk gebied, dat 
archeologische waarden van groot belang zijn en zullen worden ontzien en waar mogelijk versterkt.

Als aanzienlijke potentiële milieugevolgen, die uit milieueffectrapporten naar voren zijn gekomen, vermeldt 
pagina 73 van de Nota van Toelichting effecten op bodem en water, geluidhinder, verkeersaantrekkende 
werking, gevolgen voor het landschap, de cultuurhistorie en de archeologie alsmede gevolgen voor de flora, 
fauna en ecologie.
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Appendix 4 - Extract from Council of State ruling in case 199903036/1 (17 July 2002): Buitengebied 
Gemert-Bakel

Zaak 199903036/1: appellanten tegen gedeputeerde staten van Noord-Brabant
Datum uitspraak: 17 juli 2002

2.13. [appellant sub 9] heeft aangevoerd dat verweerders ten onrechte goedkeuring hebben verleend aan het 
plan, in zoverre aan zijn gronden aan de [locatie sub 9] de medebestemming “Archeologisch waardevol terrein” 
is toegekend. Hij stelt dat deze medebestemming hem teveel beperkt in het agrarische gebruik van zijn gronden 
(melkrundveehouderij). Hij bestrijdt de archeologische waarde van het gebied.

Ook vreest hij schade aan zijn gewassen als gevolg van vernatting van zijn gronden, indien de slootpeilen in het 
gebied worden verhoogd met het oog op natuurontwikkeling.

2.13.1. Verweerders hebben geen aanleiding gezien deze plandelen in strijd te achten met een goede ruimtelijke 
ordening. Zij hebben in aanmerking genomen dat het gebied op de Indicatieve Kaart Archeologische Waarden 
met een middelhoge verwachtingswaarde is aangeduid en dat in 1972 nabij de woning van appellant vondsten uit 
het mesolithicum zijn gedaan. Gezien de vondsten uit het verleden, de bodemsoort (enkeerd- of esdekgronden) 
en de verwachte archeologische waarde, achten verweerders de medebestemming “Archeologisch waardevol 
terrein” aanvaardbaar.

Ten aanzien van de vrees voor vernatting, wijzen verweerders erop dat het aanleggen van drainage een oplossing 
kan bieden.

2.13.2. De gronden op de plankaart aangewezen voor “Archeologisch waardevol gebied”, zijn daarmee (mede)
bestemd voor de bescherming van in deze gronden aanwezige archeologische sporen.

Voor zover deze medebestemming een deel van het bouwblok van appellant betreft, geldt ingevolge artikel 
21, lid B, een verbod deze gronden te bebouwen. Burgemeester en wethouders zijn bevoegd vrijstelling van 
dit verbod te verlenen, indien het archeologisch belang zich niet hiertegen verzet en vooraf een deskundig 
advies is ingewonnen bij de heemkundekringen in de gemeente en de Rijksdienst voor Oudheidkundig 
Bodemonderzoek.

Voor zover de medebestemming ziet op een 20 tot 80 meter brede strook achter het bouwblok, geldt, dat voor 
een aantal, in lid C genoemde werkzaamheden, waaronder het diepwoelen of diepploegen van de bodem en het 
aanleggen van drainage – dieper dan 0.40 m – , een aanlegvergunning is vereist.

2.13.2.1. Het standpunt van verweerders dat het gebied te beschermen archeologische waarden kan bevatten, 
acht de Afdeling niet onredelijk gelet op de verwachtingswaarde die de Rijksdienst voor Oudheidkundig 
Bodemonderzoek van het gebied heeft en de in het verleden ter plaatse gedane vondsten. Dat deze waarden door 
de ophoging en verharding van een gedeelte van het bouwblok (in 1976) en door de ruilverkaveling geheel zouden 
zijn verdwenen, acht de Afdeling, mede gelet op het deskundigenbericht, niet aangetoond. Voorts is aannemelijk 
dat bouwwerkzaamheden en werkzaamheden als diepwoelen en diepploegen en het aanleggen van drainage 
het bodemarchief onherstelbaar kunnen beschadigen en de daarin opgeslagen informatie verloren kunnen doen 
gaan. Het opnemen in het plan van een bouwverbod gekoppeld aan een vrijstellingsprocedure dan wel een 
aanlegvergunningvereiste geeft het gemeentebestuur de mogelijkheid na te gaan in hoeverre archeologische 
waarden door die werkzaamheden worden bedreigd en biedt het de mogelijkheid zonodig voorwaarden stellen. 
Dat het volgen van deze procedure een onevenredige belemmering voor de agrarische bedrijfsvoering vormt, 
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is de Afdeling niet gebleken. Het gebied met de medebestemming betreft slechts een klein deel van de gronden 
van appellant. Voorts kan het met een aanvraag gemoeide tijdsbeslag blijkens het verhandelde ter zitting 
beperkt blijven tot enkele dagen. Bovendien heeft het gemeentebestuur zich bereid verklaard met appellant een 
convenant te sluiten over onderhoud en beheer, waardoor in de praktijk geen aanlegvergunning noodzakelijk 
behoeft te zijn.

2.13.3. Voor zover appellant vreest voor schade aan zijn gewassen als gevolg van vernatting, indien de 
slootpeilen in het gebied worden verhoogd met het oog op natuurontwikkeling, blijkt uit de stukken, waaronder 
het deskundigenbericht, dat veel agrariërs in het plangebied in toenemende mate kampen met verdroging en dat 
daarom het gemeentebestuur het voornemen heeft het water langer in het plangebied vast te houden. Uitvoering 
van dit voornemen betekent dat in droge gebieden sloten zullen verdwijnen of zullen worden verkleind/versmald 
en dat in de lager gelegen gebieden – waarin het perceel van appellant ligt – sloten zullen worden aangelegd of 
verruimd of opnieuw gedraineerd.

Naar hiervoor onder 2.5.3. is overwogen, is voor dergelijke werkzaamheden een aanlegvergunning vereist. 
Appellant kan zonodig een aanlegvergunning aanvragen voor het opnieuw draineren van zijn gronden dan wel 
gebruik maken van de rechtsbeschermingsmogelijkheden die de wet biedt, indien hij van mening is dat afgifte 
van een aanlegvergunning elders in het gebied vernatting van zijn perceel tot gevolg heeft. Daarmee zijn de 
belangen van appellant naar het oordeel van de Afdeling voldoende gewaarborgd.

2.13.4. Gezien het vorenstaande ziet de Afdeling geen aanleiding voor het oordeel dat verweerders zich niet in 
redelijkheid op het standpunt hebben kunnen stellen dat het plan op deze onderdelen niet in strijd is met een 
goede ruimtelijke ordening. In hetgeen appellant heeft aangevoerd ziet de Afdeling evenmin aanleiding voor het 
oordeel dat het bestreden besluit op dit onderdeel anderszins is voorbereid of genomen in strijd met het recht. 
Hieruit volgt dat verweerders in zoverre terecht goedkeuring hebben verleend aan het plan.

Het beroep van [appellant sub 9] is ongegrond.
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7. 	 Testing archaeological predictive models: a rough 
guide39

Philip Verhagen40

7.1 	 Introduction

Archaeological predictive modelling has been embraced for over 15 years as an indispensable tool for 
archaeological heritage management in the Netherlands. Predictive maps determine where to do archaeological 
survey when a development plan is threatening to disturb the soil. Despite this general acceptance of predictive 
modelling for archaeological heritage management purposes, there is a fundamental problem with the currently 
used predictive models and maps: it is impossible to judge their quality in an objective way. The quality of the 
models is established by means of peer review, rather than by quantitative methods. Only limited field tests are 
carried out, and they are not used in a systematic manner to improve the predictive models. Because of this lack 
of quantitative rigour, both in the model-building as well as in the testing phase, we cannot adequately assess 
the archaeological and financial risks associated with making a decision on where to do survey. Furthermore, 
no in-depth studies on predictive model testing have appeared since the papers published in Judge and Sebastian 
(1988). Because of this, the research project ‘Strategic research into, and development of best practice for, 
predictive modelling on behalf of Dutch cultural resource management’ (van Leusen and Kamermans 2005) 
defined as one of its objectives to analyze the potential of quantitative testing methods for predictive modelling, 
and to describe the consequences of applying these in practice. The current paper summarizes the results of this 
study, and presents some of its main conclusions. A more detailed account can be found in the next chapter and 
was recently published by Verhagen (2007).

7.2 	D efining predictive model quality

At least five criteria for predictive model quality can be given:

good models should provide an explanatory framework for the observed site density patterns. Just •	
predicting a high, medium or low probability is not enough, we should also know why the prediction 
is made. In practice, this means that so-called ‘inductive’ predictive models will never be satisfactory 
(see also Wheatley 2003 and Whitley 2004).
good models should be transparent. The model-building steps should be clearly specified, and the •	
results should be reproducible.
good models should give the best possible prediction with the available data set. This means that the •	
models have to be optimized.
good models should perform well in future situations. This implies that independent testing is an •	
indispensable part of establishing model quality.
good models should specify the uncertainty of the predictions. This is necessary to establish the risk •	
involved with classifying zones into high, medium or low probability.

As this paper is dealing with the quantitative aspects of model testing, it will not go into detail about the first 
two criteria involved. Archaeologists generally recognize the necessity of a satisfactory explanatory framework 
for a predictive model, even when in theory good predictive models might be produced with ‘blind’ inductive 
modelling. Similarly, a transparent account on the way in which the model is built is part of the normal scientific 
process, and should not be a problem in practice.

39	 This chapter has been published before as Verhagen 2008.
40	 ACVU-HBS, Amsterdam, the Netherlands.
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In most published accounts, predictive model quality is judged by establishing its ‘performance’. This is usually 
understood to mean a combination of the model’s accuracy and precision. Accuracy is equivalent to correct 
prediction: are most of the sites captured in the high probability zone of the model? Precision refers to the ability 
of the model to limit the area of high probability as narrowly as possible (see chapter 8 figure 8.1).

A predictive model will only be useful for archaeological heritage management purposes when it 
combines a high accuracy with a high precision. Kvamme’s gain41 is often used to measure model performance, 
as it combines the two criteria of accuracy and precision in one, easily calculated measure. But even when only 
using gain as a measure of model performance, we are already confronted with the problem of deciding whether 
the model is good enough. For example, equal gain values can be obtained with different values for accuracy 
and precision. A 0.5 Kvamme’s gain can be reached by including 60% of the sites in 30% of the area, or by 
including 80% of the sites in 40% of the area. So we can define an additional criterion for model quality: does 
it achieve the goals set by either authorities or developers? Surprisingly enough, these goals have hardly figured 
in discussions on predictive model quality in the Netherlands. An analysis of the performance of the Indicative 
Map of Archaeological Values of the Netherlands (Deeben et al. 2002: see chapter 8 figure 8.2) showed that 
Kvamme’s gain values range from 0.2 to 0.79 for different regions. And when the province of Limburg wanted 
to know whether it really had to protect 70% of its territory by means of an obligation to do survey, no attention 
at all was paid to the archaeological risks involved – nor did the financial risks a play a major role either. The 
question therefore is: can we actually establish these risks?

7.3 	G etting the best possible model

One way of dealing with the risks involved is by optimizing the predictive model. This implies finding the 
best possible trade-off between accuracy and precision. A class boundary has to be established between the 
high probability and low probability areas. As low probability implies that no archaeological interventions 
are obliged, it is important to find the best possible compromise. By shifting class boundaries, accuracy and 
precision can be changed, but increasing the model’s accuracy implies reducing its precision and vice versa. 
Kvamme (1988) developed the intersection method to find the optimal trade-off between the two, but other 
methods have been used as well, like gain development graphs (Deeben et al. 1997; Verhagen and Berger 2001). 
Optimization is independent of the modelling procedure used, as it is only a way of deciding where to place 
class boundaries. By imposing thresholds on minimum accuracy and precision we might not only control the 
risks involved to some extent, but it can also give us a baseline to compare between different predictive maps.

7.4	  Establishing model error with resampling

However, when we have established accuracy and precision, we’re only half way there. We need to have some 
idea of the uncertainty of the prediction involved as well. While the optimization of a predictive model might 
lead to the outcome that say 70% of the known archaeological sites is found within the high probability zone, 
this does not necessarily mean that this will be true for future cases. In all predictions and classifications, there 
is an error involved, and the larger this error is, the less useful our model will be. An early concern of predictive 
modellers therefore was the establishment of measures of the error of their predictions. This is not an easy thing 
to do, as it all depends on the availability of archaeological test data that constitute a representative sample of 
our study area. This is the primary reason why deductive modelling is to be preferred to inductive modelling. 
Even though deductive models are based on subjective weighting, we can always keep the archaeological data 
apart, and use it for testing purposes. With inductive models we do not have this option, so authors like Rose 
and Altschul (1988) and Kvamme (1988; 1990) developed several methods for simple validation (or internal 
testing) of inductive models. These methods were primarily intended to come up with a more realistic estimate 
of the classification error, while still using the model design data set. Simple validation methods however have 

41	 Specified as 1 – pa/ps, where pa=the proportion of area (precision) and ps = the proportion of sites (accuracy) covered by 
the tested probability zone of a predictive model (Kvamme 1988).
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not met with general approval in predictive modelling literature. Ebert (2000) for example stated that they are 
“a grossly inefficient way to determine if there is inhomogeneity in one’s data”, and Gibbon (2002) noted that 
all testing methods that use the data from which the model was derived have severe drawbacks (see also Rose 
and Altschul 1988).

The first option to be used for simple validation is split sampling. It withholds data from the available 
sample (usually 50%) to see whether the model is any good at predicting the data that is left out from model 
building. However, split sampling is not very useful for validation purposes, for two reasons. On the one hand, 
the split sample is not a truly independent sample, as it derives from the data set originally collected for model 
building. Only if we are sure that these original data were collected according to the principles of probabilistic 
sampling, we can consider the split sample to be an independent test data set. And on the other hand, we 
should always expect the model to show poorer performance with the split sample than with the design data 
set, as an inductive model will be optimized to this design set (Hand 1997). And since the stability of models 
based on small data sets will always be less than the stability of models based on large data sets, it is strongly 
recommended that the full data set is used for model building, especially since we now have much stronger 
internal testing methods available in the form of resampling.

Resampling techniques re-use parts of the complete data set in order to obtain a better estimate of the 
model’s error. The simplest resampling method available is cross-validation42. It refers to dividing the sample 
into a number of randomly chosen, roughly equal-sized subsets. Each subset is withheld from the analysis in 
turn, and a model is developed with the remainder of the data. The withheld subset is then classified using this 
model, and this is repeated until all subsets have been used. The total error rate is then determined by averaging 
the error rates of the subset classifications across the models. Cross-validation used in this way produces a less 
biased estimate of the true error rate (Hand 1997).

Cross-validation can be taken to extremes by withholding one observation at a time. This is also 
known as the ‘leave-one-out’ (LOO) approach, and is comparable to what is generally known as jackknife 
sampling43. This method was already used by Rose and Altschul (1988) and Kvamme (1988; 1990) to improve 
their predictive models. The final option to calculate error rates is by means of bootstrap sampling. Unlike 
jackknife sampling and cross-validation, bootstrap sampling does not divide the data set in a predefined number 
of subsets, but instead picks a random sample with replacement of size equal to the complete data set (so 
individual observations may be found in the ‘subset’ more than once; Hand 1997) A model is developed with 
each subset, and the error rate is determined at each analysis by using the complete data set (which of course 
contains no double observations). Current statistical opinion favours bootstrapping over jackknife sampling (see 
Efron and Tibshirani 1993).

The doubts expressed on the utility of simple validation methods for predictive modelling have more to 
do with a distrust of the data sets used for model building, than with the applicability of the validation methods 
themselves. Statisticians are quite clear that the application of resampling methods is good practice when it comes 
to estimating classification error, so resampling (and especially bootstrapping) can be a valuable technique to 
obtain error estimates for a predictive model, and it is equally applicable to deductive models. Resampling is 
currently also positioned as an alternative to classical statistical inference by some authors (e.g. Simon 1997). 
Lunneborg (2000) mentions a number of limitations of classical statistical (parametric) inference. Especially 
small sample size, small population size and the assumption of random sampling are limiting the application of 
standard statistical inference techniques. Resampling will in those cases generally offer better estimates of the 
population characteristics than classical inference methods, which rely heavily on the assumption of idealized 
statistical distributions. It can therefore also be of interest for the development of site density estimates and 
associated confidence intervals as well, provided we have control over the surveyed areas.

42	 Also known as rotation (Hand 1997); split sampling is sometimes also referred to as cross-validation, but this is not a correct 
use of the terminology. Baxter (2003) remarks that the term hold-out method is to be preferred for split sampling.

43	 However, jackknife error estimation deals somewhat differently with establishing the error rate (see Hand 1997).
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7.5 	O btaining independent test data

As noted, the best way to test a predictive model is by using an independent, representative data set. The testing 
method itself is irrelevant to this principle. Whether the independent data set is obtained by keeping data apart, 
or by collecting new data, it is imperative that the control data is a representative sample of the archaeological 
phenomena that we are trying to predict. In other words, we have to make sure that a data set of sufficient size 
is obtained through the principles of probabilistic sampling. This means that the following conditions should be 
met for independent data collection:

the sample size should be large enough to make the desired inferences with the desired precision;•	
the sampled areas should be representative of the study region; and•	
survey methods should be chosen such that bias in site recording is avoided.•	

An important obstacle to this is the difficulties of collecting data from many small survey projects, such as are 
usually found in archaeological heritage management. The number of sites identified in an individual small 
survey project will be very limited, so data from various surveys will have to be combined in order to obtain a 
sufficiently large test set. This not only implies collecting data from different sources, but also of varying quality, 
which will make it difficult to compare the data sets. There is also a strong possibility that the survey data will 
not be representative. Low probability areas for example tend to be neglected because the model indicates that 
there will be no sites (see e.g. Griffin and Churchill (2000) for an example from practice; Wheatley (2003) for a 
critique of this approach; and Verhagen (2005) for some cases of institutionalised bad habits).

Nevertheless, it seems a waste of data not to use ‘compliance’ survey data for independent testing, 
especially since it is a data source that has been growing rapidly and will continue to do so. However, there 
are some statistical and practical difficulties involved in establishing the actual amount of data needed for 
predictive model testing purposes. The standard procedures to calculate appropriate sample sizes can be found 
in any statistical handbook (e.g. Shennan 1997; Orton 2000), but these are based on the assumption that samples 
consist of two classes, like site presence-absence counts per area unit. While the ‘classical’ American logistic 
regression models are based on site/non-site observations in survey quadrats, in many other studies we are 
usually dealing with point observations of sites: samples with only one class. Furthermore, most of the time we 
do not know the proportion of the area sampled, which makes it impossible to specify statistical estimates and 
corresponding confidence limits of site density. And on top of that, we cannot predict the size of the area that 
should be sampled in order to obtain the required sample size, as long as we do not know the real site density in 
the survey area. This clearly points to the importance of making models that specify statistical estimates of site 
density and confidence limits based on probabilistic sampling. We could evidently use resampling techniques 
to make these calculations.

There are other sampling issues that must be taken into account as well, and especially the influence 
of survey bias. Unfortunately, methods and procedures for controlling and correcting survey bias have not 
featured prominently in or outside predictive modelling literature. The main sources of bias identified are:

the presence of vegetation, which obscures surface sites;•	
sediment accumulation, which obscures sub-surface sites;•	
sampling layout, which determines the number and size of the sites that may be found;•	
sub-surface sampling unit size, which determines if sites may be detected; and•	
survey crew experience, which determines if sites are actually recorded.•	

Orton (2000) mentions imperfect detectability as the main source of non-sampling error in archaeological survey. 
Correcting site density estimates for imperfect detectability is relatively easy – at least in theory. The task of 
bias correction becomes a question of estimating the detection probability of a particular survey. Obviously, this 
would be easiest if survey results were based on the same methods. This not being the case, a straightforward 
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procedure for bias reduction is to sub-divide the surveys into categories of detectability that can be considered 
statistical strata. For example, one stratum may consist of field surveys carried out on fallow land with a line 
spacing of 10 m, a second stratum of core sampling surveys using a 40 x 50 m triangular coring grid and 7 cm 
augers up to 2 m depth. For each of these categories, site density estimates and variances can be calculated, and 
must be corrected for imperfect detectability. The calculation of the total mean site density and variance in the 
study area can then be done with the standard equations for stratified sampling. Even though the procedure is 
straightforward, this does not mean that the estimation of detection probability is easy. For example, some sites 
may be characterized by low numbers of artefacts but a large number of features. These will be extremely hard 
to find by means of core sampling; they do stand a chance of being found by means of field survey if the features 
are (partly) within the plough zone; and they will certainly be found when digging trial trenches. A quantitative 
comparison of the success or failure of survey methods is therefore never easy, and very much depends on the 
information that we have on the prospection characteristics of the sites involved.

In practice, obtaining these may be an insurmountable task. Tol et al. (2004), who set out to evaluate the 
process of archaeological core sampling survey in the Netherlands and compare it to archaeological excavation, 
were forced to conclude that this was impossible within the constraints of their budget. This was not just a 
question of incompatibility of data sources, but also of a lack of clearly defined objectives for prospection 
projects. Consequently, the survey methods could not be evaluated for their effectiveness. However, in the context 
of predictive model testing, a way out could be found by settling for comparable surveys that are adequately 
described, analysing if there are any systematic biases that need to be taken into account, and using these data 
as the primary source for retrospective testing. This obviously implies that the factors that influence detection 
probability should be adequately registered for each survey project. This is far from common practice.

Registration of the fieldwork projects in the Dutch national archaeological database ARCHIS for example 
turns out to be erratic in the definition of the studied area and the research methods applied. It is impossible 
to extract the information needed for an analysis of detection probabilities from the database. Furthermore, a 
major problem with the delimitation of the surveyed areas is apparent. The municipality of Het Bildt (province 
of Friesland) contains 26 database entries, covering the entire municipality, and the neighbouring municipality 
of Ferwerderadeel has another 34. These 60 projects together take up 62.5% of the total registered area of 
completed research projects. However, most of the 60 entries refer to small core sampling projects, carried out 
within the municipalities’ boundaries, but without any indication of their precise location. Clearly, the fieldwork 
data in ARCHIS in its current form are not even suitable for rigorously quantifying the bias of archaeological 
fieldwork to zones of high or low probability. We are therefore forced to return to the original research project 
documentation to find out which areas have actually been surveyed, and which methods have been applied.

7.6 	C onclusions and recommendations

Testing of predictive models is an issue that is far from trivial. We are dealing with a problem that is closely related 
to the very principles of statistical inference and sampling. Without representative samples, our predictions will 
always be flawed, no matter whether we are building inductive or deductive models. Methods and procedures 
for dealing with biased data are still underdeveloped, even though statistical rigour is now somewhat relaxed 
by the development of resampling techniques. A fundamental hindrance to predictive model testing is found 
in the fact that standard survey procedures do not incorporate the specification of the factors influencing site 
detection. Furthermore, the current state of predictive modelling, at least in the Netherlands, does not allow us 
to clearly define the amount of data that has to be collected in order to achieve the desired model quality. Since 
the models are not cast into the form of statistical estimates of site density, it is impossible to specify the models’ 
current statistical precision, their desired precision, and the resulting necessary sample size to arrive at this 
desired precision. At the current state of affairs, the maximum result that can be attained is an estimate of the 
model’s accuracy and precision, based on unevenly documented compliance survey data sets.
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The recommendations resulting from this study are therefore straightforward: in order to seriously test predictive 
models, we should be using statistical estimates and confidence limits instead of pleasantly vague classes of 
high, medium and low ‘probability’. While the currently available survey documentation may yield sufficient 
representative data (after analysis and correction of survey bias), it also necessary that future survey campaigns 
should better take into account the principles of probabilistic sampling. This implies for example that, for testing 
purposes, low probability areas should be surveyed as well. Furthermore, to reduce the archaeological risk of 
development plans, clear norms should be defined for the accuracy and precision of predictive models. It is only 
then that predictive models will become useful tools for quantitative risk assessment.
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8. 	 Predictive models put to the test44

Philip Verhagen45

8.1 	 Introduction

8.1.1 	 Background

In 2002, the research project ‘Strategic research into, and development of best practice for, predictive modelling 
on behalf of Dutch cultural resource management’ (Kamermans et al. 2005; van Leusen et al. 2005) started 
out by identifying the research themes that were considered to be of great importance for the improvement of 
the quality of predictive modelling in the Netherlands. One of these themes concerned testing of currently used 
predictive models, as a means to assess their quality. Very little seemed to be known about the best way to test 
a predictive model, and in practice tests that have been carried out were limited, and have not been used in a 
systematic manner to improve the predictive models. At the same time, more and more data sets have become 
available for predictive model testing because of the enormous increase of archaeological research carried out 
in the Netherlands, following the ratification of the Valletta Convention. It was therefore decided that the subject 
should be studied in more detail in the second phase of the project. The current chapter is the result of this more 
detailed investigation, which has been carried out between January and July 2005.

The research questions defined for this study are:

can we identify testing methods that can measure predictive model quality in an unambiguous way, and •	
that will allow us to say whether model A is doing better than model B?
if these methods exist, what kind of predictive models do we need in order to apply them?•	
is testing really necessary? Can we perhaps deal with the issue of predictive model quality by defining •	
statistical probabilities and confidence limits?
and finally: do we have the data sets that will allow us to carry out predictive model testing in a rigorous •	
way? And if not, how can we generate these in the future?

These questions are addressed through a review of existing testing methods for archaeological predictive 
models, that have appeared in and outside archaeological literature since the late 1980s (sections 8.2, 8.3 and 
8.4). This analysis is followed by an exploration of the potential of currently available archaeological data sets 
in the Netherlands for predictive model testing purposes (section 8.5). In section 8.6, the question of suitable 
models will be addressed: what testing methods are applicable to different types of models, and can we identify 
the model types best suited for testing? In section 8.7, the conclusions and recommendations of the study will 
be presented.

8.1.2 	A  note on terminology

A test is a procedure for critical evaluation. It is a means of determining the presence, quality, or truth of 
something. As such, it is a central concept in statistics, where formal tests are used to compare between two 
samples, or between a sample and a statistical model. The goal of statistical testing is to decide whether there 
is a significant difference between the two, to accept or reject the ‘null hypothesis’ of no difference. This 
traditional way of statistical testing is not applicable to most predictive models. In general, predictive models 
are not cast into the form of a statistical model with estimates of the parameter of interest (e.g. site density) and 
the associated confidence limits of this estimate (see also section 8.4).

44	 This chapter has been published before in Verhagen, Ph. 2007.
45	 ACVU-HBS, Amsterdam, the Netherlands.



8 - predictive models put to the test

72

Instead, predictive models are usually the result of a classification procedure. Quantitative testing methods 
for classifications are based on the concept of correct prediction, and the term validation is often used for the 
comparison of a classification to the test data. In order to make this comparison, performance measures are 
calculated, most of which try to capture the error rate of the prediction.

In predictive modelling literature (and even in statistical handbooks), these differences are not spelled 
out. Instead, the terms performance, validation and testing are used in the context of predictive modelling 
without a clear definition of their meaning. It is therefore useful to introduce some basic definitions that will be 
used throughout this chapter.

predictive model •	 performance is the degree to which a model correctly predicts the presence or absence 
of archaeological remains. This does not mean the presence or absence of new, independently collected 
data. In fact, in most cases performance is only measured using the data set that was collected for 
setting up the model.
predictive model •	 validation is the act of comparing a test data set and a model, in order to establish the 
model’s performance. Again, this does not necessarily imply the use of new data.
predictive model •	 testing is the act of comparing a test data set and a model, in order to either accept or 
reject the model. This can only be done using independently collected data.

The fact that predictive model performance is most of the times calculated with the data set used for setting 
up the model is criticized by Wheatley (2003), who states that performance must mean the extent to which a 
model predicts new, independently collected data. While understanding his point, and agreeing with it, this is 
not current practice, and in describing the methods and techniques used, I will speak of performance regardless 
of the data set that is used for validation.

8.1.3 	E xpert judgement testing: an example from practice

In order to put the issue of predictive model testing into perspective, it is useful to start with an example 
from current practice. A watching brief46 performed by Lange et al. (2000) along the proposed gas pipeline 
between Andijk-West and Wervershoof (West-Friesland, province of Noord-Holland) perfectly illustrates how 
the process of archaeological heritage management functions in the Netherlands, and what conclusions were 
drawn from an ‘intuitive’ predictive model test. In fact, the watching brief report was recommended to me as an 
example of where such a test had proved the model to be wrong47.

The predictive model used to decide what part of the pipeline was to be monitored, was based on the 
theory that, in this particular area, settlement (dating from the Middle and Late Bronze Age) is confined to fossil 
tidal creek beds, which constitute the highest parts in the landscape48 (Ente 1963; IJzereef and van Regteren 
Altena 1991; Buurman 1996). Agricultural activities were located on the flanks of these creek beds. The area 
was restructured between 1972 and 1979 during a land redistribution program; this included land improvement 
by means of levelling. In consequence, it was supposed that the topsoil had been removed in most of the area, 
and that any archaeological remains in the restructured zone had been either severely damaged or lost.

The gas pipeline, with a total length of 7 km, had first been prospected by means of core sampling (de 
Jager 1999). As the core sampling survey did not reveal any archaeological finds, no prior evidence existed for 
the presence or location of archaeological sites on the pipeline. However, several sites were known to exist close 
the pipeline from archaeological research carried out during the restructuring program.

46	 The term watching brief is used here in the sense it is used in British archaeological heritage management: an archaeological 
monitoring operation during construction activities; while the term ‘monitoring’ is also sometimes used in this context (i.e. in 
Irish archaeological heritage management), in the Netherlands monitoring implies making observations at regular intervals 
on a site that is not under direct threat.

47	 Heleen van Londen (AAC Projectenbureau, University of Amsterdam), personal communication.
48	 The fossil creek beds have become the highest part in the landscape because of ‘relief inversion’; while the sandy creek bed 

deposits have retained their original volume, the surrounding areas with clay and peat have gradually subsided because of 
dehydration and oxidation.
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On the basis of the prospection results it was concluded that only 2.5 km of the pipeline was located in an area of 
high archaeological potential, and consequently the provincial authorities of Noord-Holland decided to impose 
a watching brief operation on this stretch only.

During the watching brief operation a substantial number of archaeological features was discovered, 
revealing a total of 6 Bronze Age and 2 Medieval ‘habitation clusters’. The diameter of the clusters ranged 
from approximately 25 to 80 meters. Between these ‘sites’, ample evidence for agricultural activity was found 
in the form of ditches, plough marks and parcel boundaries. The fact that the core sampling survey did not 
reveal any archaeological evidence in the watched zone is not surprising. Most of the evidence found during 
the watching brief operation consisted of archaeological features, which are very difficult to interpret in core 
samples. Furthermore, the density of artefacts in Bronze Age sites in this area is usually very low (Tol et al. 
2004)49, even though Lange et al. (2000) remark that in one place a ‘relatively large amount’ of pottery shards 
was found. In total however, they described only 61 pieces of pottery from the 8 discovered sites. In addition, 
199 pieces of bone and 22 fragments of stone were described. The total number of artefacts may have been 
higher, as it not usual practice to count artefacts that cannot be adequately described. Even when taking this 
into account, it is hardly surprising that the core samples did not reveal any archaeological evidence; these small 
amounts have very low detection probabilities when taking core samples.

Lange et al. (2000) concluded that the lower lying areas (the flanks of the creek beds) had to a large 
degree escaped destruction, and even in the higher areas a substantial amount of archaeological evidence could 
still be found. As the degree of destruction of archaeological features in the inspected area was much less than 
expected, Lange et al. (2000) decided to do a field survey (a ‘true’ watching brief) in the remaining 4.5 km of the 
pipeline. This resulted in the discovery of evidence for habitation in the low probability zone as well, consisting 
of a substantial amount of features and some finds.

The predictive model that was used to decide on the delimitation of the watching brief operation was 
therefore not adequate:

‘The results of the core sampling survey and the associated low expectation for archaeological values in the 
area are not confirmed by reality’ (translated from Lange et al. 2000, 45).

It also seems that a layer of dark soil that in places covered the archaeological features had not been interpreted 
during the core sampling survey as an important indication for the possible presence of archaeological remains. 
However, the assumption that habitation was confined to the creek beds, and agricultural activity to the flanks 
of the creek beds, was confirmed by the results of the watching brief operation. So, the predictive model had 
not been found wanting in its basic assumptions of site distribution, but in its assessment of the degree of 
disturbance of the area, and in its neglect of the off site zones.

Now, the interesting thing is that the prospection report by de Jager (1999) did not present a predictive 
map, although it does depict the extent of the sandy creek bed deposits as established by Ente (1963) as zones of 
potential archaeological interest. The report also indicates that archaeological features might still be preserved 
in the restructured areas, citing evidence from earlier prospection projects. Furthermore, it delimited several 
previously unknown zones with sandy creek bed deposits, some of which were located outside the area eventually 
selected for the watching brief operation. In the conclusions of the report however, it was stated:

‘Two settlements known from literature are intersected (…) In between, a lower lying area is found where no 
traces of Bronze Age occupation are expected’ (translated from de Jager 1999, 16).

The report also contained a recommendation to perform watching brief operations on almost all locations where 
sandy creek bed deposits had been found. The final selection of the area for the watching brief nevertheless 

49	 This is attributed to the poor quality of the pottery, which will weather easily.
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resulted in a more limited area. It therefore seems that the decision made was mainly based on de Jager’s 
conclusion that no traces of Bronze Age occupation would be found outside the selected zone, and that the 
uncertainties with respect to the remaining zone were not seriously considered.

Obviously, the whole watching brief operation was never intended to evaluate the results of the core 
sampling survey, and the conclusions drawn on the survey’s quality seem a bit too harsh. On the other hand, 
the prospection report failed to clearly indicate the limitations of the survey method chosen, and concluded too 
rapidly that the unwatched zone was of no interest at all.

From the watching brief report, three important conclusions can be drawn: firstly, watching briefs are 
a good method to evaluate predictive maps, as they uncover an uninterrupted stretch of soil, both in high and 
low probability areas, and permit the unobstructed observation of features and finds. A core sampling survey 
is much less suitable, and Lange et al. (2000) even recommend the watching brief as an alternative to survey, 
which in this case, where archaeological sites are extremely difficult to detect by other means, is a defendable 
position. Secondly, it can be concluded that the (political) decision on where to carry out the watching brief, 
was taken on the basis of de Jager’s final conclusions, and failed to take into account the uncertainties in the 
unwatched zones. And thirdly, it is clear that the results from the watching brief cannot be taken as proof that the 
model was wrong, even though sites were found where the archaeologists had not really been expecting them.

The point is, of course, that a ‘wrong prediction’ is often seen as a prediction in which the model 
failed to indicate the presence of archaeology. In this way of thinking, any observation that falls outside the 
high potential zone is proof that the model was wrong. A test of some kind has been performed, but one that 
takes a very strict view of model quality: the model should be able to predict all the important archaeological 
remains, or it fails. In practice, no predictive model will ever be able to conform to this standard. It is therefore 
of primary importance that we are able to define the quality of the model, both before and after testing. For this, 
it is inevitable that we use quantitative methods, and that we use test sets that are sufficiently large. The Andijk-
Wervershoof watching brief clearly fails on both accounts.

8.2 	M odel performance assessment

In this section, a number of methods will be discussed that deal with obtaining a measure of predictive model 
performance. Sections 8.2.1 to 8.2.4 and 8.2.6 discuss measures and techniques that have been used for model 
performance assessment in predictive modelling, with varying amounts of success. Sections 8.2.5 and 8.2.7 use 
some of these methods to judge the performance of some Dutch predictive models. In section 8.2.8 the effects 
of spatial autocorrelation and spatial association on model performance will be shortly investigated. In section 
8.2.9 finally, the utility of the reviewed techniques for model quality assessment is discussed.

For a better understanding of what follows, a distinction must first be made between the North American 
and Dutch practice of predictive model construction. In the United States, predictive models are often made 
using samples of land parcels (or ‘quadrats’) that either yield a site or a non-site observation. These can easily 
be transferred to grid cells in a raster GIS. The modelling, often by means of logistic regression techniques, 
then results in two models: a site probability model, and a non-site probability model. These are then compared 
to decide where to place the boundary between the ‘site-likely’ and the ‘site-unlikely’ zone (see also section 
8.2.4). Dutch models predict the relative density of sites in (usually) three zones of high, medium and low 
probability, based on point observations of sites only. This difference has consequences for the ways in which 
model performance can be established.

In predictive modelling literature the terms accuracy and precision50 are often used to describe model 
performance. In everyday language, accuracy is equivalent to correctness or exactness. Precision can be used 
as a synonym for exactness as well, but it also refers to the degree of refinement with which an operation is 
performed or a measurement stated. In predictive modelling however, accuracy takes on the meaning of correct 
prediction: does the model capture most of the sites? Precision in predictive modelling refers to the ability of the 

50	 Referred to as ‘specificity’ by van Leusen et al. 2005, 33.
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model to limit the area of high probability as narrowly as possible (figure 8.1). Accuracy and precision together 
determine the performance of the model (see also Whitley 2005b): a good model should be both accurate and 
precise. The term ‘model’ in fact only refers to the site-likely or high probability zone of a two-zone model. 
For a three- (or more) zone model, accuracy and precision can be determined per zone, as an indication of the 
performance of each individual zone.

Note that the definition of accuracy and precision in predictive modelling is different from its statistical 
meaning. Orton (2000a) states that statistical accuracy is ‘the difference between the sample’s estimate and the 
true value of the parameter’, and precision is ‘a range of possible values, a confidence interval, rather than a 
single value’.

  

Figure 8.1 The difference between accuracy and precision. The model to the left is 100% accurate: it captures 
all sites (the black lozenges) in the model (depicted in grey). The model to the right is less accurate, but more 
precise. 

Closely related to accuracy is the concept of gross error (Altschul 1988) of the model. This is the proportion of 
sites found in the site-unlikely zone of a two-zone model. Gross error in a model may lead to either unnoticed 
destruction of archaeological sites, or it can create unforeseen extra costs for mitigation measures or excavation 
in a development plan, as these zones will usually be without any form of legal protection. Altschul (1988) also 
defined the wasteful error of the model as the proportion of non-sites found in the site-likely zone of a two-
zone model. A wasteful error is a less serious problem from the point of view of archaeologists, but a model 
that contains a large amount of wasteful error is over-protective and may lead to higher costs for developers, as 
larger areas will have an obligation to do survey. The concept of wasteful error is only relevant to models based 
on site and non-site observations. In Dutch practice, non-site observations are not used for model construction, 
and wasteful error can therefore not be calculated. Gross error on the other hand can be used as a measure of 
model quality for Dutch models, as it only implies calculating the proportion of site observations outside each 
probability zone.

The risk of making a gross error is inversely related to that of making a wasteful error. High accuracy in 
a predictive model minimizes gross error, and high precision therefore minimizes wasteful error. Furthermore, 
the linguistic, ‘normal’ definition of accuracy implies that both types of error should be minimized. Statistical 
literature dealing with classification error therefore combines gross and wasteful error into one measure known 
as the error rate (Hand, 1997). The concepts of gross and wasteful error are somewhat similar to the Type I (false 
positive) and Type II (false negative) errors used for statistical hypothesis testing. However, the terms are not 
used in standard statistical textbooks, including those dealing with classification error, and Altschul’s definition 
therefore is specific to archaeological predictive modelling.
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8.2.1 	G ain and related measures

The most widely used method for model performance assessment is the calculation of the gain statistic of the 
model (Kvamme 1988b). Gain is calculated as follows:

s

a

p

p
G −= 1

where
pa = the area proportion of the zone of interest (usually the zone of high probability); and
ps = the proportion of sites found in the zone of interest.

If the area likely to contain sites in a region is small (the model is very precise), and the sites found in that area 
represent a large proportion of the total (the model is very accurate), then we will have a model with a high gain. 
Note that the gross error of a model is equal to 1 – ps. A similar measure, ps/pa or indicative value was used by 
Deeben et al. (1997) for the construction of the Indicative Map of Archaeological Values of the Netherlands 
(IKAW). The difference however is in the application of these measures. Whereas Kvamme’s gain is exclusively 
applied to assess model performance, ps/pa has been used as a criterion for classifying individual variables into 
categories of low, medium and high probability.

Even though Kvamme ironically remarks that a model with a negative gain should result in firing the 
model developer, this is only true when testing the performance of the high probability zone – the low probability 
zone of course should have a low gain. In the Netherlands, performance assessment has usually been restricted 
to the calculation of the ‘relative gain’ ps-pa, with theoretical values that can range from 1 to -1 (Wansleeben and 
Verhart 1992). This measure however has the disadvantage of not specifying precision and accuracy. A 40% 
relative gain can be obtained by 80% of the sites contained in 40% of the area, but equally well by 50% of the 
sites contained in 10% of the area. The latter is of course more precise, but less accurate.

Other performance measures have been suggested, like Atwell-Fletcher weighting (Atwell and Fletcher 
1985, 1987; Wansleeben and Verhart 1992; Kamermans and Rensink 1999). Verhagen and Berger (2001) pointed 
out that Atwell-Fletcher weighting is equivalent to normalizing ps/pa on a scale from 0 to 1, and it therefore 
belongs to the same category as Kvamme’s gain. Wansleeben and Verhart (1992) developed the Kj-parameter:
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where
ps > pa
pw = the proportion of the area without sites.

Kj is a measure that favours accuracy over precision. The correction factor pw was thought necessary because 
Kvamme’s gain can never reach the maximum of 1, as the value of pa in a model will never be equal to 0. There 
is therefore always a maximum gain value, dependent on the model itself. The parameter pw can then be used 
as a maximum gain correction. However, this correction is easier to apply in a raster GIS-context, where all 
individual raster cells have equal sizes51, and the number of ‘non-site’ cells is easily calculated, than in a vector-
based model, where polygons may be of very different sizes, and polygons with no sites may even be absent. In 
order to obtain the maximum possible gain of a model, model optimisation methods have been developed (see 
8.2.4).

51	 Obviously, the size of the raster cells will influence the value of pw.
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8.2.2 	M easures of classification error

The issue of classification performance testing is extensively covered by Hand (1997). He notes that performance 
testing may be done for two reasons: to compare classifiers52, and to obtain an absolute measure of performance. 
The most commonly used performance measure is the error rate, or rate of misclassification (i.e. the combination 
of gross and wasteful error). Hand points out that establishing the error rate, as the sole measure of performance, 
is not always what we are interested in. The different types of misclassifications may not be equally serious. 
This is exactly the case in predictive modelling, where gross error is usually considered to be more severe than 
wasteful error (Altschul 1988, 62-63).

Hand (1997) also offers a number of alternative measures of classification performance, in which he 
distinguishes four different flavours:

inaccuracy•	 , or the probability of misclassification – error rate is in this definition only seen as a measure 
of inaccuracy;
imprecision•	 , or the difference between an estimate and the true probability (i.e. accuracy in its statistical 
sense);
inseparability•	 , the similarity between different classes; and
resemblance•	 , the probability that a classification distinguishes between classes that are not there (Hand 
1997, 110).

The model performance measures for predictive modelling discussed above only deal with the issue of 
inaccuracy. Imprecision does play a role when methods of model validation are discussed, but inseparability 
and resemblance have not featured as important issues in predictive modelling literature, with the exception of 
Rose and Altschul (1988).

Hand (1997, 100-102) objects to the calculation of error rate for measuring classification performance; 
it can produce a too optimistic assessment of the model’s performance. He suggests using two other measures; 
the first one is called the Brier or quadratic score. This is basically the sum of squared deviations:
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where
j = the class of interest
i =the object of interest
n = the number of objects

( )ixj |δ  = the classification of object i (1 if correct, 0 otherwise)

( )ixjf |ˆ  = the estimated probability that object i belongs to class j

The second one is called the logarithmic score, and is defined as follows:
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Both these measure will weigh the errors, taking care that classification errors that are far ‘off the mark’ are 
considered more serious than those that are found close to the class boundary. Of course Brier and logarithmic 
scores will result in figures that are not directly comparable to the error rate, or to each other. An additional 
feature is that they are equally applicable to multi-class cases, but they can also be used to calculate gross or 

52	 The term classifier refers to the rule used for obtaining the classification.
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wasteful error separately. From a cultural resource management perspective, the seriousness of a classification 
error does not really matter: a gross error is a gross error and will have the same consequences, whether it is 
found close to the class boundary or far off. Brier and logarithmic scores are therefore not suitable as absolute 
indicators of archaeological predictive model performance. They could however be used to judge if it is any 
use to change the class boundary. A model with many gross errors close to the class boundary between the 
site-likely and site-unlikely zones can be improved greatly by shifting the boundary slightly towards the site-
unlikely class. With a model that contains many ‘bad errors’, substantially improving the accuracy might imply 
a dramatic decrease in precision (see also section 8.2.4 for more methods of model optimisation).

A statistical test, using the binomial distribution, can be used to establish confidence limits around a 
classification (Kvamme 1988b). As the classification of a predictive model that distinguishes between sites and 
non-sites is either right or wrong, the correctness of classification assignment represents a binomial distribution. 
The percent correct statistics can be considered as estimated mean probabilities of correct classification, and the 
corresponding confidence intervals can be calculated using the following equation:
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where
p = proportion of correct predictions
n = the number of sites; and

2
α/2z  = the appropriate z-value at the 100(1-α) percent confidence interval for p.

This is a potentially important statistic, as it will not only give an estimate of the statistical precision of our 
proportion of correct predictions, but it also tells us where we can expect the proportion of correct predictions 
estimate to lie when an independent test set is used. When the proportion of correct predictions from a test set 
is outside the specified confidence limits, then we should be very suspicious of the quality of the original model 
- or of the test set data. Kvamme also notes that the confidence intervals obtained can be inserted into other 
formulas, like the gain statistic, in which ps stands for the proportion of correct site prediction. It is therefore 
a potentially important test that can be used to combine performance measurement and statistical testing of 
a predictive model. However, I have not been able to track down a single case study for which it has been 
calculated.

Kvamme (1990) also introduced a more refined method of measuring model performance based on 
classification error measures. A 2x2 matrix is constructed, from which two performance statistics can be 
derived, the conditional probability and the reverse conditional probability (table 8.1-8.4; from Kvamme 1990). 
In a sample of site and non-site locations, the proportion of sites (Ps) is equal to 0.1, and the proportion of non-
sites (Ps’) is 0.9. On the basis of the sample, a model is made resulting in two zones, a site-likely zone (M), 
taking up 26.5% of the sampled area and a site-unlikely zone (M’), covering 73.5% of it. The 10% site locations 
are divided as follows: 8.5% in the site-likely zone (Ps ∩ m), and 1.5% in the site-unlikely zone (Ps ∩ m’). The 90% 
percent non-site locations are divided as follows: 18% in the site-likely zone (Ps’ ∩ m) and 72% in the site-unlikely 
zone (Ps’ ∩ m’).
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M M’

S Ps ∩ m = 0.085 
‘true positive’

Ps ∩ m’ = 0.015 
‘false negative’ Ps = 0.10

S’ Ps’ ∩ m = 0.18 
‘false positive’

Ps’ ∩ m’ = 0.72 
‘true negative’ Ps’ = 0.90

Pm = 0.265 Pm’ = 0.735

Table 8.1 The probabilities of percent correct assignment. M = model indicates sites, M’ = model indicates no site. 
S = site observation, S’ = non-site observation. Source: Kvamme (1990, 264).

By dividing the numbers in the matrix by the sum of the rows, the conditional probabilities are obtained (table 
8.2). These are the standard measures of model accuracy: 85% of the sites are found in zone M (where they are 
predicted), and 80% of the non-sites are found in zone M’ (where non-sites are predicted), with the corresponding 
classification errors of 15% and 20% respectively. Kvamme (1990) however states that is more important to 
know the probability of finding a site or non-site in each zone. 

M M’

S Pm|s = 0.85 Pm’|s = 0.15 Pm|s + Pm’|s = 1.00

S’ Pm|s’ = 0.20 Pm’|s’ = 0.80 Pm|s’ + Pm’|s’ = 1.00

Table 8.2 The conditional probabilities obtained from table 8.1.

This can be established by calculating the reverse conditional probabilities, which is done by dividing the 
numbers in the matrix by the sum of the columns (table 8.3). The probability of site presence in the site likely 
zone is 0.32, whereas it is only 0.02 in the site-unlikely zone.

M M’

S Ps|m = 0.32 Ps|m’ = 0.02

S’ Ps’|m = 0.68 Ps’|m’ = 0.98

Ps|m + Ps’|m = 1.00 Ps|m’ + Ps’|m = 1.00

Table 8.3 The reverse conditional probabilities obtained from table 8.1.

The performance of the model is then determined by comparing these probabilities to a by-chance model. In 
order to do this, the reverse conditional probabilities are divided by the by-chance (a priori) probabilities, taken 
from the right-hand column in table 8.1.

Ps|m/Ps,, for example, can then be translated as a ‘3.2 times better performance in site prediction than a 
by-chance model’. Incidentally, this figure equates to the indicative value (ps/pa) used by Deeben et al. (1997). 
The innovation is found in the other statistics, especially the performance for false negative and false positive 
outcomes. Obviously, this approach will only work when a model is made based on site and non-site data.
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M M’

S Ps|m/Ps = 3.2 
‘true positive’

Ps|m’/Ps = 0.2 
‘false negative’

S’ Ps’|m/Ps’ = 0.76 
‘false positive’

Ps’|m’/Ps’ = 1.09 
‘true negative’

Table 8.4 Performance statistics for the model from table 8.1.

In a later paper, Kvamme (1992, 14) stated that obtaining non-site data for model development and testing 
purposes from the surveyed zones is not to be advised, as these non-site locations will be close to site locations 
and therefore spatially auto-correlated with them (see section 8.2.8). The site-unlikely model (M’) developed 
with non-site locations from the surveyed zones will in those cases be very similar to a site-likely model (M). 
Gibbon et al. (2002) reached similar conclusions when trying to use non-site data from surveyed areas for model 
development. In order to overcome the problem, Kvamme proposes instead to sample the non-site locations 
from the background environment (i.e. the whole study area), and defends this by pointing out that sites usually 
occupy only a small proportion of the total area. The probability that a sample of non-sites taken from the 
background area actually contains a site is therefore very low, and will not drastically influence the outcome of 
the model (see also Kvamme 1988b, 402). The argument is not wholly convincing; when background non-sites 
are used for model development, the site-unlikely model (M’) will of course be very similar to a by-chance 
model. In fact, the whole procedure of taking separate background non-site samples then becomes unnecessary. 
The only thing that is needed is an estimation of the site to non-site ratio, which will come from the surveyed 
zones. 

8.2.3 	P erformance optimisation methods

In order to produce a model with maximum performance, optimisation methods have been developed to be used 
during model building. The best known of these, the intersection method, was introduced by Kvamme (1988b). 
It has especially been applied with logistic regression modelling (see e.g. Warren 1990a; 1990b; Carmichael 
1990; Warren and Asch 2000; Duncan and Beckman 2000), and is restricted to models that use a site/non-
site approach. As these models result in a probability map of site occurrence per grid cell, it is very easy to 
reclassify the map in, e.g., 10 categories of site probability, and compare these to the actual percentage of sites 
and non-sites contained in each probability zone. In this way, cumulative curves can be constructed of both site 
and non-site prediction accuracy. At the intersection point of the curves, the probability of gross error is equal 
to the probability of wasteful error. However, as Kvamme (1988b) notes, a trade-off could be made, sacrificing 
precision for greater accuracy if we want to decrease the gross error. The method is therefore very useful as 
a tool for the final classification of the model into zones of low and high probability, and provides an easily 
interpretable tool for making the trade-off between model accuracy and precision.

The Kj-measure (Wansleeben and Verhart 1992) was originally developed in the context of finding the 
optimum performance of a single-variable model as well. By calculating Kj for each individual category, the 
‘most successful’ category can be found. This category is then included in the model, and Kj is calculated again 
for the remaining categories. This procedure is repeated until all categories are included in the model. At each 
step, the relative gain (or any other gain measure) can be used as a measure of the performance of the model, and 
the cut-off point between high and low probability can be chosen on the basis of it. Verhagen and Berger (2001) 
took the step of combining the individual rankings into gain development graphs, which can easily be used to 
decide where to place the boundary between low, medium and high probability zones. Warren and Asch (2000) 
have published similar curves to be used with logistic regression models.
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Whitley (2005a) suggests to create multiple deductive models with a number of different modelling criteria, and 
compare these to a test data set in order to see which model best fits the data. This is an additional method of 
model optimisation, well suited for developing the best possible deductive hypothesis of site location.

8.2.4 	P erformance assessment of dutch predictive models

How well do currently used Dutch predictive models perform? A judgement of their performance can only be 
made using gain or gain-like measures, as the site/non-site approach to predictive modelling has never been used 
in the Netherlands. Furthermore, many predictive maps made in the Netherlands are not based on quantitative 
analysis, but on expert judgement, and do not provide sufficient information to judge both their accuracy and 
precision. The exception to the rule is the IKAW (Deeben et al. 1997) that was developed using the indicative 
value to decide whether a zone should be low, medium or high probability. In the papers published by Deeben et 
al. (1997; 2002), the performance of the predictive map is judged by comparing the values of pa and ps, without 
actually proceeding to presenting a measure of (relative) gain. This can however be easily calculated from the 
figures given, which are only provided for one of the thirteen archaeo-regions analysed. For this particular 
region, the Eastern Sandy Area, the figures presented in Deeben et al. (2002) are as follows (table 8.5):

pa ps Kvamme’s gain

low probability 0.629 0.249 -1.522

middle probability 0.193 0.222 0.130

high probability 0.178 0.529 0.663

Table 8.5 Performance statistics for the IKAW (Eastern Sandy Area).

From these figures it can be concluded that the model is not extremely accurate; only 52.9% of the known sites 
is captured in the high probability zone. However, it is relatively precise, as the high probability zone only 
takes up 17.8% of the area, and therefore the resulting gain of the high probability zone is quite high. When 
analysing the 2nd version of the IKAW (Deeben et al. 2002), substantial differences between regions can be 
observed. Kvamme’s gain values for the high probability zone vary between 0.20 (the loess area of Limburg) 
and 0.79 (the clay area of Zeeland) (figure 8.2). Whereas the 5 sandy Pleistocene areas, together taking up 51.1% 
of the Netherlands, exhibit very similar accuracy, precision and Kvamme’s gain values, the other areas show 
substantial differences in performance. Poor performance is observed for the loess area of Limburg and the 
dune area of Holland, whereas very good performance is found for the peat area of Friesland and clay area of 
Zeeland. These last two however ‘pay’ for their high gain values with very low accuracy. 

The IKAW is a quantitative model; RAAP Archeologisch Adviesbureau has produced expert judgement 
predictive maps for a number of years (see van Leusen et al. 2005). How well do these perform? Not all of them 
have been compared quantitatively to the distribution of archaeological sites, but two reports do provide such 
figures. The first one is the predictive map of the Roman limes in the province of Gelderland (Heunks et al. 
2003), which is primarily based on the distribution of fossil river channels dating from the Roman period. The 
figures presented in the report are as follows (table 8.6):
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pa ps Kvamme’s gain

low probability 0.387 0.048 -6.590

medium probability 0.394 0.520 0.156

high probability 0.219 0.378 0.180

Table 8.6 Performance statistics for the limes map of Gelderland (Heunks et al. 2003)

The sites involved for performance testing are all dated to the Roman period. Evidently, the map is not accurate 
in a quantitative sense. The model seems to be very good at explaining where no sites will be found.

0.64 

0.67 

0.78 
0.59 

0.61

0.64 

0.22 

0.79 

0.59 

0.52 

0.6 

0.63 

0.2 

0.45 

Figure 8.2 Kvamme’s gain values per archaeo-region for the 2nd generation IKAW.

The predictive map for the municipality of Ede, province of Gelderland (Heunks, 2001) shows quite a different 
picture (table 8.7).

This model is very accurate, capturing 79.4% of the sites in the high potential zone. However, it is not 
terribly precise, resulting in a Kvamme’s gain value of 0.411. The expert judgment maps were not optimised in 
a quantitative sense, which is reflected in the gain values calculated. In the case of the limes predictive model 
however, a quantitative optimisation would not have resulted in very accurate or precise outcomes either, as the 
sites seem to be relatively evenly distributed on the various landscape units distinguished. A large amount of 
sites is found in the medium probability zone, and it has to be pointed out that this refers to sites that have been 
checked in a desktop study for their location and content. Heunks et al. (2003) explain that the unit of riverbank 
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deposits (13.4% of the area with 23.9% of the sites) had been classified in the medium probability zone because 
it in fact consists of two zones, one of low and one of high probability, that could not be separated on the basis 
of the geological maps used. Evidently, the model could have been made more accurate by including these 
riverbank deposits into the high probability zone, but even then the gain of the model would not have been very 
high.

pa ps Kvamme’s gain

low probability 0.298 0.138 -1.166

medium probability 0.235 0.069 -2.419

high probability 0.467 0.794 0.411

Table 8.7 Performance statistics for the municipal map of Ede (Heunks 2001)

8.2.5 	C omparing classifications

When comparing models, our main interest lies in knowing whether there is a difference between the original 
model and the new model, irrespective of whether this is based on new data or on data that was kept behind 
as a test set. One simple method to obtain information on the difference between two classifications is the 
calculation of the kappa coefficient.

In order to quantify the difference between two classifications, an error matrix of the classifications in 
both models is made. Especially when dealing with raster GIS-models, we can calculate the number of grid cells 
that were classified differently in each model. From the error matrix a measure of model stability, the kappa 
coefficient, can be calculated. The kappa coefficient was developed by Cohen (1960) to measure the degree of 
agreement between models, after chance agreements have been removed. It was recommended as standard 
procedure for measuring remote sensing classification accuracy by Rosenfield and Fitzpatrick-Lins (1986), and 
has been used by Hobbs et al. (2002) to measure the stability of the MnModel. Kappa is calculated as follows 
(Banko 1998)53:
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where
po = observed agreement
pe = expected agreement

The expected agreement is the ‘by chance’ probability of agreement between the models. In the case of a 
classification into three categories, the probability of agreement between the models is 1/3. The probability 
of each grid cell combination of the models in a by chance agreement is 1/9; there are 3 possible agreement 
combinations, so the overall agreement probability is 1/3.

In order to obtain the value of po, the actual proportion of cells in agreement is calculated. The resulting 
value of kappa will be a number between -1 (perfect disagreement) and 1 (perfect agreement). The variance 
of kappa can be also calculated to test whether the classification accuracy differs significantly from chance 
agreement. However, this calculation is much more complex (Hudson and Ramm, 1987):

53	 Calculation of the kappa coefficient, but not its variance, is included as a standard tool in Idrisi.
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The kappa coefficient can be used to measure the difference between a classification and a random classification, 
and between two classifications.

8.2.6 	C omparing classifications: an example from practice

In 2003, RAAP Archeologisch Adviesbureau produced a revised version of the IKAW for the province of 
Gelderland54. For financial reasons, the provincial authorities did not commission a complete revision of the 
base maps (i.e. the soil maps and palaeo-geographic maps of the area), but only a reclassification of the units 
used for the IKAW, as it was felt that the IKAW contained too many classification errors. The archaeological 
data set was thoroughly screened and revised, and the reclassification was done using expert judgment instead 
of quantitative optimisation. At the time, the resulting map was not compared quantitatively to the IKAW, and 
no report has appeared to justify the reclassification made. However, since the base material was identical to 
that used for the IKAW (2nd generation; Deeben et al. 2002), it is very easy to compare the classifications (table 
8.8; figure 8.3).

54	 As part of the map of cultural historical values of Gelderland (Gelderse Cultuurhistorische Waardenkaart, or GCHW).
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high medium low total

IKAW (km2) 1203.99 1035.2 2538.96 4778.15
% 25.20% 21.67% 53.14%
GCHW (km2) 1121.49 1504.61 2138.31 4764.41
% 23.54% 31.58% 44.88%

IKAW, number of sites 3157 1831 1430 6418
% 49.19% 28.53% 22.28%
GCHW, number of sites 3144 2269 981 6394
% 49.17% 35.49% 15.34%

IKAW
Kvamme’s gain 0.49 0.24 -1.38
relative gain 23.99% 6.86% -30.86%
ps/pa 1.95 1.32 0.42

GCHW
Kvamme’s gain 0.52 0.11 -1.93
relative gain 25.63% 3.91% -29.54%
ps/pa 2.09 1.12 0.34

IKAW, no. of observations 4458 2517 1914 8889
% 50.15% 28.32% 21.53%
GCHW, no. of observations 4330 3141 1391 8862
% 48.86% 35.44% 15.70%

IKAW
Kvamme’s gain 0.50 0.23 -1.47
relative gain 24.95% 6.65% -31.60%
ps/pa 1.99 1.31 0.41

GCHW
Kvamme’s gain 0.52 0.11 -1.86
relative gain 25.32% 3.86% -29.18%
ps/pa 2.08 1.12 0.35

Table 8.8 Comparison of performance of the IKAW and the GCHW-maps. The comparison is made using both the 
screened archaeological data-set (number of sites) and the original ARCHIS observations.
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The reclassification resulted in a smaller area of low probability, with a lower gain. The area of medium 
probability is substantially increased, but its gain is smaller, so it better complies with the demand of neutral 
predictive power. For the high probability zone, very little changed, although some improvement in gain can be 
observed. Even though the archaeological data set was screened, and reduced by about 28%, the performance of 
the models based on the screened data set is not very different from the old data set. The shifts in classifications 
are given in table 8.9 (the totals are slightly different because of the occurrence of no data zones, that are also 
defined differently).
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area IKAW sites IKAW area GCHW sites GCHW

Figure 8.3 Comparison of the IKAW and GCHW maps, based on the screened archaeological data set.

The kappa-coefficient is 0.498, which points to a moderate difference between the classifications (66.5% of 
the area retains its original classification). When looking at the shifts between categories, the high and low 
probability categories seem to remain relatively stable (resp. 74.0% and 70.0% keep the IKAW-classification). In 
contrast, only 49.4% of the medium probability area is retained, and 33.6% of it is reclassified as low probability. 
In absolute figures however, the 29.3% of the low probability area reclassified as medium probability contributes 
more to the total area of medium probability, leading to a larger medium probability zone than before. More 
interesting is the fact that 41.2% of the sites initially found in the low probability zone are now contained in 
the medium probability zone, whereas only 8.7% of the sites originally located in medium probability are now 
found in the low probability zone. The main effect of reshuffling the categories has been that the number of sites 
contained in low probability zones has been reduced by 31.0%. This points to the fact that the archaeologist 
responsible for the reclassification primarily aimed at reducing the gross error of the model.
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km2 GCHW-high GCHW-medium GCHW-low Total IKAW

IKAW-high 888.031 265.054 46.9223 1200.007

IKAW-medium 175.631 510.888 347.762 1034.281

IKAW-low 17.5613 727.929 1741.27 2486.76

Total GCHW 1081.223 1503.871 2135.9543 4721.049

Shift IKAW-GCHW in %area GCHW-high GCHW-medium GCHW-low

IKAW-high 74.00% 22.09% 3.91%

IKAW-medium 16.98% 49.40% 33.62%

IKAW-low 0.71% 29.27% 70.02%

number of sites GCHW-high GCHW-medium GCHW-low Total IKAW

IKAW-high 2662 426 53 3141

IKAW-medium 413 1257 160 183

IKAW-low 69 586 768 1423

Total GCHW 3144 2269 981 6394

Shift IKAW-GCHW in %sites GCHW-high GCHW-medium GCHW-low

IKAW-high 84.75% 13.56% 1.69%

IKAW-medium 22.57% 68.69% 8.74%

IKAW-low 4.85% 41.18% 53.97%

Table 8.9 Comparison of IKAW- and GCHW-classifications.
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8.2.7 	S patial autocorrelation and spatial association

Spatial autocorrelation refers to the fact that objects that are close together, tend to have similar characteristics. 
Whitley (2005b) distinguishes between first-order autocorrelation (i.e. that archaeological sites tend to be located 
close together) and second-order autocorrelation - the first-order autocorrelation is influenced by variables 
that (unconsciously) determine spatial decisions, and these are the very variables that we use for predictive 
modelling. The issue has not been studied in detail by archaeologists, and there is no consensus on whether it is 
something that always needs to be avoided or that can be used to advantage in predictive modelling. Especially 
second-order spatial autocorrelation seems at first sight advantageous to predictive modellers, as it may be a 
strong predictor of site occurrence (Millard 2005). And in fact, spatial autocorrelation (and anti-correlation!) 
is used extensively for prediction and interpolation purposes in the field of geo-statistics. It is however clear 
that first-order spatial autocorrelation has a strong effect on the outcome of significance tests (Kvamme 1993), 
and Millard (2005) points out that neglecting the effects of spatial autocorrelation in archaeological predictive 
modelling leads to an overestimation of the predictive power of the models (see also van Leusen et al. 2005: 
67-68). The use of spatially auto-correlated data sets for statistical inference will result in an overestimation 
of statistical significance, leading to inflated performance statistics and narrower confidence intervals. It is 
therefore advisable to correct for spatial autocorrelation in the archaeological site data. In order to measure 
spatial autocorrelation between objects, two indices are often used, Moran’s I55 and Geary’s c56. Kvamme 
(1993) suggests a method using Moran’s I for calculating the ‘effective sample size’, in order to correct the 
over-optimistic estimates that will be obtained using auto-correlated data. This is a straightforward and useful 
technique to prevent spatial autocorrelation influencing both the construction of a predictive model, as well as 
the measurement of its performance.

One way to use spatial autocorrelation for model testing is as a means to detect ‘outliers’ in a model. If 
the residuals of a logistic regression model exhibit spatial autocorrelation, then we can be reasonably confident 
that one or more explanatory variables are missing in the model. However, as far as can be judged, an analysis 
of the residuals of logistic regression models has never been published, at least not in ‘white’ literature.

Spatial association (also known as spatial cross-correlation) is the amount of correlation between two 
spatial variables. Spatial association should be analysed in the preliminary stages of model building, where 
correlation between the input variables for a model needs to be checked. A simple procedure to detect spatial 
association by calculating Moran’s I on the covariance between two maps is described by Kvamme (1993), but 
other measures are available as well, like the one developed by Goodchild (1986)57. Bonham-Carter (1994) 
suggests a technique that can be used with predictive models that are based on site density transfer mapping, 
and that use more than one variable. The ratio of observed to predicted sites (the indicative value) per area unit 
in the model can in those cases serve as a measure of violation of the assumption of conditional independence 
of the variables, as the sum of the predicted probabilities per area unit should equal the number of observed sites 
in the case of complete independence.

The use of spatially correlated data sets for constructing predictive models of any kind should be strongly 
discouraged, as it will have an effect on the outcome of statistical significance testing. Millard (2005) points out 
that logistic regression models do not provide a safeguard against spatial association, and may therefore produce 
apparently statistically valid correlations while in fact using spatially associated datasets.

8.2.8 	S ummary and discussion

In the current section I have so far reviewed criteria and measures for the assessment of model performance 
(8.2.2 and 8.2.3), and measures and methods for optimising model performance (8.2.4 and 8.2.6), but have 
refrained from discussing their utility for the task in hand – namely, to give an adequate description of predictive 

55	 Included as a standard tool in Idrisi and ARC/INFO GRID.
56	 Included as a standard tool in ARC/INFO GRID.
57	 Incorporated in ARC/INFO GRID as a standard tool.
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model quality that can be used in a meaningful way in a cultural resource management context. Here I will 
highlight the problems with using the existing measures for model performance assessment, and present my 
views on how to proceed.

Performance assessment of archaeological predictive models can be done using two approaches: the 
calculation of gain and gain-like measures, and the calculation of classification error. The latter approach has, to 
date, not been used for model performance assessment in the Netherlands, as Dutch predictive modellers have 
not adopted the American site/non-site approach; this is because of a lack of controlled survey data available 
for model construction (see section 8.4; Brandt et al. 1992). Almost all models published up to date in the 
Netherlands have adopted a three-zone classification of high, medium and low probability of site occurrence, 
using ‘site density transfer’ mapping. These zones are defined either intuitively or by relatively simple weighted 
overlay mapping58. In order to calculate classification error, classes must be mutually exclusive: a site cannot 
be a non-site, and if one is found in the ‘non-site’ zone, then we have a classification error. If a classification 
only establishes zones of relative density, as with Dutch predictive maps, we cannot say that any single site is 
incorrectly classified and classification error methods then cannot be used. For the same reason, the intersection 
method of model optimisation for trading off accuracy and precision has not been applied in Dutch predictive 
modelling either. However, performance optimisation is inherent to the procedures followed for building the 
IKAW model: Deeben et al. (1997) used cumulative curves of site proportions to decide where to place the 
boundary between low, medium and high probability.

Kvamme’s gain is the only measure that can easily be transferred to Dutch predictive modelling practice, 
and in fact the alternative performance measures that have been suggested by Dutch predictive modellers, like 
the ‘indicative value’, Atwell-Fletcher weighting, relative gain and Kj are all very similar in nature to Kvamme’s 
gain.

Some authors have criticized the use of gain measures for performance assessment because of the 
inbuilt assumption of comparison to a ‘by chance’ model (Whitley 2005b). They claim that a model performing 
better than a ‘by chance’ model is nothing to be proud of, and could easily be made using the wrong modelling 
assumptions and parameters. While this is true, from a cultural resource management perspective a model 
should be accurate and precise in the sense used in predictive modelling. The ‘by chance’ model is the worst 
performing model imaginable, and it therefore makes sense to calculate performance measures this way.

Gain combines the two performance criteria of accuracy and precision in one, easily calculated measure. 
However, it does not fully cover the issue of performance assessment. Equal gain values can be obtained with 
different values for accuracy and precision. A 0.5 Kvamme’s gain can be reached by including 60% of the sites 
in 30% of the area (model A), or by including 80% of the sites in 40% of the area (model B; see table 8.10). 
In model A, the risk of encountering a site in the low probability zone is greater than in model B, which is 
reflected in Kvamme’s gain values of resp. -0.75 and –2.0 for the low probability zone. An assessment of model 
quality should therefore include performance measures for the low probability or site-unlikely zone as well, and 
preferably a comparison measure of the two zones as well. This is easily done using the ratio of the indicative 
value (ps/pa) for each probability zone. For model A, the ratio of indicative values of the high and low probability 
zone is equal to 2.0/0.57 = 3.559; for model B, this ratio is 2.0/0.33 = 6.0, indicating a better performance for 
model B. However, even when using all these three measures it may be still be difficult to decide what is the 
best performing model. This is illustrated by the fact that a ratio of indicative values of 6.0 can also be obtained 
by model C, containing 90% of the sites in 60% of the area; this model has a Kvamme’s gain of 0.33 for the 
high probability zone, and of –3.0 for the low probability zone. Intuitively, one would judge this model to be 
performing worse than model B because of the low gain in the high probability zone, and the lower relative 
gain of 30% instead of 40%. But in fact, it may be a very good model for spatial planning purposes, as its low 

58	 Incidentally, this type of predictive modeling is not absent in North-American predictive modeling, but it does not figure as 
prominently in literature on the subject (with the notable exception of Dalla Bona 1994; 2000). Even intuitive models are used 
in the United States (see e.g. Griffin and Churchill 2000).

59	 This equates to stating that in model A, the probability of finding a site in the high potential zone is 3.5 times higher than in 
the low potential.
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probability zone has a very low probability of encountering sites and greatly reduces the archaeological risk in 
40% of the area.

The use of medium probability zones poses an additional problem for model performance assessment. 
Because these are zones of no predictive power, they mainly serve to minimize the zones of high and low 
probability. The gain of the high and low probability zone will then always be inflated, and will not give a good 
impression of the performance of the whole model – in the end, we are not particularly interested in a model 
where the majority of the study area is medium probability. Depending on whether we want to emphasize 
accuracy or precision, the medium probability zone should be included in the high or low probability zone 
for model performance assessment purposes. For the Eastern Sandy Area of the IKAW the calculated gain of 
0.663 (see section 8.2.5) for the high probability zones becomes a gain of 0.506 when including the medium 
probability zone.

ps(high) pa(high) ps(low) pa(low) Kvamme’s gain indicative value ratio i.v.

Model A 0.6 0.3 0.4 0.7 0.5 
-0.75

2.0 
0.57 3.5

Model B 0.8 0.4 0.2 0.6 0.5 
-2.0

2.0 
0.33 6.0

Model C 0.9 0.6 0.1 0.4 0.33 
-3.0

1.5 
0.25 6.0

Table 8.10 Example of different performance characteristics of three hypothetical predictive models. Model B 
performs better while having the same gain as model A for the high probability zone. However, model C may be 
the best for spatial planning purposes.

The issue of defining model performance goals has rarely featured in predictive modelling literature, although 
some exceptions are found. The state-wide predictive model of Minnesota (MnModel) for example was to 
capture 85% of all sites in no more than 33% of the area, equating to a Kvamme’s gain value of 0.61 (Hobbs 
2003). Gibson (2005) indicates that a ‘good working model’ should have at least 70% of all sites in no more 
than 10% of the area, resulting in a Kvamme’s gain value of 0.86 or more, which is a very high standard of 
performance. It can however be doubted if very high gains are attainable goals for many predictive models. 
Ducke and Münch (2005) believe that gain values of around 0.5 may be very typical for European predictive 
models. Ebert (2000) states that the ‘reported accuracies of inductive predictive modelling seem to hover in 
the 60-70% range’. Assuming that he refers to accuracy in the sense that it has been used above, this means 
that the high probability zones of predictive models never capture more than 70% of the site observations. This 
relatively low accuracy of many predictive models may partly be due to the model performance optimisation 
methods used and to the lack of predefined goals for performance; especially the intersection method is meant 
to offer the ideal compromise between the demands of accuracy and precision. As Kvamme (1988b) pointed 
out, accuracy may be increased with this method, but only at the cost of decreasing precision. The underlying 
problem therefore is that many models are not precise enough, and Ebert pessimistically concludes that they 
will not become any better.

From the point of view of protection of the archaeological heritage, accuracy is a much more important 
characteristic of a predictive model than precision. Low accuracy implies a high archaeological risk, because 
any area that is classified into the low probability or site-unlikely category will be threatened more easily. 
Spatial planners will feel that these areas can be developed with less risk, and will tend to have a preference for 
low probability instead of high probability zones. Furthermore, in most cases there will be no obligation to do 
survey in these areas. This means that the less accurate a model is, the higher the archaeological risk will be in 
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the low probability zones. In establishing criteria for model quality, accuracy should therefore come first, and 
precision second. In this way, it is also much easier to compare the performance of predictive models. By fixing 
the desired accuracy of a model to a predefined level, models can only ‘compete’ on precision. It is then very 
easy to decide which model performs best, and the, sometimes confusing gain measures are no longer necessary 
for performance assessment. However, it also means that we sometimes will have to content ourselves with a 
model that is not terribly precise.

In everyday practice, archaeologists working in archaeological heritage management are not overly 
concerned with quantitative quality norms for predictive models. They usually equate a predictive model to a 
theory of site location preferences, not to a statistical model, and this is what they expect a predictive map to 
depict. A very simple example is found in the fact that in the Dutch coastal and fluvial areas, it is essential to be 
able to distinguish between the uninhabitable, submerged zones, and the inhabitable, dry zones. These zones have 
shifted during prehistory, and can only be recognized on the basis of lithological and pedological characteristics 
of the soil. This is considered a predictive model: a binary division between zones of interest, and zones of no 
interest, based on recognizable characteristics of the (palaeo-)landscape. A third ‘medium probability’ zone, 
while sometimes recognized, mainly indicates that there is not enough information available to distinguish 
between the former two, or that we are dealing with a transition zone, where e.g. off-site phenomena may be 
found. The predictive map will then lead to a more specific archaeological question: if this zone was habitable, 
what types of sites can we expect? It is this question that will in the end determine the survey strategy to be 
used for detecting archaeological sites.

Obviously, with this approach to predictive modelling it is impossible to impose performance criteria 
on the models. We cannot artificially reduce the area taken up by e.g. a fossil creek bed to increase precision, nor 
can we demand that these creek beds should contain 85% of all known sites. On the other hand, it is possible to 
calculate performance measures for these expert judgement models from the available archaeological data sets. 
This should be an obligatory step after the construction of expert judgment models. After all, we need criteria 
to decide whether zone A is more important than zone B; to decide whether model A is better than model B; 
and to decide whether we need additional information to reduce uncertainty. Without a quantitative basis, these 
decisions will remain the province of the archaeological experts, whose knowledge cannot be checked against 
independent evidence.

8.3 	V alidation of model performance

Validation, as defined by Rose and Altschul (1988), involves verifying a model’s performance on ‘independent 
data, on part of the sample that was excluded from the model-building process, or on internal criteria’. Validation 
in this sense is used for determining the classification error of a model, and compares the classification error 
obtained from the design data set with a test data set. When calculating the classification error directly from 
the data set used for designing the model, we can expect the resulting ‘apparent’ or ‘resubstitution error rate’ 
(Hand 1997, 121) to present a biased and optimistic estimate of the true or actual error rate, i.e. the error rate that 
would be obtained from the total population. This is especially true with small to moderate-sized data sets. The 
reason for this is, that the classification rule is optimised to the design set. New data (assuming that it will come 
from the same population) will usually have a slightly different distribution, and therefore should be expected to 
show a larger error rate. We should therefore always expect validation to exhibit larger errors for an independent 
data set than for the design set. However, this does not tell us whether we should reject or accept the model. 
The only thing validation will do is give a more realistic indication of model performance than is obtained 
by calculating performance statistics using the design data set itself. This in turn implies that performance 
statistics should always be calculated using an independent data set. This ‘external’ or ‘double’ validation has 
not always proved possible in predictive modelling, so several techniques have been developed for ‘internal’ 
or ‘simple’ validation. These are described in section 8.3.1. However, the procedures can equally well be used 
with independent data sets. In section 8.3.2 the utility of validation methods for assessing predictive model 
performance will be discussed.
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8.3.1 	S imple validation techniques

Both Rose and Altschul (1988) and Kvamme (1988b; 1990) have discussed several methods for what they call 
simple validation, and what is also known as internal testing. A clear distinction should be made between split 
sampling methods on the one hand, that keep data from the available sample apart to see whether the model is 
any good at predicting the data that is left out from model building, and methods that re-use parts of the complete 
data set in order to obtain a more accurate model, like jackknife sampling. These methods are also known as 
resampling techniques. Split sampling is a classical validation method, as it uses a second data set for testing, 
and the procedures for validation by means of split sampling are simple and equal to those used for external or 
double validation. Resampling is a way to improve the performance of the model by artificially increasing the 
sample size of the design data set. Despite the difference in application of split sampling and resampling, I have 
decided to describe these techniques together in this section, as they are closely connected in a technical sense, 
and have been discussed together in other publications as well.

Split sampling requires randomly splitting the sample in two equal parts, building the model with one 
half, and validating it with the other half. A disadvantage of this method is that it severely reduces the data set 
available for model building. As a rule of thumb, the data set should not be split in half unless the total sample 
size is greater than 2p+25, where p is the number of parameters in the model (such as distance to water; Rose 
and Altschul 1988). It can easily be applied to establish if there is a difference between the model and the data 
that was kept behind, using all types of performance measures and statistical estimates, but in practice it has 
only been used to compare classification error rates, as discussed in 8.2.3.

The simplest resampling method available is cross-validation60. It refers to dividing the sample into 
a number of randomly chosen, roughly equal sized subsets (this is also known as rotation; Hand 1997, 122). 
Each subset is withheld from the analysis in turn, and a model is developed with the remainder of the data. The 
withheld subset is then classified using this model, and this is repeated until all subsets have been used. The 
total error rate is then determined by averaging the error rates of the subset classifications across the models. 
Cross-validation used in this way produces a less biased estimate of the true error rate.

Cross-validation can be taken to extremes by withholding one observation at a time. This is also 
known as the ‘leave-one-out’ (LOO) approach, and comes very close to what is generally known as jackknife 
sampling. However, jackknife error estimation deals differently with establishing the error rate (Hand 1997). 
The final option to calculate error rates is by means of bootstrap sampling. Unlike jackknife sampling and cross-
validation, bootstrap sampling does not divide the data set in a predefined number of subsets, but instead picks 
a random sample with replacement of size equal to the complete data set (so individual observations may be 
found in the ‘subset’ more than once; Hand 1997, 122). The error rate is determined at each analysis by using the 
complete data set (which of course contains no double observations). Improvements of the bootstrap error rate 
calculation have resulted in a measure known as the .632 bootstrap (Efron and Tibshirani 1993), which is the 
most accurate error estimator that has been developed up to date. Current statistical opinion therefore favours 
this error measure as the method of choice (Hand 1997), and jackknife sampling is considered by some to be of 
largely historical interest (Mooney and Duval 1993).

Table 8.11 summarizes the difference between the methods in terms of the sampling and analysis 
strategy applied. As computer power has increased enormously, bootstrap and jackknife methods are now 
much easier to implement than before, and are therefore gaining rapidly in popularity, especially since they are 
thought to perform better in estimating error rate. The differences in error determination between traditional 
cross-validation on the one hand, and jackknife and bootstrap sampling on the other hand are however not so 
easily explained, as this depends on quite complex statistical reasoning. Efron and Tibshirani (1993) and Hand 
(1997) provide more information on this subject.

60	 Split sampling is sometimes also referred to as cross-validation, but this is not a correct use of the terminology. Baxter 
(2003) remarks that the term hold-out method is to be preferred for split sampling.
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split sampling  
(hold-out method)

keeps a test set apart, usually half of the data
determines error rate with the test set
error rate of test set and original data set are compared, not averaged

cross-validation 

divides sample randomly into k subsets
withholds each subset from analysis in turn
constructs k models with remainder of data
and determines k error rates using withheld data
total error rate is estimated by averaging error rates across models

leave-one-out (LOO) same as cross-validation, but k = n (1 observation left out at a time)
jackknife same as LOO, but error rate determined differently

bootstrap

takes a random sample with replacement of size n k times
determines the error rate using the original data set
total error rate is estimated by averaging error rates across models
extended error rate estimators have been developed

Table 8.11 Different internal validation methods compared.

Unfortunately, no single definition of resampling can be found in statistical literature. In this section, I have 
decided to group all techniques that reuse the design data set under resampling. However, Simon (1998) 
specifically excludes cross-validation and jackknife sampling from resampling, as the former are methods that 
systematically exclude observations from the data set. Every jackknife analysis will therefore produce the same 
result with a given data set. Simon also specifies permutation resampling (i.e. without replacement) as a separate 
technique. This is also known as randomisation. It should also be noted that the formal definition of bootstrap 
resampling as given by Simon (1998) is less narrow than it is given in table 8.11: in fact, resampling can be 
carried out with subsets of any size. Resampling is also closely related to Monte Carlo-simulation61, with the 
difference that Monte Carlo-simulation does not use sample data, but creates ‘virtual’ samples instead. Table 
8.12 summarizes the main differences between the various methods.

jackknife sampling / cross-validation systematically excludes observations
number of simulations is equal to number of subsets

bootstrap resampling
randomly excludes observations
number of simulations unlimited
resamples with replacement

permutation resampling as bootstrap, but resamples without replacement

Monte Carlo-simulation number of simulations unlimited
only uses ‘virtual’ data

Table 8.12 Resampling techniques available for statistical inference.

Resampling is currently positioned as an alternative to classical statistical inference by some authors (Simon 
1997; Lunneborg 2000). In fact, both Simon (1969) and Efron (1979) developed bootstrapping specifically 
for this purpose. More traditional statisticians however only resort to bootstrapping in cases where classical 
inferential solutions are not available. Lunneborg (2000) mentions a number of limitations of classical statistical 
(parametric) inference. Especially small sample size, small population size and the assumption of random 

61	 Simon (1997) even classifies resampling as a subset of Monte Carlo-methods.
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sampling are limiting the application of standard statistical inference techniques. Resampling will in those cases 
generally offer better estimates of the population characteristics than classical inference methods, which rely 
heavily on the assumption of idealized statistical distributions. Resampling however does need representative 
samples just like parametric techniques: a biased sample will also produce biased results with resampling. 
Simon (1997) adds that resampling is a more intuitive way of dealing with statistical inference, and consistently 
leads to better statistical problem-solving by students and non-statisticians than the use of classical parametric 
methods. A good and accessible overview of the discussion on resampling can be found on http://seamonkey.
ed.asu.edu/~alex/teaching/WBI/resampling.html.

8.3.2 	S imple validation and predictive modelling

Both Rose and Altschul (1988) and Kvamme (1988b; 1990) have used jackknife sampling as a method to develop 
a ‘composite model’ of all possible models that can be made by leaving out one observation at a time. In their 
approach, the error rate is only determined afterwards, by calculating the number of misclassifications of the 
composite, ‘jackknife’ model. This is therefore different from the technique discussed by Hand (1997), where 
error rates are determined on each individual run, and a ‘composite’ error rate is determined as the estimator 
of the true error rate. In general, the jackknife procedure as described by Rose and Altschul and Kvamme will 
result in more conservative and realistic predictions than a single model built on the full data set, especially 
when using small samples.

Hobbs et al. (2002, 9-10) have used cross-validation techniques as a method to investigate the stability 
of their predictive model. They did not intend to produce a composite model; instead, they subdivided their 
data set randomly into 10 equally sized subsets, and calculated 10 different models, each time leaving out one 
of the subsets. These models were then compared to determine their stability, i.e. to see if they showed large 
differences. A final model could then be made using the complete data set. As a matter of fact, they were not 
able to carry out this cross-validation procedure as it proved too time consuming to repeat this over the 20 
sub-regions of their modelling program; instead, they reverted to ‘normal’ split sampling. This however led 
to “highly unstable” models in some sub-regions, as the samples used for model building became too small. 
As noted above, this is not surprising, and the whole exercise clearly misses the point of using resampling 
methods. Instead of comparing the different models, they should have been combined in order to improve the 
final model.

Simple validation methods have not met with general approval in predictive modelling literature, and 
are not very well understood either. Ebert (2000) for example refers to ‘jackknife sampling’ while in fact talking 
about split sampling methods in general, stating that they are “a grossly inefficient way to determine if there 
is inhomogeneity in one’s data”. Gibbon (2002) notes that all testing (i.e. validation) methods that use the data 
from which the model was derived have severe drawbacks (see also Rose and Altschul 1988) – without going 
into detail. This did however not stop him and his colleagues from pursuing the split sampling procedure 
described in the previous paragraph for the MnModel.

And in fact, using split sampling for validation of predictive models is not very useful. On the one 
hand, split sampling will never be able to tell whether our data set is unrepresentative, as the test data is derived 
from the same sample as the design data. On the other hand, we should expect the test data set to be performing 
differently from the design data set. As the stability of models based on small data sets will always be less than 
the stability of models based on large data sets, it is strongly recommended that the full data set is used for 
model building - while of course taking every precaution to prevent biases during data collection.

Resampling methods on the other hand can be valuable techniques for obtaining more realistic estimates 
of the accuracy and precision of a predictive model. This was already demonstrated by the jackknife sampling 
studies undertaken by Rose and Altschul (1988) and Kvamme (1988b; 1990). Statisticians are also quite clear 
that the application of resampling methods is good practice when it comes to estimating classification error. 
The doubts expressed on the use of internal validation methods in predictive modelling therefore have more 
to do with a lack of trust in the data sets used for model building, than with the applicability of validation 
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methods. Bootstrapping has superseded jackknife sampling as the most reliable method for error estimation. 
It is therefore recommended that the future analysis of classification error in predictive modelling will be done 
using this method, instead of jackknife sampling and cross-validation.

Unfortunately, the resampling methods described in section 8.3.2 are not very useful for validating 
Dutch predictive models, as they have been developed for estimating classification error, which cannot be 
calculated for the types of models used in the Netherlands (see section 8.2.9). It is however a logical step to use 
resampling techniques for the calculation of gain values as well. It can be expected that gain as obtained from 
the design data set will give an optimistic estimate of model performance, and therefore needs to be validated 
as well. In the context of this study, I have not pursued this option, and it therefore needs additional study to 
judge its utility.

Resampling, and especially bootstrapping62, can also be of interest to the development of archaeological 
predictive models themselves, as we are usually dealing with relatively small and non-random samples. As far 
as is known however, it has received no attention as a modelling technique. As it is a relatively novel technique 
(the first textbook of bootstrap methods was published by Efron and Tibshirani in 1993) that usually requires 
intensive computer processing, it is not surprising that the older predictive modelling publications do not refer 
to it. However, there is also a complete lack of discussion of resampling methods in later publications, including 
some standard handbooks on sampling and statistics in archaeology (Shennan 1997; Orton 2000a). Only one 
reference was found in the proceedings of CAA63 (Delicado 1999). Baxter (2003, 148-153), on the other hand, 
discusses bootstrapping under the heading ‘computer-intensive methods’, and concludes that it is generally 
well suited for the estimation of means and confidence intervals. He adds that caution should be applied when 
taking small samples from non-normal distributions and when other parameters are of interest, like the mode 
or median.

8.4 	S tatistical testing and predictive models

‘ from a statistical standpoint any procedure ... might appropriately be used as a basis for site-location model 
development. What matters, is how well the model works in application, how accurately it performs on future 
cases. (...) In order to determine how well a model will perform in practice ... independent testing procedures 
are required, and in this case methods of statistical inference must be applied.’ (Kvamme 1988a)

‘… perhaps it is true that all cases where the data are sufficiently ambiguous as to require a test of significance 
are also sufficiently ambiguous that they are properly subject to argument.’ (Simon 1997)

So far, the measures and methods for model performance assessment discussed are not concerned with the 
significance of the outcome of the calculations. In the case where performance measures are calculated using 
the design data set, this is not an important issue, as there is no independent evidence to test the model against. 
However, when independent data becomes available, we will have to use statistical methods to decide whether 
we trust our model not. Section 8.4.1 will shortly discuss the utility of statistical testing methods for predictive 
modelling, and in section 8.4.2 some examples will be given of testing methods that can be applied to Dutch 
predictive models.

8.4.1 	W hy use statistical tests?
The testing of a site distribution against a predictive model can be used as a means to find out if there is a 
significant difference between the model (a statistical hypothesis) and the available data. In fact, this is what 
is often done as a first step in correlative predictive modelling: a statistical test is used to establish whether the 

62	 Permutation resampling does not seem to be of direct relevance to predictive modeling; it assumes what is known as a ‘finite 
universe’, in which choice becomes more limited with each draw from the sample (for example the probability of obtaining a 
window seat in an airplane).

63	 The annual conference on Computer Applications and Quantitative Methods in Archaeology.
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distribution of archaeological sites differs from a by-chance model. We are then comparing the site distribution 
to an uninformative statistical hypothesis64, assuming in effect that we have no preconceptions about the possible 
distribution of sites. In deductive modelling or when using expert judgment models, on the other hand, we are 
first creating a conceptual model, and then check if the archaeological data fit the model. Testing of an existing 
predictive model with independently collected data does nothing different: it compares the new data set with 
the old model.

Such a statistical test can lead to a positive or negative result. Given a previously established level of 
confidence, usually the traditional 95% mark, we can state whether or not we believe that there is a difference 
between the model and the test data set, or to put it in more formal terms, if the null hypothesis of no difference 
is rejected or not. Some differences between the design and test data sets used for predictive modelling can 
of course be expected, for the reasons explained in section 8.3. As the model will be optimised to the design 
data set, the smaller this design data set is, the larger the differences may be between the model and the test 
data. However, a statistically significant difference between the design and test data is an indication that we 
are dealing with two samples with different characteristics. The only explanation for this is that we are dealing 
with unrepresentative samples in the design data set, the test set, or in both. Obviously, statistical testing can 
be a powerful tool to do precisely this: if we take every precaution to ensure that our test data set is collected 
according to the rules of probabilistic sampling, we will be able to tell with reasonable confidence whether or 
not our model was based on an unrepresentative sample.

If on the other hand we find that there is no significant difference, we are ready to move on to a different 
aspect of statistical inference: the improvement of the model’s statistical precision. The concept of estimating 
confidence intervals is crucial to this approach, and serves as the primary means to reduce the risks associated 
with statistical estimates. It is in fact the underlying principle of Bayesian statistics, where statistical models 
can be continuously updated with new information, each time increasing the accuracy and precision of the 
resulting estimates. So, statistical testing of a predictive model should consist of two phases: a hypothesis test 
phase, intended to identify possible biases in the original data set (at least in the case of a correlative model; 
with deductive/expert judgement model, the test is used to see if the model fits the data). If the model is not 
found at fault, a statistical inference phase follows, where the test data is integrated into the model to improve 
its statistical accuracy and precision.

Unfortunately, predictive models are not usually presented in the form of statistical estimates with 
corresponding confidence intervals. All predictive models featuring in literature only provide a relative 
assessment of site density. The probability of finding sites in zone A is always presented relative to the 
probability of finding them in zone B. Even logistic regression models, which do provide probabilities of site 
presence per grid cell, have never been used to calculate expected absolute site densities, and their residuals are 
never presented as a measure of the uncertainty of the model. This reluctance to present absolute site density 
estimates and uncertainty measures is understandable when the sample used to build the model is not based 
on controlled survey results but on existing site databases, like in various Dutch predictive modelling studies. 
Neither can it be expected from models that use expert judgment to classify zones into high, medium or low 
probability. However, in many American predictive modelling studies, probabilistic survey stands at the basis 
of model development, and absolute densities and confidence estimates could, in principle, be calculated. It 
is regrettable that they are not, not only from the testing perspective, but also from a perspective of cultural 
resource management because absolute site densities and their associated variances of course are more precise 
measures of the ‘archaeological risk’ then relative assessments. It is precisely this lack of statistical accuracy 
and precision in predictive models that has led to the proliferation of performance assessment measures as 
discussed in sections 8.2 and 8.3.

64	 In Bayesian statistics this is known as using an ‘uninformative prior’, and the corresponding statistical distribution is known 
as the uniform distribution.
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8.4.2 	H ow to test relative qualifications

Even though statistical estimates and confidence intervals are not common characteristics of Dutch predictive 
models, a limited form of statistical hypothesis testing is possible for relative density maps. The terms high, 
medium and low probability already point to a quantitative judgment: a zone of high archaeological probability 
is more likely to contain archaeological remains than a zone of low probability. If we want to test the accuracy 
of these relative qualifications of site density, we must use techniques that can deal with the proportions of 
sites that fall into each probability class. This type of testing is covered by standard statistical techniques using 
the properties of the binomial (in a two-class model) or multinomial distribution (in a multi-class model). The 
situation is somewhat complicated by the fact that we do not know what should be the actual proportion of sites 
in high, medium or low probability. Nevertheless, some simple tests can be used that may be helpful in deciding 
whether the test data set confirms or contradicts the original model.

In order to illustrate this, a simple example is presented here using the IKAW classification (Deeben 
et al. 1997; table 8.13). This classification gives the order of magnitude of the difference between the zones of 
high, medium and low probability: the indicative value (ps/pa) should be > 1.5 for high probability zones, < 0.6 
for low probability zones and somewhere in between for medium probability. Let us assume that a survey has 
been carried out in a zone that is characterized as in table 8.13:

area sites found sites predicted by IKAW rules

high probability 1 ha 3 1.5

medium probability 3 ha 2 2.9

low probability 1 ha 0 0.6

Table 8.13 Hypothetical example used for testing the IKAW-classification.

We can then calculate that, with the area proportions of the zones being 0.2:0.6:0.2, the proportions of sites in 
the zones should be at least equal to 0.12:0.58:0.30. So, the column ‘sites predicted’ gives the minimal conditions 
under which the model can be considered right. This makes things easier as it will allow us to establish threshold 
values of what the proportion of sites found in each zone should be. Taking the high probability zone, it is 
possible to calculate whether the 3 sites encountered might also have been found if it had in fact been a medium 
or low probability zone. In order to do so, we need to calculate the thresholds: in a low probability zone of the 
same size, we would expect at most 12% of the sites, and in a medium probability zone at most 30%. Using the 
binomial distribution, it can then be calculated that the probability that the high probability zone is in fact a 
medium probability zone is 16.3%. The probability that we are dealing with a zone of low probability (with at 
most 12% of the sites) is only 1.4%. Similar calculations can be carried out for the low and medium probability 
zones (see table 8.14).

P(high) P(medium) P(low)

high probability - 16.3% 1.4%

medium probability 1.8% - 56.8%

low probability 16.8% 52.8% -

Table 8.14 Probability of misclassification (P) of IKAW zones, based on the data in table 8.13.
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When dealing with maps that only use a qualitative classification, our options are more limited, but we can 
still test whether we are dealing with a high or low probability zone, by testing the hypothesis that the high 
probability zone will contain more sites than expected in the case of a uniform site distribution (table 8.15). This 
is of course very similar to carrying out a χ2-test against a by-chance distribution, but by using the binomial 
confidence intervals the probability of misclassification can be directly calculated – but only for the high and 
low probability. The medium probability zone already assumes a uniform distribution of sites, and in order to be 
‘correctly’ classified, the probabilities of it being either a high or a low probability zone should be equal (50%).

P(high) P(low)

high probability - 5.8%

medium probability 5.8% 94.2%

low probability 32.8% -

Table 8.15 Probability of misclassification of qualitative probability zones, based in the data in table 8.13.

We can also try to estimate how many observations are needed in order to be sufficiently certain that we are 
dealing with a zone of low, medium or high probability. For this, the properties of the binomial distribution can 
be further exploited (see also Orton 2000a; 2000b). We can have a 95% confidence in our IKAW classification 
of the low probability zone (where at most 12% of our sites should be found), when at least 23.4 observations 
have been made, none of which falls into the low probability zone. As soon as 1 observation is made in the low 
probability zone, we need at least 35.6 observations in the other zones in order to accept our model at the 95% 
confidence level. Note that this number does not depend on the actual size of the probability zone, but on the 
proportion of the study region that each zone occupies.

This shows that it is very difficult to know beforehand how many observations are needed to confirm or 
reject the model’s assumptions about site distribution when dealing with proportions. As soon as observations 
inside the zone of interest are found, the total number of observations needed to reject or accept the model 
changes. This makes it difficult to predict the actual amount of effort needed in order to reduce the uncertainty 
to the desired level, the more so since we do not know how long it will take to find the number of sites needed, 
or if we will indeed find them at all when dealing with small study regions. This is a clear argument in favour 
of using site/non-site models, or models based on site area estimates instead of site density (see also section 
8.6.2).

A less known method of hypothesis testing is the use of simultaneous multinomial confidence intervals. 
Instead of testing the different classes in a model against each other, the whole model can be tested. The method 
is described in Petrie (1998) for an experiment using riverbed sediment size categories, but is equally applicable 
to any multinomial classification.
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α = the desired confidence level

2
1,/ kαχ = the upper (1 - α/k) 100 percentage point of the chi-square distribution with 1 degree of 

freedom

n = the number of observations in class i; and

ip̂ = the observed proportion of the observations in class i.

The p-statistic can be calculated for each single class, which will result in different confidence intervals than 
when using the binomial intervals, the difference becoming larger when the number of classes increases. These 
confidence intervals can then be plotted around the observations. When, for example, a 95% confidence interval 
is taken, this means that the real distribution can be expected to be inside this interval 19 out of 20 times. In 
our hypothetical IKAW example, it turns out that the original model fits in the 71.4% confidence interval of 
the observations. This means that there is a 28.6% probability that the real distribution is even wider than that, 
implying that our small data set does not allow us to reject our original model.

8.5 	C ollecting data for independent testing

‘It is not the modeling and it is not the sampling that makes archaeologists uncomfortable, it is the substitution 
for verification.’ (Moon 1993)

The strongest methods of model validation and statistical testing use data collected especially for this purpose. 
The main source of concern for predictive modellers wanting to test their models with independent data is 
therefore the nature of the site sample used for testing. However, this concern is equally relevant for model 
building. Without representative data sets, neither model building nor testing of the model will produce valid 
results. This section will deal with the problems associated with obtaining representative data sets for predictive 
model testing (sections 8.5.1 and 8.5.2). The emphasis of this section is on retrospective model testing on the 
basis of so-called ‘compliance’ survey data, i.e. surveys that are carried out because there is a legal obligation 
to do so. In section 8.5.3 the main source of survey data in the Netherlands, contained in the ARCHIS database, 
will be analysed for its utility for predictive model testing. Section 8.5.4 will shortly discuss the issue of testing 
of the independent parameters of the model (the ‘environmental data’), after which section 8.5.5 will present the 
conclusions on the potential of independent testing of predictive models.

8.5.1. 	P robabilistic sampling

All authors writing on predictive modelling agree that the collection of both design and test data sets for 
predictive models should ideally be done by means of probabilistic sampling, i.e. sampling aimed at obtaining 
a statistically valid sample for the estimation of e.g. site densities A large volume of papers and books has 
appeared that discuss the proper way of setting up probabilistic archaeological survey (e.g. Nance 1983; Altschul 
and Nagle 1988; Orton 2000a).

However, as Wheatley (2003) puts it: ‘Data collection is precisely the activity that most model-builders 
are usually trying to avoid’. He may however be a bit unfair to the model builders there. After all, randomised 
survey has been used for predictive model building in the United States on a regular basis, and the need for 
independent testing is generally recognized65. However, it seems that survey programs for testing predictive 
models are not often carried out. This may be because of the associated costs, which carry the risk of becoming 

65	 Even when independent testing is performed as part of model evaluation, it is not always done according to statistical 
principles. The tests reported by Griffin and Churchill (2000) illustrate this. Of the four surveys organized to test the Kittitas 
County predictive model, two failed to take into account the condition of representativity, and over-sampled the high 
probability area. Furthermore, even though the two reliable survey tests indicated that the model was not accurate, it was 
not adapted.
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structural expenses, whereas the intention of a predictive model is to reduce the amount of money spent on 
survey. In any case, this is not a very strong argument: if money is invested in collecting data to build the model, 
then certainly some money for testing can be made available. A second possible cause for the lack of testing 
programs may be that predictive modellers have not been able to communicate exactly how much data is needed 
for testing a model. In order know how many observations are needed for our test, we should be able to specify 
both the actual statistical precision of the model, as well as the desired precision. Furthermore, as already shown 
in section 8.4.2, even when we know how many site observations we need, we cannot know beforehand how 
many hectares need to be surveyed, as this depends on the actual site densities involved – the very parameter 
that we are trying to estimate.

Because of the lack of probabilistic testing programs, it is almost inevitable that the so-called 
‘compliance’ surveys form our main source of independent data. In general, these are not carried out with a 
probabilistic aim in mind. Their main objective is the discovery of all, or a predetermined proportion, of the 
archaeological sites in an area. This is known as ‘purposive’ sampling, and some authors reserve the term 
prospection for it. Purposive survey has been less debated in academic literature, and only Banning (2002) 
makes a clear distinction between the two.

An important obstacle to the use of compliance survey data for testing purposes is the difficulty of 
collecting data from many small survey projects. The number of sites identified in an individual small survey 
project will be very limited, so data from various surveys will have to be combined in order to obtain a sufficiently 
large test set. This not only implies collecting data from different sources, but also of varying quality, which 
will make it difficult to compare the data sets. There is also a strong possibility that compliance survey data 
will not be representative. Low probability areas for example tend to be neglected because the model indicates 
that there will be no sites (see e.g. Griffin and Churchill (2000) for an example from practice; Wheatley (2003) 
for a critique of this approach; and Verhagen (2005) for some examples of institutionalised bad habits). Other 
sources of bias originate from survey practice (see section 8.5.2 for more details). Nevertheless, it seems a waste 
of data not to use compliance survey data for independent testing, especially since it is a data source that has 
been growing rapidly and will continue to do so. As Altschul and Nagle (1988) already remarked: “The failure 
to utilize inventory survey results is not only an unfortunate decision but also in the long run an extremely 
expensive one”. However, the only way to use these data sets for predictive model testing is to analyse the 
different sources of bias and, if possible, correct for them.
From a classical statistical standpoint, the following conditions should be met for independent data collection:

the sample size should be large enough to make the desired inferences with the desired precision;•	
the sampled areas should be representative of the study region;•	
and survey methods should be chosen such that bias in site recording is avoided.•	

The standard procedures to calculate appropriate sample sizes can be found in any statistical handbook (e.g. 
Shennan 1997; Orton 2000a), and are based on the assumption that samples consist of two classes, like site 
presence-absence counts per area unit. In Dutch predictive modelling however we are dealing with point 
observations of sites: samples with only one class. Furthermore, we do not know the proportion of the area 
sampled, which makes it impossible to specify statistical estimates and corresponding confidence limits of site 
density. In section 8.4.2 it was shown that we can to some extent test the classification of Dutch models like the 
IKAW in low, medium and high probability using single class samples. It is however very difficult with these 
models to determine in advance the number of observations needed, as it also depends on the observations done 
in the other probability zones. Furthermore, we cannot predict the size of the area that should be sampled in 
order to obtain the required sample size, as we do not know the real site density in the survey area.

An additional problem for predictive model testing is the low number of sites included in the low 
probability zones. A reliable estimate of site densities in the low probability zone requires more data collection 
than in the high probability areas. This is because the estimates of low numbers can be substantially altered by 
the discovery of very few sites; the estimates are less stable.
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This again points to the importance of making models that do specify statistical estimates of site density and 
confidence limits. Probabilistic sampling can evidently be used to provide these estimates, especially since the 
size of the survey quadrats is usually determined in such a way, that site density estimates per area unit can 
easily be obtained, e.g. per hectare or square km. Compliance survey on the other hand usually is carried out 
in contiguous parcels with unequal sizes, but when the positions of individual observations are known, a raster 
GIS can be used to create equal sized sampling units. Note however that the size of the sampling unit has a 
strong effect on the calculation of the confidence limits. The creation of very small sampling units implies that 
the sample may become artificially large, which is paraphrased by Hole (1980, 226): “by planning infinitely 
small sample units, one could know everything about an area by looking at nothing”. A possible solution is to 
stop creating artificial sampling units, and instead use resampling techniques to calculate density estimates and 
confidence limits from the site observations in the total sampled area.

8.5.2 	S urvey bias and how to control for it
Unfortunately for predictive modellers, there are other sampling issues that must be taken into account as well, 
and especially the influence of survey bias. Even more regretfully, methods and procedures for controlling and 
correcting survey bias have not featured prominently in or outside predictive modelling literature, although e.g. 
Shennan (1985) and Verhoeven (1991) tried to identify and quantify sources of bias in field survey data with 
statistical techniques (see also van Leusen 2002 and Attema et al. 2002). The main sources of bias identified 
are:

the presence of vegetation, which obscures surface sites;•	
sediment accumulation, which obscures sub-surface sites;•	
sampling layout, which determines the number and size of the sites that may be found;•	
sub-surface sampling unit size, which determines if sites may be detected;•	
survey crew experience, which determines if sites are actually recorded.•	

Orton (2000a) identifies imperfect detectability as the main source of non-sampling error in archaeological 
survey (the subsidiary source being non-response). Correcting site density estimates for imperfect detectability 
is relatively easy, using the following equations (Orton 2000a, 214-215):
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v0 = the original variance 
g = the detection probability. 
 

These equations will result in higher estimates of site density, with a larger variance. 
The task of bias correction then becomes a question of estimating the detection probability of a 

particular survey. Obviously, this would be easiest when survey results were based on the same methods. This 
not being the case, a straightforward procedure for bias reduction is to sub-divide the surveys into categories 
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of detectability that can be considered statistical strata. For example, one stratum may consist of field surveys 
carried out on fallow land with a line spacing of 10 m, a second stratum of core sampling surveys using a 
40 x 50 m triangular coring grid and 7 cm augers up to 2 m depth. For each of these categories, site density 
estimates and variances can be calculated, and must be corrected for imperfect detectability. The calculation 
of the total mean site density and variance in the study area can then be done with the standard equations for 
stratified sampling, given in Orton (2000a, 211-212). Even though the procedure is straightforward, this does 
not mean that the estimation of detection probability is easy. For example, some sites may be characterized by 
low numbers of artefacts but a large number of features. These will be extremely hard to find by means of core 
sampling; they do stand a chance of being found by means of field survey if the features are (partly) within the 
plough zone; and they will certainly be found when digging trial trenches. A quantitative comparison of the 
success or failure of survey methods is therefore never easy, and very much depends on the information that we 
have on the prospection characteristics of the sites involved.

In practice, obtaining these may be an insurmountable task. Tol et al. (2004), who set out to evaluate the 
process of archaeological core sampling survey in the Netherlands and compare it to archaeological excavation, 
were forced to conclude that this was impossible within the constraints of their budget. This was not just a 
question of incompatibility of data sources, but also of a lack of clearly defined objectives for prospection 
projects, and consequently the survey methods could not be evaluated for their effectiveness. However, in 
the context of predictive model testing, a way out could be found by settling for comparable surveys that are 
adequately described, analysing if there are any systematic biases that need to be taken into account, and using 
these data as the primary source for retrospective testing.

This obviously implies that the factors that influence detection probability should be adequately 
registered for each survey project. This is far from common practice.

8.5.3 	U sing the archis database for predictive model testing

The most accessible archaeological data set available in the Netherlands is the ARCHIS database. The data in 
ARCHIS is structured in the following way:

any form of archaeological research has to be registered before it starts; however, this obligation has •	
only started early 2004; in addition, the curators of ARCHIS are actively filling the database with the 
backlog of archaeological research carried out before 2004; at the moment of writing (4 March 2005), 
9,043 research projects have been registered.
the completion of archaeological research must be registered as well; at the moment, 5,104 completed •	
research projects have been registered.
any archaeological observation made must be registered; in practice, this has not been enforced, but •	
since the start of the ARCHIS database in 1991, a total of 65,944 observations have been entered, 
including those from many paper archives.
the number of archaeological complexes (“sites”) however, is only 17,066•	
in addition, the database contains 12,941 archaeological monuments.•	

The archaeological observations are coming either from archaeological fieldwork, from paper archives, or from 
non-archaeological fieldwork (table 8.16).



8 - predictive models put to the test

103

archaeological fieldwork 36,481 55.3%

desk-top study and archival research 4,051 6.1%

non-archaeological fieldwork, including metal detecting 18,413 27.9%

not specified 6,999 10.6%

Table 8.16 Breakdown of archaeological observations in ARCHIS according to discovery.

The observations made during archaeological fieldwork can be subdivided into several categories (table 8.17. 
Most observations made by archaeologists are coming from field walking and excavation. If we look at the 
number of registered research projects however, the picture is quite different (table 8.18).

 core sampling 2,526 6.92%

 field walking 23,788 65.21%

 watching briefs 257 0.70%

 diving 2 0.01%

 geophysical survey 48 0.13%

 archaeological inspection 2,058 5.64%

 not specified 1,085 2.97%

 underwater survey 23 0.06%

 test pits/trial trenches 317 0.87%

 excavation 6,377 17.48%

Table 8.17 Breakdown of archaeological observations in ARCHIS found by archaeological fieldwork, according to 
research type.

These data show that core sampling is taking up the vast majority of archaeological fieldwork nowadays, with 
test pitting/trial trenching, watching briefs and excavation gaining in popularity (the ‘completed’ column 
should be read as the research preferences over the past 10 years or so, the ‘registered’ column as the current 
preferences). Incidentally, a quite staggering number of 6,432 unspecified research projects (71.1% of the total) 
has been registered. We can only assume that these will be attached to one of the fieldwork categories once the 
fieldwork is finished. As the ARCHIS curators are at the moment still working at reducing the backlog, and the 
amount of research done nowadays is enormous, the figures cited in table 8.18 may change considerably in the 
near future.

Unfortunately, it is impossible to obtain from the ARCHIS database the data needed for the development 
of an acceptable predictive modelling test data set. Registration of the fieldwork projects is erratic in the definition 
of the studied area and the research methods applied. It is impossible to extract the information needed for an 
analysis of detection probabilities. Furthermore, a major problem with the delimitation of study areas becomes 
apparent in the municipality of Het Bildt (province of Friesland), which contains 26 database entries, covering 
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the entire municipality, and the neighbouring municipality of Ferwerderadeel, which has another 34. These 
60 projects together are taking up 62.5% of the total registered area of completed research projects. However, 
most of the 60 entries refer to small core sampling projects, carried out within the municipalities’ boundaries, 
but without any indication of their precise location. Clearly, the fieldwork data in ARCHIS in its current form 
is not even suitable for rigorously quantifying the bias of archaeological fieldwork to IKAW-zones or archaeo-
regions. The existing data points to a preference of all types of archaeological fieldwork towards the high 
potential zones, with the exception of geophysical survey. This preference becomes more marked when moving 
from inventory survey (core sampling, field walking) to evaluation and excavation. Watching briefs are the 
most representative form of archaeological research, and these results conform expectation. However, given 
the misgivings regarding the quality of the data a quantitative analysis of the research database has not been 
pursued.

projects registered completed

core sampling 1,678 66.51% 3,885 77.50%

field walking 59 2.34% 115 2.29%

watching briefs 170 6.74% 158 3.15%

diving 0 0.00% 0 0.00%

geophysical survey 17 0.67% 215 4.29%

archaeological inspection 4 0.16% 74 1.48%

not specified 11 0.44% 22 0.44%

underwater survey 4 0.16% 3 0.06%

test pits/trial trenches 343 13.59% 375 7.48%

excavation 237 9.39% 166 3.31%

total 2523 5013

Table 8.18 Breakdown of registered research projects, according to research type.

The ARCHIS research projects database was never intended for use as a test set for predictive modelling, and 
cannot be used directly for this purpose. We are forced to return to the original research project documentation 
to find out which areas have actually been surveyed, and which methods have been applied. This task, which 
has not been possible within the constraints of this study, should be a priority for future improvement of the 
IKAW.

From a statistical point of view, the representativity of the data is of course important, but equally 
important is the total number of observations obtained from the various forms of survey, because this determines 
whether the fieldwork data can actually be used for testing purposes. Here the picture (see table 8.19) is not very 
promising either. Of the 4,155 observations registered since 1997 (the publication date of the first version of 
the IKAW), only 1,589 can be linked in ARCHIS to a registered research project (i.e. they are found within an 
investigated zone, and the observations have been classified into one of the archaeological fieldwork categories). 
Given the fact that the original model was developed for 13 separate ‘archaeo-regions’, on average just over 120 
observations per region will have to be analysed by survey type in order to remove research biases. Serious 
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doubts should therefore be expressed concerning the current value of these observations for rigorous predictive 
model testing.

observations low probability medium probability high probability unspecified TOTAL

core sampling 114 157 225 65 561

field walking 100 140 205 13 458

Watching briefs 14 29 34 8 85

geophysical survey - 5 - - 5

archaeological inspection 3 6 3 1 13

not specified 8 8 15 4 35

test pits/trial trenches 39 44 99 23 227

excavation 36 51 103 37 205

total 314 440 684 151 1,589

Table 8.19 Number of archaeological observations made in research projects since 1997, subdivided by research 
type and archaeological probability zone on the IKAW.

However, even from these unsatisfactory data, a surprising pattern is found in the distribution of observations 
registered from test pits/trial trenches and excavations: they yield more sites in the low potential areas of the 
IKAW than expected66. Even though excavation or trial trenching in low potential areas will only be done when 
the presence of a site is known or suspected, this is not any different for the medium and high potential zones, 
and should therefore in theory not lead to higher discovery rates. For the moment however, the data does not 
suggest an explanation for this observation.

8.5.4 	T esting the environmental data

In practice, Dutch predictive models are not tested in a quantitative sense. ‘Testing’ a predictive model is 
usually understood to mean verifying and refining the environmental base data underlying the model, like 
soil maps or palaeogeographic information. Changes in these data do find their way into the models. The most 
important reason for this is that the relevant environmental information is often much easier to detect than 
the archaeological sites themselves. With core sampling, for example, it may be hard to find certain types of 
sites, but finding the extent of a particular geological unit that was used to construct the predictive model is 
relatively easy, and may serve to make the model more precise. In fact, it is a question of improving the scale 
of the mapping for the predictive model, as well as reducing errors in the base data. On 1:50,000 scale maps for 
example, all kinds of generalizations have been performed, and the base data used may exist of fairly widely 
spaced observations. When prospecting for archaeological sites, the level of detail is much finer than with 
standard geological or pedological mapping, and archaeological prospection therefore contributes to a better 
knowledge of the (palaeo-)environment as well.

Getting these new environmental data back into the predictive map may pose some problems. A change 
in the patterning of the parameters used for the model in fact implies that the whole model should be re-run. 

66	 Excavations: 18.9% instead of < 7.3%; trial trenches: 21.4% instead of < 9.0%.
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When using an expert judgement model, this is relatively simple: a new map can be drawn quickly, using the 
new information obtained, and depending on the nature of the changes, the model will become more or less 
precise and accurate. However, as soon as we want to use the new information in a quantitative model, the whole 
modelling procedure should be rerun to see if the site patterning changes. An additional problem is found in the 
fact that this type of testing is seldom done for the whole area covered by the model. There are rare instances 
where the independent parameters of predictive models are completely revised, e.g. when better soil maps have 
become available (Heunks 2001), or a new detailed elevation model has become available (e.g. van Zijverden 
and Laan 2005). In most cases however, we are dealing with very limited testing, that will be difficult to feed 
back into the model, as the result will be a model based on data with differing resolutions.

8.5.5 	C onclusions

The perfect data set for predictive model testing is one that is representative of the area, and does not have the 
problem of imperfect detectability. From this it follows that data obtained from watching briefs is best suited 
for testing, as it permits for the observation of all sites present as well as the areas of non-site; at the same time 
it is not limited to the zones of high probability. Unfortunately, the registered number of discovered sites by 
means of watching brief operations in the Netherlands is very low, and it also seems that watching briefs are 
now increasingly used as a substitute for trial trenches or even excavation (they are now formally known as 
‘excavations with restrictions’). Originally, a watching brief was carried out as a final check on the presence of 
previously unnoticed or ‘unimportant’ archaeology. Nowadays, they also have become obligatory procedures in 
cases where the presence of an important site is known or suspected, but the damaging effect of the development 
is considered too minimal to justify a full-scale excavation. These types of watching briefs are not particularly 
useful for predictive model testing, as they will not be representative of the test area.

Given the low number of watching briefs available, retrospective predictive model testing will (also) 
have to rely on other data. The most abundant data set available nowadays is core sampling survey data, and it 
is therefore logical to concentrate our efforts on this data source. Furthermore, it can be expected that, together 
with field walking, it will suffer less from the effect of unrepresentative sampling than trial trenching and 
excavation. Even though the effect of imperfect detectability will to a certain extent distort the estimation of the 
number of sites discovered, these effects can be analysed and corrected for if the core sampling strategy used 
(depth, coring equipment used and spatial layout of the survey) is registered. Obviously, this still is a lot of work, 
the more so because the registered research projects database in ARCHIS cannot be relied upon to contain these 
data for each registered project.

For future testing, it is imperative that the registration of the survey strategy followed, in terms of 
sampling unit size, layout and surveyed area, is done correctly, and preferably stored in a central database. For 
pro-active testing, it is essential that it is done according to the principles of probabilistic sampling, and that the 
size of the data set to be collected is based on the desired precision of the estimates needed.

8.6 	T he test ground revisited

In the preceding sections, a number of issues have been raised concerning the best ways to test predictive 
models. It will have become clear that the applicability of testing methods highly depends on the type of model 
under consideration. Section 8.6.1 will therefore summarize the appropriate testing methods for the main types 
of predictive models that are currently in use. Section 8.6.2 will then continue with what I consider to be an 
alternative method of predictive modelling, i.e. modelling using area estimates instead of site (and non-site) 
counts. I will argue that this type of modelling is more useful for archaeological risk assessment than traditional 
predictive modelling approaches.

8.6.1 	M odel types and appropriate testing methods

In practice, we can distinguish five major types of predictive modelling procedures that are currently used. The 
following scheme summarizes their main characteristics:
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expert judgment / intuitive models (example: Heunks et al. 2003)
single-variable; multiple variables are combined intuitively into new, composite categories •	
changes in the independent parameters can be accommodated easily by redrawing the base map•	
classification of categories into high-medium-low•	
no quantitative estimates•	
no confidence limits•	
gain and gain-like measures can be used to assess model performance, using a test data set•	
the precision of the model can be increased by reducing the high potential area•	
statistical hypothesis testing is limited to deciding whether the model correctly predicts if unit A has a •	
higher/lower site density than unit B

deductive / expert judgment multi-criteria analysis models (example: Dalla Bona 1994)
multivariate; combinations of variables by means of Boolean overlay•	
changes in the independent parameters can be accommodated relatively easily, but imply running a •	
new model
classification of categories in ‘scores’, that can be translated to high-medium-low•	
‘scores’ are not estimates •	
no confidence limits•	
gain and gain-like measures can be used to assess model performance, using a test data set•	
the precision of the model can be increased, by manipulating the scores•	
statistical hypothesis testing is limited to deciding whether the model correctly predicts if unit A has a •	
higher/lower site density than unit B

correlative / inductive site density transfer models (example: Deeben et al. 1997)
single-variable or multivariate; combinations of variables by means of Boolean overlay•	
changes in the independent parameters can be accommodated relatively easily, but imply running a •	
new model
classification in categories of relative site densities (using indicative value or other measures)•	
quantification in relative terms•	
no confidence limits•	
the use of performance measures as well as performance optimisation is inherent to the modelling •	
procedure
statistical hypothesis testing needs an independent test data set, that can be used to •	

decide whether the model correctly predicts the relative site densities in zone A compared to zone ◦◦
B
decide whether the total model differs from the test data set◦◦

correlative / inductive regression models (example: Hobbs et al. 2002)
multivariate, using logistic regression•	
changes in the independent parameters cannot be accommodated without doing a new regression •	
analysis
probability values of site and non-site•	
classification into site-likely and a site-unlikely zone (two-class)•	
no confidence limits•	
performance measures can be used, but should preferably be based on a test data set; apart from gain-•	
like measures, classification error can be used as a measure of model performance
performance optimisation can be used after the regression analysis•	
statistical hypothesis testing needs an independent test data set, that can be used to •	

decide whether the total model differs from the test data set◦◦
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Bayesian models (example: Verhagen 2006)
single-variable or multivariate, based on a statistical hypothesis (a priori distribution); this hypothesis •	
can be based on expert judgement, or on an existing data set
changes in the independent parameters cannot be accommodated without running a new model•	
estimation of site densities, either absolute or in proportions, and corresponding confidence intervals, •	
that can be reclassified into ‘crisp’ categories
gain and gain-like measures can be used to assess model performance after reclassification•	
performance optimisation can be used after the modelling•	
statistical hypothesis testing needs an independent test data set, that can be used to •	

decide whether the total model differs from the test data set◦◦
integrate the new data into the model◦◦

Note that the first four are categories of models that have been used extensively for predictive modelling, 
whereas models of the Bayesian type are far from generally applied. Nevertheless, these are the only type 
of model that will automatically result in statistical estimates with corresponding confidence intervals, and 
are mathematically best suited for statistical hypothesis testing purposes as they include a mechanism to deal 
directly with the results of the test. In fact, it is a question of feeding the new data into the model, and it will be 
updated automatically.

It should also be pointed out that the fact that logistic regression models are presented here as models 
that do not specify confidence intervals should not be taken to mean that these cannot be calculated. In fact, 
the calculation of what is generally known as the ‘error term’ of the regression equation is common statistical 
practice, and it is a mystery why it is not customarily included as a measure for model performance in published 
archaeological predictive models. A significant advantage of regression techniques is that they can include 
measures of spatial autocorrelation as well, and methods to do so have already been developed in other fields.

Concerning other types of models that have recently attracted some interest, it can be remarked that 
both land evaluation-based models (Kamermans 2000; 2003) and causality-based cognitive modelling (Whitley 
2003; 2005a) are from the technical point of view comparable to multi-criteria analysis models. Dempster-Shafer 
theory, used for predictive modelling purposes by Ejstrud (2003; 2005), is at the conceptual level connected 
to Bayesian modelling. However, it is still very much debated in statistical literature, as it is not considered a 
true probabilistic technique (see Smets 1994 and Howson and Urbach 1993, 423-430). Dempster-Shafer models 
result in probability values just like regression models, but they also provide a measure of uncertainty known as 
the ‘belief interval’. From the example given by Ejstrud (2003), it is not immediately clear what testing methods 
are appropriate for these models. Gain calculations can be done on the models, and given the parallel with 
Bayesian methods it can be assumed that Dempster-Shafer models can easily be updated with new information 
in order to reduce uncertainty.

It thus turns out that performance assessment by means of gain and gain-like measures is the only 
kind of test currently available to all types of models. This also means that these measures are the only ones 
that can be use to compare different modelling techniques, as has been done by Ejstrud (2003). Obviously, the 
kappa coefficient (see section 8.2.6) can be used for comparison purposes as well, but it will only point to a 
difference between models, and will not indicate if model A is better then model B. A major disadvantage of 
using gain and gain-like measures as the sole indicator of model quality is the fact that they cannot be used to 
predict the model’s performance for future cases. For this, we need methods of statistical inference, and models 
that provide actual statistical estimates with confidence intervals. This implies that for each model, correlative 
or not, a representative data set should be available from which to make these estimates.

The development of resampling techniques allows us to obtain statistical estimates and confidence 
intervals per probability zone from a test data set for all model types. As such, resampling can provide a valuable 
contribution to model performance assessment. Resampling may equally well be used to develop correlative 
predictive models that provide estimates and confidence intervals, and at the same time do not need the complex 



8 - predictive models put to the test

109

statistical hypotheses necessary for the proper use of Bayesian models. In fact, the great advantage of resampling 
techniques is that they do not presuppose a specific statistical distribution at all. However, resampling needs 
further investigation to judge its ability to be applied to multi-variate models, to see if it can be combined with 
expert judgement and deductive modelling, and how it can be used to make comparisons between models.

8.6.2 	T owards an alternative form of predictive mapping: risk assessment and the use of area estimates

‘It is impossible to say anything about the number of archaeological phenomena that can be expected other than 
in terms of “relatively many” or “relatively few’ (Lauwerier and Lotte 2002, referring to the IKAW)

As a final consideration, I will devote some attention to the issue of predictive modelling and risk assessment. 
A predictive model is a ‘decision rule’: the only reason for making a predictive model in archaeological heritage 
management is that it will allow us to make choices on the course of action to be taken. In order to do so, the 
model must distinguish between zones that are more or less important, and each individual zone (implicitly) 
carries with it a different decision. We are dealing with risk assessment here, and quantitative methods are 
obviously well suited to contribute to this analysis. From this perspective, it does not really matter what we 
distinguish on a predictive map, but only how effective it is in supporting the decisions made.

In current practice, predictive models are used to make comparisons between development plans, and 
to decide whether or not an area should have some form of legal protection, in the form of an obligation to do 
survey. In itself, this is not bad practice from the point of view of risk management. If the model is correct, the 
high potential zones will contain more sites, and will therefore have a higher ‘production’ of archaeology (see 
also Banning 2002). The return, or ‘archaeological profit’, of prospection in high potential areas will therefore 
be higher than in low potential areas, given the same prospection intensity.

Archaeologists however are generally reluctant to accept the fact that interesting archaeological 
phenomena may escape detection as a consequence of a risk assessment carried out on the basis of predictive 
maps. They would be much happier with predictive maps that only depict the zones of no probability, in other 
words, models that do not exhibit gross error. These no-probability zones would on the one hand constitute the 
zones where habitation has not been possible, and on the other hand the zones that are known with certainty to 
have been disturbed. All the other zones then need survey in order to establish the presence or absence of sites. 
In the current political circumstances, this is not an acceptable policy, as it will lay an archaeological claim 
on almost all development plans. We will therefore have to accept that risk assessment is carried out based on 
predictive maps, and will lead to the designation of zones where archaeological survey is not obligatory, even 
though we know that archaeological sites may be present. The only thing we can try to do is reduce this risk to 
the minimum.

It is therefore the definition and calculation of archaeological risk that should bother us, and that should 
be at the heart of predictive models. However, none of the currently used models comes close to defining the 
archaeological risk in such a way that it can be used for effective decision-making. Even before making a 
predictive map we should already think about the acceptable ‘archaeological loss’. Much of this is related to the 
issues discussed in this chapter. We can establish quality criteria for predictive maps, stating that e.g. 85% of all 
known sites should be found in the high probability zone, thereby accepting that in future cases about 15% of 
the archaeological sites may be lost without investigation. We can also establish as a quality criterion that this 
85% should not only be true for the currently known site database, but also for future cases. In other words, we 
need to make statistical estimates of the total number of sites, based on representative survey data sets. When 
the statistical estimates show that there is a large amount of uncertainty, then we can develop survey programs 
to reduce this uncertainty. This is however only part of the equation. Some sites are considered more valuable 
then others, some sites are more expensive to excavate than others; basically, we should establish priorities of 
what we want to protect, either for scientific, aesthetic or financial reasons. It is only after establishing these 
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priorities that a predictive model can be used for risk assessment. This also implies that different priorities will 
lead to different outcomes of the assessments, and that these may become quite complex.
One consequence of this development is that we should start thinking about different ways to produce predictive 
maps, by incorporating the priorities for archaeological risk assessment into the model. One option that needs 
to be explored is the possibility of making predictive maps that are not based on site density, but on the area 
taken up by significant archaeological remains (Orton 2000b). Archaeological sites can have astonishingly large 
variations in size and content. Lumping them all together in one model is not justified from the perspective of 
archaeological science, and also offers a problem for archaeological heritage management. Clearly, different types 
of sites (or off-site phenomena) ask for different strategies of prospection, evaluation and eventually excavation. 
Different site types therefore also have different associated costs – some sites are simply more expensive than 
others, regardless of their scientific and/or aesthetic value. There is very little published information available on 
the variables that determine the ‘price’ of an archaeological site, and some would probably consider it unethical 
to treat them this way. But the simple fact is that this issue will be of great interest to the developers who have 
to pay for archaeological research. Clearly, the current state of predictive modelling does not allow us to put an 
‘archaeological price tag’ to a development plan. It is very hard to determine for each and every site type how 
likely they are to be found in a specific zone, but at least one characteristic is worth considering for inclusion 
in predictive models, and that is the size of the site. Not only is it one of the main determining factors for 
establishing the cost of archaeological research, it is also relatively easy to use for making statistical estimates. 
Instead of predicting the expected number of sites, a predictive model would then have to predict the expected 
area taken up by archaeology.

However, when using area estimates of significant archaeological remains instead of site counts, we 
are confronted with some statistical subtleties. Standard statistical techniques deal with populations that can be 
counted, i.e. they can be subdivided into clearly distinguishable objects (the traditional red and white balls in 
the urn). From samples of these objects, properties can be measured and statistical estimates can be made. As 
statistical theory allows for the calculation of proportions as well as of totals, one could use e.g. a sample of trial 
trenches to calculate the expected total area and corresponding confidence intervals of site, off-site or non-site. 
However, trenches are often of unequal size, and unlike with the parcel survey problem described in section 8.5, 
we do not have predefined units from which to sample67, so effectively we do not know the size of the sampling 
unit population. A possible approach to tackle this problem is to consider the smallest possible unit (the smallest 
trench) as the principal unit of investigation, and calculate the total number of sampling units from it. The size 
of this smallest unit will have a strong effect on the resulting estimates and confidence intervals, as this depends 
on the number of samples rather than the total area covered by trenches (see section 8.5; and Orton 2000a, 25).

The solution to the problem is offered by the calculation of ratio estimates (Cochran 1963, 29-33). The 
ratio we are interested in is the proportion of ‘site’ in the excavated area. The estimation of this ratio is of course 
very simple, as
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where
r = the ratio estimate obtained from a sample of size n
y = in this case, the area of significant archaeological remains
x = in this case, the researched area per project

67	 This is not to say that this cannot be done – in fact, for reliable estimates we had better develop trenching campaigns that do 
use equal-size units; it is just not common practice.
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In order to calculate the standard deviation of the estimate, the following equation can be used:
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where
f = the finite population correction factor
x  = in this case, the mean researched area

These equations can be used for estimating area totals from uneven sized trenches, or from different survey 
projects. For illustration purposes, a small test was carried out with these equations, using trenching data from 
the Midden-Delfland project68. In one of the study regions (Module 7 Polder Noord-Kethel), a total of 206 
trenches were dug. Even though the excavation data did not permit to clearly delimit ‘sites’, it is well suited 
for determining the total area of archaeological features. The total area excavated is 5950 m2, equating to a 
proportion of 0.54% of the study region. This latter figure can be used as the finite population correction. Within 
the trenches, 115.5 m2 of (Medieval) features were recognized and registered, equating to 1.9% of the excavated 
area. The estimate of the proportion of features dated from the Medieval Period in the study region is therefore 
equal to 1.9%, and the calculated standard deviation is 1.3%. A 95% confidence interval can then easily be 
calculated by multiplying the standard deviation with the corresponding z-value of 1.96, resulting in 2.5%. This 
is a relatively narrow estimate, as a consequence of the large number of trenches, even though the total area 
coverage is far below the generally recommended coverage of 5% for site evaluation.

In a similar way, estimates can be produced from compliance surveys: the area that is eventually 
selected for protection or excavation then is the area that we are interested in. A first impression how large that 
area is can be obtained from the data that has been collected by Past2Present/Archeologic69, in order to quantify 
the archaeological risk of development plans. From their data, on a total of 23 projects, it is estimated that 23.9% 
of the area of a development plan where compliance surveys have been carried out will be selected for protection 
or excavation. The 95% confidence interval of this estimate is then 13.3%.

8.7 	C onclusions and recommendations

8.7.1 	C onclusions

The baseline report of the project ‘Strategic research into, and development of best practice for, predictive 
modelling on behalf of Dutch cultural resource management’ (van Leusen et al. 2005) identified four main 
issues to be investigated under the theme ‘Testing’. These were:

designing test protocols in order to assess the quality of predictions/zonations•	
studying the potential of ‘retrospective testing’ through the use of archaeological data generated by •	
recent large infrastructural works
studying the feasibility of proactive testing through a programme of coring, test pitting and trial •	
trenching
studying the potential of available statistical testing techniques such as ‘jackknife’ and other methods•	

The results of the current study suggest that:

the design of test protocols depends on the type of model used, and the quality criteria established. •	
Given the fact that quantitative quality criteria for Dutch predictive maps are absent at the moment, 

68	 Kindly put at my disposal by Heleen van Londen (AAC Projectenbureau, University of Amsterdam).
69	 Used here with their permission.
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only general guidelines can be supplied in this respect:
predictive model performance should be calculated using an external data set rather than the ◦◦
design data set;
any external data set used for predictive model testing should be collected according to the ◦◦
principles of probabilistic sampling; and
the most powerful testing methods imply the use of statistical techniques that can specify the ◦◦
uncertainty of site density estimates.

retrospective testing of the currently used predictive models in the Netherlands is hampered by the lack •	
of reliable and easily accessible documentation of the available archaeological data sets. Collecting and 
analysing the available data sets is possible, but will entail a major effort.
for proactive testing, the same holds true. The objective of new data collection should be to obtain a •	
representative test data set of sufficient size. This implies that surveys should also be carried out in 
areas of low probability. The appropriate size of the data set should be calculated from the confidence 
intervals of site density estimates, and depend on the desired precision of the estimates. So, without 
analysing and using the data sets available for retrospective testing, we will not be able to say where we 
need to collect new data, and how much. However, if we start with small proactive testing programs, 
it should be possible to slowly improve the models’ quality by integrating new data when it becomes 
available.
resampling offers the potential of obtaining statistical estimates and confidence intervals, even from •	
relatively small data sets, and with any type of predictive model. It therefore is a promising technique 
that needs further development for predictive modelling purposes.

A number of additional conclusions can be drawn on more technical issues:

performance assessment

accuracy and precision:
a good predictive model should be both accurate and precise, •	 i.e. the high probability zones should 
capture as many archaeological sites as possible in as small an area as possible.
the accuracy and precision of any predictive model can be calculated using a number of gain measures •	
that are applicable to all types of predictive models. However, none of these measures fully solves the 
problem of deciding whether model A is really performing better than model B, as this also depends on 
the quality criteria imposed on the model (i.e. whether accuracy is more important than precision, and 
how much more important).

classification error:
the calculation of classification error, while a statistically more sophisticated measure of model •	
quality, is only possible when using a binary, site/non-site model. Performance measures based on 
misclassification rates can therefore not be applied to currently available Dutch predictive models, 
which do not use a site/non-site approach.

model optimisation:
various model performance optimisation methods have been developed for quantitative predictive •	
models, and allow for a trade-off between accuracy and precision. The use of these methods implies 
that the maximum performance possible of the model can be obtained with the available data set. 
with qualitative models, only the precision can be manipulated by changing the weights of the probability •	
zones.
in the case of site/non-site models, the ‘intersection method’ can be used for optimisation, allowing for •	
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a trade-off between gross and wasteful error.
with site density transfer models, gain development graphs are practical tools to distinguish between •	
zones of low, medium and high probability.

quality norms:
model performance criteria are in most cases not defined, making it impossible to decide whether the •	
model is accurate and precise enough.
however, accuracy is, from the point of view of protection of the archaeological heritage, a more •	
important criterion of model performance than precision. Low probability zones are preferred by 
developers because of the low archaeological risk in these zones, and will usually be surveyed less 
intensively. An inaccurate model will therefore increase the risk that archaeological sites are destroyed 
unnoticed.

model validation:
validation implies the calculation of performance measures using either new data (double validation) or •	
parts of the design data set (simple validation).
validation will give a more realistic indication of model performance than is obtained by calculating •	
performance statistics from the design data set itself.
split sampling keeps parts of the design data set behind, to obtain a semi-independent check of model •	
performance.
resampling techniques (including jackknife sampling and bootstrap sampling) re-use parts of the design •	
data set to obtain model performance measures, and are closely related to Monte Carlo simulation 
techniques.
when using validation, bootstrap sampling is the most sophisticated technique available, and should •	
therefore be used in favour of other techniques.
all validation techniques discussed are primarily intended to obtain more realistic estimates of the •	
classification error. These techniques can therefore not be used directly with current Dutch predictive 
models. However, it is possible to use them for other purposes as well, like the calculation of gain.
apart from its application as an error estimation technique, resampling is a new and rapidly growing •	
branch of statistics that allows for statistical inference in situations where sampling conditions are far 
from ideal. However, archaeological applications are virtually absent up to now.

statistical testing:
in order to apply statistical testing to predictive models, they should provide estimates of site densities •	
or proportions, and the corresponding confidence intervals.
statistical testing of correlative predictive models should consist of two phases: a hypothesis test phase, •	
intended to identify possible biases in the original data set. If the model is not found at fault, a statistical 
inference phase follows, where the test data is integrated in the model to improve its statistical accuracy 
and precision.
two types of model are suited for this type of statistical inference: Bayesian models, and models based •	
on resampling. Bayesian models have not yet left the stage of pilot studies, and resampling has never 
even been considered as a tool for predictive model building.
in all fairness, it should be added that logistic regression models are also open to statistical testing and •	
improvement, but they are not normally presented with confidence intervals or error terms that may be 
reduced by using a test data set.
most currently available predictive models however only provide relative site density estimates. Suitable •	
statistical testing methods for this type of models are extremely limited. This is the primary reason why 
performance measures are used to assess model quality instead of statistical tests.
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independent testing

data set requirements:
in order to perform any kind of test, the test data set should be collected according to the rules of •	
probabilistic sampling. This does not mean random, but representative sampling.
the use of site counts as the basis for predictive models makes it difficult to decide how much data •	
collection is needed for testing, as we do not know how long it will take to find the number of sites 
needed to reduce uncertainty to an acceptable level. This is a clear argument in favour of using site/
non-site models, or models based on area estimates instead of site density only.
a reliable estimate of proportions in low probability zones requires more data collection than in high •	
probability areas. This is because the estimates of low numbers can be substantially altered by the 
discovery of very few sites; the estimates are less stable.

retrospective testing:
for retrospective testing, representative data are often not available. The use of non-probabilistic •	
sampling data for retrospective testing purposes is possible, but needs careful data analysis and 
correction of biases.
the least biased data source available for retrospective testing is the watching brief. Given the relatively •	
low number of watching briefs carried out, it is inevitable that other survey data will need to be analysed 
as well. Core sampling data is the most abundant data source available.
the current data contained in ARCHIS is not well suited for predictive model testing. Errors in data •	
entry as well as insufficient registration of the potential sources of bias of the research carried out make 
it impossible to carry out a reliable test of, for example, the IKAW. The database could however be 
used to find out which projects have been carried out in a specific area, so the relevant documents can 
be collected. This data has to come from many different sources, and will not all be available in digital 
form.

8.7.2 	R ecommendations

From the current study, the following recommendations result:
the Dutch archaeological community should define clear quantitative quality criteria for predictive •	
models. The accuracy of predictive models, measured as percent correct prediction of an independent 
and representative archaeological data set, should be the first concern of heritage managers.
performance measures of archaeological predictive models should always be calculated using •	
a representative test data set, and should be calculated for correlative models as well as for expert 
judgement models.
validation by means of resampling, specifically bootstrap sampling, is good statistical practice for •	
the calculation of performance measures, and should become part of model quality assessment 
procedures. However, the potential of statistical resampling methods still needs further investigation, 
for archaeological predictive model building as well as for testing purposes.
ideally, both correlative and expert judgement/deductive predictive models should be able to provide •	
statistical estimates and confidence limits of site density or site area for the probability zones 
distinguished. This allows for the establishment of the desired confidence limits, which can be used as 
a criterion for the amount of future data collection needed.
once quality criteria are available, formal testing protocols can be developed to perform quality control •	
of the models, and research programs can be developed to reduce the uncertainties in the current 
models. Preferably, these research programs should be embedded in the normal procedures for 
archaeological heritage management, e.g. by specifying the amount of testing to be done in project 
briefs for compliance surveys. In fact, it implies that probabilistic sampling should be done together 



8 - predictive models put to the test

115

with purposive sampling.
coupled to this, the quality of the archaeological data sets used for building correlative models should •	
always be analysed. They should be representative of the area modelled, and survey biases should be 
detected and corrected for. Correlative models based on biased, unrepresentative data should not be 
used.
it is open to debate whether models based on statistical estimates and confidence limits will lead to •	
better predictions, and therefore to better decision making in archaeological heritage management. 
However, as we do not have any such models available right now, this cannot be judged. It is therefore 
recommended to start a pilot study, using different modelling techniques and a test data set, to compare 
the performance of these techniques with traditional models.
from the perspective of risk management, models that predict the area taken up by significant •	
archaeological remains are more useful than site density estimates. These models can in fact be made, 
but require a substantial amount of data collection and analysis. Again this needs a pilot study, in order 
to judge the feasibility of such an approach.
the main archive of archaeological data in the Netherlands, the ARCHIS database, is not well suited for •	
predictive model testing. Especially the research database should be thoroughly analysed and corrected 
in order to obtain representative site samples.
future data entry procedures in ARCHIS should take into account the level of information needed for •	
predictive model testing. This primarily includes the correct delimitation of the zones investigated, and 
the registration of factors influencing detection probability: the fieldwork methods used, the size and 
configuration of sampling units, the depth of investigation, and factors that cannot be manipulated, like 
vegetation cover.
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9.1 	 Introduction74

One of the main characteristics of our reconstructions of past societies, and of archaeology in general, is the 
important role played by ignorance and uncertainty: there is little in archaeology that we know for certain, 
and much that we know little or nothing about. Such uncertainty (e.g. about the quality of the extant body of 
knowledge, or about the location of unknown resources) is also inherent to archaeological heritage management. 
In a previous study (van Leusen & Kamermans 2005) we established that a probabilistic or ‘weight of evidence’ 
approach should be better suited to creating predictive models than the more traditional approaches of the recent 
past, which have tended to ignore these uncertainties. The BBO project team therefore decided that ‘reasoning 
with uncertainty’ should be a major research theme for the second phase of the project.

Following the BBO call for ‘action research’ it was decided to explore the theme by creating a worked 
example based on a widely published Dutch predictive model, in such a way that the benefits of these new 
approaches could be made clear to non-technical readers as well as to those working in heritage management 
positions. Accordingly, this chapter has two aims:

to demonstrate that these approaches can result in useful models for CRM decision support (hopefully 1.	
more useful than the existing traditional models), and 
that concepts of expertise and uncertainty can be given a place in formal models without compromising 2.	
on robustness and replicability, and hence can provide the link to concepts of (financial) risk employed 
by the people who use these models in the real world.

9.1.1 	A pproaches

Our 2005 study established that there are several approaches to reasoning with uncertainty that could 
conceivably be explored in the course of a worked example, such as Bayesian inference, fuzzy logic, Partial 
Probability theory and Dempster-Shafer theory. Two of these will be explored here. In section 9.2 Andrew 
Millard demonstrates how prior and conditional probabilities obtained from a regional archaeological expert 
(Groenewoudt) can be used to calculate, through Bayesian inference techniques, the posterior probabilities of 
site presence within the study area:

… it is impossible to separate opinions (prior beliefs), data and decisions/actions. In the ‘classical’ approach, 
our opinions influence our procedures in all sorts of subtle and little-understood ways, for example in choosing 
the significance level of a hypothesis test. It’s better to be as explicit as we can about our prior beliefs, and let 
the theory take care of how they interact with data to produce posterior beliefs, rather than to let them lurk at 
the backs of our minds and cloud a supposedly ‘objective’ belief. This way the Bayesian approach can be more 
than just a nice piece of mathematics. (Orton, 2003)

70	 This chapter is based on an NWO-BBO funded workshop, held at Amsterdam on 17-21 January 2005. We would like to 
acknowledge the contributions of those present (other than the authors themselves): Bert Groenewoudt, Huub Scholte 
Lubberink and Roy van Beek participated as archaeological experts and guinea pigs; Hans Kamermans and Philip Verhagen 
helped ‘translate’ between the archaeological and methodological experts. We also want to express our gratitude to our host, 
director Marten Verbruggen of RAAP Archaeological Consultancy.

71	 Rijksuniversteit Groningen (p.m.van.leusen@rug.nl).
72	 University of Durham (a.r.millard@durham.ac.uk).
73	 Oxford Archaeological Unit Limited (benjamin.ducke@oxfordarch.co.uk)

74	The figures from this chapter can be found in colour at 
	 http://www.aup.nl/do.php?a=show_visitor_book&isbn=9789087280673
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Bayesian statistics differs from classical statistics in allowing the explicit incorporation of subjective prior 
beliefs into our statistical analysis. The Baseline Report (Van Leusen et al. 2005, 66) sets out the main reason 
for using Bayesian approaches, that is incorporation of expert prior knowledge in a formal and transparent way 
into predictive models, thus making them more rigorous and of higher quality.

In section 9.3 Benjamin Ducke shows how initial uncertainties and beliefs can be used as inputs for a 
predictive model using Dempster-Shafer theory (DST), and how outputs such as the ‘plausibility map’ can be 
used to quantify the developers’ risk as well as to target further research. DST provides a less rigid framework 
for archaeological inference than does the Bayesian approach. As defined by Dempster (1967) and Shafer (1976), 
it is built around the concept of belief, which is a somewhat more relaxed, generalized version of mathematical 
probability. The theory’s hallmark is its capability to explicitly represent uncertainty, allowing critical decision 
support for large scale planning in cultural resource management (CRM) mitigation processes.

9.1.2 	T he worked example: rijssen-wierden ‘de borkeld’
For the choice of data set, we figured it was important to be able to compare any new models made by us, with 
existing models made earlier for the same area. These conditions are met by the dataset used for the first predictive 
model in the Netherlands, the Rijssen-Wierden area in the eastern Netherlands (Ankum & Groenewoudt 1990; 
figure 9.1) which was later used for a revised model by Brandt and others (1992) as well as for three generations 
of IKAW. It is worth quoting the relevant paragraph from the Baseline Report:

RAAP became involved in archaeological zonation in the late 1980s (Brandt 1987). Initially the ‘classical’ 
American inductive method, using multivariate statistics, was advocated (Ankum & Groenewoudt 1990; 
Brandt 1990). A pilot study carried out in the Pleistocene landscape of the Rijssen-Wierden area resulted 
in a predictive model based on six environmental variables: soil substrate, landscape unit, zonal area, 
distance to water, distance to macro-gradient, and distance to water or macro-gradient. This methodology 
was subsequently applied again only once (in the regional study ‘Ede’; Soonius & Ankum 1991a,b), when six 
rather different landscape variables were found to be significant in influencing archaeological prediction: 
soil type, geomorphology, ground water level, distance to macro-gradient, distance to surface water, and 
distance to dry valleys. Two additional factors quantifying geographical complexity were investigated as well, 
but were not found to be significant predictors (Soonius & Ankum 1991b: 72-74): heterogeneity or the number of 
distinct legend units of the soil and geomorphological maps occurring within a radius of 500m and 1000m, and 
variation or the number of zones occurring within that radius. Also new was the specification of predictions for 
five periods (late Palaeolithic and Mesolithic, Neolithic, Bronze Age, Iron Age and Roman period, and Middle 
Ages), where the Rijssen-Wierden model had lumped all periods together except for the Late Middle Ages - 
which was omitted altogether because it barely correlated with characteristics of the physical environment. A 
‘map of archaeological potential’ was produced by factoring in both zones of disturbed soil and zones where 
circumstances were especially likely to conserve archaeological remains. The end result was then generalised 
for publication (van Leusen et al. 2005, 36-37).

We found one of the original researchers (Bert Groenewoudt, then with the RACM) prepared to help out with 
the data and to act as regional expert. The original GIS files for this area, luckily still kept at RAAP, were 
sent to Millard and Ducke along with a documentation of the map layers75. Roy van Beek, at the time doing 
PhD research on the eastern Netherlands at the RACM, was brought in as the second regional expert. For the 
purposes of comparison, we have also approached Huub Scholte Lubberink, then at RAAP Oost, to act as our 
third regional expert.

75	 In GRASS 4.1 format.
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Figure 9.1 Location of the Rijssen-Wierden area (1) in the Netherlands.

The landscape in the 120 sq km area covered by sheet 28D of the Topographical Map of the Netherlands is 
characterized by glacial and periglacial forms which, because of their poor drainage, were later dotted with 
marshes and partly covered by peats. The area is crossed by several valleys with local clayey deposits. Wind-
blown sandy areas were fixed by planted woods in the 19th century; near the present town of Rijssen we also find 
man-made soils covering the original landscape.

The relation landscape – prehistoric settlement was investigated (for the Pleistocene sandy areas only) 
by comparing the characteristics of 76 archaeological settlement or burial sites to those of 80 random control 
points, using a 100m raster resolution. The archaeological sites were subdivided by period into five groups (15 
Palaeolithic and Mesolithic; 18 Neolithic to Middle Bronze Age; 16 Late Bronze Age to Iron Age; 8 Roman to 
Early Medieval Period, and 19 Late Medieval Period). Significant correlations were found to exist between sites 
and the following eight environmental variables: soil type, (geomorphological) landscape unit, soil substrate76, 
groundwater table, soil/morphological unit size77, distance to macrogradient78, distance to surface water79, 
and (probably) degree of heterogeneity80. All variables were derived from the following three map sources: 
sheet 28D of the topographic map 1:25,000, sheet 28 West of the soil map 1:50,000, and sheet 28/29 of the 
geomorphological map 1:50,000. No significant correlations could be found with three other variables (distance 
to boundary of low/wet areas, aspect, and elevation), probably because of the relatively subdued relief81.

Ankum and Groenewoudt’s predictive model used only those five factors which proved to be most 
useful in the study area, namely: soil substrate, landscape unit, unit size, distance to water, and distance to 
gradient82. The ‘factor maps’ for these variables were reclassified into two to four rated zones depending on the 

76	 The soil substrate is likely to be the same as in the remote past, whereas the soil type may well have changed in the 
meantime.

77	 Some units, although suitable in other respects, might prove to be unsuitable for agricultural use because they are too small.
78	 This is based on the idea that the physically most diverse parts of the landscape are also ecologically the richest, hence the 

most attractive in some periods. The boundaries between the high glacial and sandy area and the low-lying area are one 
example of this.

79	 For both drinking water and hunting/fishing.
80	 As measured by the number of soil/geomorphological polygons within 0.5, 1, or 2 km from the site, and the number of 
different soil/geomorphological legend units within 0.5, 1, or 2 km from the site.

81	 Correlations were, however, significant for subgroups of sites: see Ducke’s analysis in section 9.3.5.
82	 Note that, although the site-environment correlations were investigated for each period separately, the choice for these five 

factors is determined by the authors’ attempt to pick the ‘overall best’ predictors. 
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positive or negative influence they seemed to exert over site location choice; then all factor maps were added 
together to obtain a single raster map in which higher values signify greater site potential. The resulting value 
range, with a minimum of 0 and a maximum of 13 points, was reclassified into the range 1 - 4 to arrive at the 
final archaeological potential map (figure 9.2). This model attempted to optimize gain83, and in fact placed 73% 
of the input sites into the two top classes which together make up 24% of the area, for a gain of 67%. The authors 
note that, if Late Medieval settlements (which do not correlate well with the physical landscape) had been left 
out of the model, the gain would probably have been higher. Conducting field checks in areas with a positive 
expectation value only, the authors subsequently located another 27 new archaeological sites.

archaeological 
potential 4

archaeological 
potential 3

archaeological 
potential 2

archaeological 
potential 1

 0      1 km

Figure 9.2 Ankum & Groenewoudt’s (1990, figure 13) predictive model for Rijssen-Wierden. The four shades of gray 
represent zones of increasing archaeological potential.

Re-building the original data set and derived models, as depicted in Appendices 24-29 and figures 13 and 14 of 
Ankum and Groenewoudt’s 1990 study, with full fidelity proved to be impossible because the data themselves 
and/or the procedures used to produce the maps were not always adequately described. However, we succeeded 
eventually in obtaining raster layers that closely resemble the 1990 ‘factor maps’ (depicted in figures 9.12-
9.16).

In addition to the 79 sites used in the original 1990 study and the 50 new sites used for the 1991 test, 
Groenewoudt provided a further 17 site locations as well as 23 ‘non-site’ locations discovered since 199184 and 
Scholte Lubberink provided an additional list of 100 probable Late Medieval (LMED) sites85.

83	 Calculated here as 1 - %area / %sites.
84	 Observed ‘non-site’ locations, e.g. fields that were surveyed under good visibility conditions and where no archaeology 

was observed, can under certain conditions be used to estimate the probability of a site occurring in a particular landscape 
setting. See the discussion in section 9.4. 

85	 Based on the locations of post-Medieval toponyms indicating the presence of farmsteads; LMED sites are thought to be 
located within 150 m of these locations.



9 - Dealing with uncertainty in archaeological prediction

127 

9.1.3 	T apping the expertise

Besides data representing the physical landscape and the locations of the known archaeological sites, we needed 
to obtain information about both location factors and bias factors from the regional archaeological experts in a 
structured manner.

First, we asked each of them to independently weigh all categories distinguished in the reconstructed 
1990 factor maps (Ankum and Groenewoudt 1990, appendices 24 – 29), so that we could demonstrate how such 
weights can be used to create a Bayesian model of prior probabilities. However, the experts believed that more 
realistic results could be achieved by changing the categories in some of the factor maps and by distinguishing 
several periods rather than lumping everything together. Hence the maps representing soil substrate and 
geomorphology were reclassified by the experts jointly, before being weighted again independently. Likewise, 
the maps representing polygon size and distance-to-water received different weightings for the four broad 
periods that the experts considered the most relevant (Palaeolithic and Mesolithic (PAL-MES), Neolithic 
to Early Bronze Age (NEO-EBA), Middle Bronze Age to Early Medieval Period (MBA-EMED), and Late 
Medieval Period (LMED))86.

Expertise about the effects of extraneous factors (biases) on the discovery of archaeological remains 
was also modelled. The experts each assessed the relative probabilities of a site being discovered in each of 
six land-use types (Urban areas, Woodland, Moor, Pasture, Arable, and Water), always supposing a site were 
present. They also provided estimates of the percentage of sites already discovered within the study area, and 
estimates of the total numbers of sites present in each of the four broad periods. Groenewoudt further estimated 
the relative probabilities of discovery for each period.

One remarkable aspect of the Rijssen-Wierden dataset, demonstrating the importance of expert 
knowledge in predictive modeling, is the absence of sites in the built-up areas of Rijssen whereas many sites are 
present in the built-up area of Enter/Wierden87. The experts explained this as a consequence of a difference both 
in the level of amateur activity, and a difference in the chronology of local urban development: as development 
at Enter took place relatively late, better records were kept of archaeological discoveries. The upshot of this is 
that the experts disbelieve the absence of sites in Rijssen.

Finally, all three experts also supplied expertise on the effects of land use/land cover on research 
intensity, which sometimes proved to be counter-intuitive. On the one hand, arable land and cover sands had 
been intensively surveyed whereas the low-lying (generally grassy) areas were surveyed much less intensively; 
on the other, archaeological observations carried out during mechanized sod stripping allowed a high discovery 
rate in some heath areas.

9.2 	A  bayesian model demonstrating the use of expert opinion and the generation of uncertainty 
maps

Millard produced a multi-period Bayesian model for settlement in the study area, showing how conditional 
probabilities combine with observations to yield posterior probabilities, with an associated measure of 
uncertainty. In this section we explain, by example, the various steps in the model calculations, beginning with 
the quantification of expert opinions (‘obtaining prior proportions’), their conversion to equivalent numbers of 
sites and maps of expected relative site densities, the effect of adding actual site observations, and the use of 
maps depicting the amount of disagreement (uncertainty) among experts before and after observations were 
added.

86	 One technical option, which was not further explored by us, is the use of functions rather than categorical weights to describe 
a factor.

87	 This leads to a conflict of evidence, in which a particular factor appears to be both in favour of, and against, settlement.
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Step 1: Obtaining prior proportions

Experts’ relative odds of sites being present in each of the classes for each of the six factors were given for the 
1990/1992 model, and for a new 2005 model. For example, expert’s 2 odds with regard to the factor soil texture 
are given in table 9.1.

a b c d a b c d sum

a 1 0,5 0,25 0,1 0,059 0,118 0,235 0,588 1

b 2 1 0,25 0,5 0,067 0,133 0,533 0,267 1

c 4 4 1 0,33 0,056 0,056 0,222 0,667 1

d 10 2 3 1 0,052 0,259 0,172 0,517 1

MEAN 0,058 0,141 0,291 0,510 1

CV % 10,9% 60,2% 56,4% 34,0%

Table 9.1 One of the three experts’ assessment of relative odds for factor ‘soil texture’ categories a-d (left), 
converted into probabilities (right), with means and variances (bottom). CV= coefficient of variance.

On the left, each combination of texture classes is evaluated. For example, class (row) c is judged to be 4 times 
more likely to contain sites as is class (column) b. These relative odds supplied by the experts can be rewritten 
as absolute probabilities (known as ‘prior proportions’) summing to 1. Since the expert in question supplied 
information on all possible combinations of texture classes (in principle one data row would have been enough), 
it is possible to make four separate calculations of these prior proportions (the four rows in the right-hand 
part of the table), which need not (indeed, do not) agree. Continuing our example, texture class c according to 
this expert should ‘attract’ between 17 and 53 percent of the sites (column outlined), with a mean of 29% and 
a coefficient of variance of 56%. In other words, this expert is quite uncertain about some of his odds. The 
calculated means provide our current best estimate of this expert’s true opinion on the importance of the four 
soil texture classes, so this is what we will use in further calculations.

Step 2: Calculating Dirichlet prior vectors

18 identical calculations were made for each of the six location factors and for each of the three experts 
separately (they were asked not to confer), and this information was combined to arrive at an assessment of the 
mean expert opinion and its variance, and the consequent ‘data equivalent’, which expresses our reliance on 
the experts’ opinions in terms of the number of actual site observations that would be needed to dislodge them. 
For example, table 9.2 contains each of the three experts’ prior proportions for the factor soil texture, along 
with the means and standard deviations. As can be seen, the three experts in this case are in rough agreement 
about the proportions of sites they would predict to lie in each of the four soil texture classes (if these were 
equally represented in the study area). For soil texture type c, for instance, expert opinions of 22, 29, and 30 
percent average out at 27%, with a standard deviation of only 5%. There is somewhat less agreement on the 
‘attractiveness’ of soil texture type d, with a standard deviation of 11%.
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From this, so-called Dirichlet prior vectors and data equivalents can be calculated using various approaches 
(methods A to C in table 9.3). For example, in method A it is assumed that each expert is worth one observation 
– i.e., the combined ‘data equivalent’ of our experts is 3. However, rather than making assumptions, we want 
the data equivalent to follow from the mean and variance of the experts’ priors, and this is done in methods B1 
and B2. The value 0 is the apparent data-equivalent from the mean and variance of the experts’ opinions for 
each soil texture class. Method B1 uses the mean of these 0 values to arrive at the data equivalent for the factor, 
whilst method B2 takes a more conservative approach and uses the minimum of the 0 values. Thus, for the 
factor soil texture, the experts’ opinions are calculated to be worth between 17 (conservative method B2) and 
39 (mean method B1) observations.

a b c d sum

expert 1 0,027 0,051 0,217 0,704 1

expert 2 0,058 0,141 0,291 0,510 1

expert 3 0,150 0,050 0,300 0,500 1

mean 0,079 0,081 0,269 0,571

SD 0,064 0,052 0,046 0,115

Table 9.2 Experts’ mean prior proportions for the factor ‘soil texture’, with means and standard deviations (SD).

When we repeat this calculation for all of the six location factors, then take the overall average data equivalent, 
the conservative calculation results in a value of 28 and the mean calculation in a value of 40. An overall data 
equivalent of 30 therefore seems to be a reasonable value to work with. In other words, in answer to our question 
of how much weight should we assign to expert opinion as opposed to actual observations, the answer seems 
to be that our expert’s opinions are worth the equivalent of 30 observations. For the factor soil texture this 
translates (row C of table 9.3) to 2.4 observations in soil texture class a, 2.4 in class b, 8.1 in class c, and 17.1 in 
class d.

class a b c d
method data equivalent

A 0,24 0,24 0,81 1,71 3

0 16,82 26,11 94,04 17,44

B1 3,03 3,12 10,39 22,05 38,60

B2 1,32 1,36 4,53 9,61 16,82

C 2,36 2,42 8,08 17,14 30

Table 9.3 Calculation of the experts’ data equivalent for the factor soil texture, using Dirichlet prior vectors. Method 
A uses a prior data equivalent of 3; Method B1 uses the mean 0 from the variance of expert opinions; Method B2 
uses the minimum 0 from the variance of expert opinions; and Method C uses a prior data equivalent of 30.
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Figure 9.3 Relative site density according to expert judgement (prior proportions; a cell with a value of 0.12 is twice 
as likely to contain a site as a cell with a value of 0.06).

Where the experts agree (that is, where the variance of their opinions is low) a high data equivalent results; 
where they disagree a low one results. This is correct, since we do not value very highly the opinion of experts  
who cannot agree among themselves, whereas we tend to trust experts who find themselves in agreement88. 
Since the case study uses 80 actual sites, expert opinion may be said to represent about a quarter (30/110) of the 
final prediction in this particular model.

Step 3: Mapping expert opinion and confronting it with data

In order to generate a predictive model that uses this calculated ‘weight of expert opninion’ in combination with 
the circa 80 site observations available in 1992, a map containing all possible combinations of the 6 location 
factors was generated. There are 96 classes in this map: 4 texture classes * 3 geomorphological units * 2 
unitsurface classes * 2 gradient distance classes * 2 water distance classes89. Using the Dirichlet prior vectors 
generated by method C, the relative probability of finding a site in each of these was calculated and mapped 
(figure 9.3). The map may be viewed as a summary of our experts’ views on the relative density of sites in the 
landscape.

88	 Interestingly, when the 2005 model was built, the experts had already been conferring about the best way of representing 
location factors, and so their opinions had converged; resulting in dramatically lower measure of variance and, in 
consequence, a higher ‘data equivalent’: 700 – 1400 rather than 20 - 40. In effect, the three experts had reached agreement 
on the odds they would assign to each soil substrate and geomorphological class, hence their combined priors can only be 
dislodged by a very high number of contrary observations.

89	 Geomorphology classes 1 and 3, and 4 and 5, were combined for this part of the calculation, following Brandt et al.’s (1992) 
method as reconstructed by us.
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Figure 9.4 Relative site densities following inclusion of 80 observed sites (posterior proportions, using the same 
legend as figure 9.3) with sites overlaid.

This prediction can now be confronted with the 80 site observations available in 1992, and a number of 
discrepancies will be noted. We see areas where sites are present despite their predicted absence, as well as areas 
where sites are absent despite their predicted high density. This is partly as it should be: actual site discoveries 
are steered largely by visibility factors and construction work, so areas with a high site potential that have not 
been available for research will not have any site observations. Conversely, if a high proportion of sites is found 
in areas where experts predict they should not exist, this must be taken as an indication that either the experts 
or the base maps, or both, are wrong.

When we now add the site data to the experts’ data equivalent, and re-run the model calculations, a map 
of posterior proportions results (figure 9.4). If we compare this map to the prior proportions in figure 9.3, it will 
be seen that the addition of the sites has caused the model to somewhat increase its predicted site probability 
for most of the lighter areas (turning them grey in figure 9.4), and to generalize somewhat its predictions of 
zones of relatively high site density (dark shades in figure 9.4). In other words, the posterior probabilities have 
changed with respect to the prior probabilities under the influence of the observations, as per Bayes’ theorem. 
The changes themselves can also be mapped (figure 9.5) for further study.

The case study thus far demonstrates how quantitative predictive models can be generated on the basis 
of expert opinion alone, and how a mechanism exists that adapts these models whenever new data become 
available. Moreover, this approach allows one to manipulate the weight of expert opinion as opposed to the data: 
in cases where we have poor data but trusted experts, we can assign a high weight to experts’ opinions; in cases 
where we have good data but little expertise we can assign a low weight.
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Figure 9.5 Difference between prior and posterior predicted site densities. Predicted site density increases (dark) 
or decreases (light) when observed sites are included into the model.

Happily, we do not need to be completely subjective in our rating of the quality of our experts: the variation 
among the expert’s opinions itself provides us with a quantified measure of uncertainty, which itself can also be 
expressed as a map (figure 9.6). After again including the observed sites in the model, model uncertainties are 
shown to change (figure 9.7); the difference is depicted in figure 9.8. In this latter map, light grey indicate that 
we should have a high confidence in the predictive model, dark grey that we should be less confident that our 
model is correct. Such a map has obvious implications for the regional heritage management agenda: studies can 
be targeted at the high uncertainty zones in order to increase overall confidence in the predictive model.

Figures 9.6 and 9.7 show absolute SDs. The difference between them as shown in figure 9.8 is difficult 
to grasp because the relative uncertainty also depends on the mean relative site density. The difference becomes 
clearer if we calculate the SD as a fraction of the mean site density; once mapped (figure 9.9), this shows more 
clearly that uncertainty has decreased in all parts of the map relative to the priors.
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Figure 9.6 Uncertainty in the relative densities of sites as modelled by the experts (prior SD; darker shades indicate 
areas of greatest uncertainty. These correspond, unsurprisingly, to the areas of highest density in Figure 9.3. 
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Figure 9.7 Uncertainty in the relative densities of sites after the data is included (posterior SD).
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Figure 9.8 Difference between 9.6 and 9.7. Uncertainty has decreased in some areas (light) but increased in others 
(dark).
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Figure 9.9 Change in uncertainty between prior and posterior, expressed as difference of relative SDs. Lighter 
shades signify greater reductions in uncertainty.
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Figure 9.10 Posterior predicted total site density in numbers of sites per hectare. In the very highest density areas, 
a site is expected in every 1.5 hectares (68 sites per km2), but on average the density is only 0.06 sites per hectare 
(1 site per 16 ha).

Step 4: From relative to absolute site densities

A further advantage of our approach over the IKAW approach is that the resulting predictive model is quantified 
to a much greater extent: using experts’ estimates of the total number of undiscovered sites in the study area, the 
model can provide estimated absolute site densities for each landscape class90.

Since there are large differences in the experts’ estimates of the total site count as well as in their 
distribution over the four periods, the standard deviations are substantial, and our confidence in the mean 
values therefore remains low. The experts stressed that they not have great confidence in their own capability 
to estimate these numbers reliably, and this is reflected in the differences between them as summarised in table 
9.4.

Nonetheless we can now use the mean estimate of total number of sites, 755, to generate a map of 
predicted site density in numbers of sites per hectare (figure 9.10). Whilst the values in this map could be as 
much as 50% off91, they could form the basis for cost calculations once the area affected by a planned building 
activity is known, and is therefore potentially of great use to government archaeologists and developers alike (cf. 
Gibson 2005). This kind of map could be field tested in areas of large-scale topsoil stripping, and subsequently 
corrected, but further study would be required to develop this type of application.

90	 The IKAW only provides relative average site densities for each of the three main prediction zones.
91	 Given the standard deviation of 336 sites on a mean of 755. Unpublished field data from the German Land Brandenburg 

indicate that the total site numbers estimated by experts may be far too low in general (pers. comm. Benjamin Ducke).
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estimated 
% of sites 
discovered

estimated no. of sites per period estimated 
total no. of 

sitesPAL-MES NEO-EBA MBA-EMED LMED

expert 1 10% 200 300 400 150 1050
expert 2 25% 200 30 60 100 390
expert 3 20% 300 100 175 250 825

mean 18,3% 233 143 212 167 755
SD 7,6% 58 140 173 76 336

Table 9.4 Summary of experts’ opinions about the proportion of discovered versus undiscovered sites, and the 
distribution of all sites over the four periods distinguished.

9.3 	A  dempster-shafer model showing explicit uncertainty handling and updating

Dempster-Shafer Theory (DST) is a theory of uncertainty. It is mathematically related to both set theory and 
probability theory, but provides a more flexible framework that has many interesting properties when it comes 
to handling uncertainty. Different applications and research interests have focused on different aspects of DST 
and keep producing new interpretations (see Smets 1994). Whilst this has led to different proposals for how to 
calculate DST models (Ejstrud 2005, 184), DST as used here follows Shafer’s (1976) original proposal of a well 
defined, reasonably simple mathematical tool that fits a wide range of research applications. The aim in this 
section is to demonstrate how a DST approach can improve the practical uses and the quality of archaeological 
predictive models. The mathematical framework is further described in Appendix 1 for readers interested in the 
mathematical background.

Before we turn our attention to the case study itself, we must introduce some aspects of DST as used 
in an archaeological predictive modelling context. The first archaeological predictive model using DST was 
published by Ejstrud (2003; 2005)92. Ejstrud demonstrated the superiority of DST over various other predictive 
modelling approaches in terms of model performance, but it also has some conceptual benefits:

simplicity: a DST predictive model can be set up in just a few, always identical steps; updating an •	
existing model with new information is just as easy.
flexibility: DST has the ability to combine information from different sources, regardless of distribution •	
parameters.
interpretability: the DST functions produce output that tends to be more meaningful than most statistical •	
measures.
realism: handling uncertainty explicitly produces decision support maps that do not assume complete •	
information.

Translating our predictive modelling problem into the language of DST is a straightforward procedure:

the •	 Frame of Discernment (FoD) is the exhaustive set of hypotheses on the outcomes of the model (see 
below).
a GIS map that encodes a variable with relevance to the FoD is a •	 source of evidence. 
the entirety of GIS maps provided constitutes the body of evidence.•	
each map object is transformed into an •	 evidence by calculating a Basic Probability Number (BPN) for it. 
A BPN is the basic quantification of evidence in the DST. It expresses the strength of belief in the truth 
of a hypothesis in the light of a single source of evidence.

92	 Ejstrud points out, however, that the IDRISI software used for his research actually contains an archaeological scenario in 
the manual for its DST modelling tools.
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In the case discussed here, the FoD is taken to consist of h1={“site”}, which proposes that an archaeological site 
is present, h2={“no site”}, which proposes that no archaeological site is present and {h1,h2}={“site”,”no site”}, 
which proposes that no decision can be made about site presence or absence. As demanded by DST, h1 and h2 
are mutually exclusive and exhaustive, i.e. they cover all possible outcomes. The union of both {h1,h2} represents 
uncertainty and we will refer to this as the “uncertainty hypothesis”93.

9.3.1 	H andling uncertainty

The greatest merit of DST-based predictive modelling is its capability to explicitly handle uncertainty. In 
predictive modelling, uncertainty often arises because there is direct evidence for the presence of a site, but only 
indirect evidence for the absence of one. Thus, the fact that no prehistoric sites were ever found on terrain type 
X might mean that (a) prehistoric settlers actually avoided this type of terrain, (b) the terrain type was in fact 
suitable but remained unused, or (c) one of many possible bias factors prevented the detection of the prehistoric 
sites that are actually present on this type of terrain. In cases like these we might not be able to decide between 
the “site” and “no site” hypotheses, and this inability to decide is the very nature of uncertainty.
		  DST gives us the possibility to transfer a certain amount of the basic probability mass (called uncommitted 
mass) to the uncertainty hypothesis {“site”,”no site”} and thus allows us to postpone decisions about “no site” 
until better information becomes available. Basic probability mass is transferred to the uncertainty hypothesis 
four cases: (1) we are not certain about the significance of a specific category (legend item) in one of the 
evidences (input maps), e.g. the soil type category ‘built-up areas’; (2) we are not certain about the significance 
of an evidence, e.g. ‘distance to surface waters’; (3) we are not certain that sites are really absent from specific 
map categories, even though we have not found them; and (4) we are not certain that a particular location has 
correctly been identified as a site. Here is a more technical decription of these four possibilities:

the probability 1.	 P that the observed difference in proportion between sample (sites) and population 
(entire region) for evidence category C could also be produced by chance is greater > 0. In this case, P 
is subtracted from the mass for either “site” or “no site” and transferred to {“site”,”no site”} for category 
C. This leaves m(h1) or m(h2) as 1-P, respectively.
the chi-square test shows that the overall frequencies of categories in the sample could also have been 2.	
produced by chance with probability P. In this case, P is subtracted from the mass for either “site” or 
“no site” and transferred to {“site”,”no site”} for all categories.
one ore more bias maps are supplied. These are floating point (3.	 i.e. continuous values) type GIS maps in 
which every cell is assigned a value between “0” and “1”. The values specify the degree to which it is 
believed that observed differences are biased towards the “no site” hypothesis. For each bias map, the 
following is done: (a) calculate the percentage of cells BP of each category C that are covered by a bias 
value larger than 0; (b) calculate the mean value BM of the bias in cells of category C. For each category 
C, BM * BP is subtracted from the mass assigned to “no site”.
one or more attributes of the site vector point map are specified to represent the degree to which these 4.	
points (sites) are biased towards the “site” hypothesis. Again, these attributes must be floating point 
values in the range 0 to 1. Calculations are similar to case 3: the more such biased sites are present on a 
certain category of an evidence map, the more mass will be subtracted from the “site” hypothesis and 
shifted to the uncertainty hypothesis.

In summary, a high amount of basic probability mass is shifted to the uncertainty hypothesis for map category 
C, if (a) many cells of category C fall into biased areas and (b) these cells have a high bias on average and/
or many sites on category C are (strongly) biased. Dempster’s Rule of Combination allows us to combine 
any number of evidences and their belief mass distributions, including those parts assigned to individual 

93	 To be precise, the complete set of hypotheses for this FoD also includes the empty set {null}, which is of mere mathematical 
necessity and will be of no further concern here.
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uncertainty hypotheses. This provides an elegant and flexible framework for representing uncertainty in the site 
and landscape data, making it possible to create decision support maps based on the best available knowledge 
rather than on idealized models.

The following Dempster-Shafer output options constitute a complete set of tools for creating, exploring 
and interpreting predictive models, and for using them to make decisions in the face of incomplete and uncertain 
information:

belief(A)•	  is the total belief in hypothesis A. It tells us how much of the evidence speaks for A. This is 
the most basic DST function.
plausibility(A)•	  is the theoretical, maximum achievable belief in A. From a different point of view, it tells 
us how little evidence speaks against A (Ejstrud 2005).
the •	 belief interval represents the degree of uncertainty, measured as the difference between current 
belief and maximum achievable belief. It is defined as plausibility(A)-belief(A). Areas with high belief 
intervals represent poorly studied or understood regions where additional/better information could 
improve model results (see Ejstrud 2003).
a •	 weight of conflict larger than zero indicates that evidences from different sources disagree with each 
other. A high weight of conflict might indicate a serious flaw in the model design or disagreement of 
evidences supplied by different data sources.

In the next section, we will demonstrate the use of these tools on the Borkeld case study.

9.3.2 	A  dempster-shafer predictive model for the borkeld study area

We can now proceed to examine the recreated Borkeld environmental and archaeological data set, perform 
some spatial data editing on it, and run the predictive modelling calculations. We will take as guiding principle 
that it is always better to improve these input data than to try to produce optimal weighting schemes for the 
locational factors: errors will be easier to control, results easier to interpret and model quality will automatically 
benefit from any future updates of the input data sets94. Therefore, the predictive model will be built only from 
basic measurements (e.g. elevation, hydrology) or from maps derived from those basic data using a formalized, 
well-known procedure (e.g. slope, aspect, visibility; Skidmore 1989). Since many maps in the Borkeld data 
set were derived from the basic geomorphology and soil maps in a non-standard way, using some form of 
subjective weighted overlays and classifications, they are highly correlated with the basic maps and would 
introduce unwanted overweight of certain variables if we were to use them as well. They are therefore excluded 
from this study.

Data used in the model

The archaeological information used in this study consists of three different sets of settlement site data 
representing our state of knowledge in 1989, 1991 and 2005. Of the full data set, 84 are Palaeolithic and 
Mesolithic sites, 59 Late Bronze Age to Early Medieval sites, and 164 Late Medieval sites (figure 9.11). One 
possible strategy would be to use all sites known in 1991 to build a predictive model, then test its performance 
with the additional sites known in 2005. However, there is a risk (especially in view of the small overall sample 
sizes) that the test data set itself will be biased due to the influence of specific forms of survey and localized 
developments. We therefore prefer to draw a random test sample of 33% from the total number of sites for each 
chronological phase, and set these aside for testing model performance later on (section 9.3.6). This leaves 57, 
40 and 112 sites respectively for the actual modelling (table 9.5). Here, we will use only the Palaeolithic and 
Mesolithic sites to demonstrate how the DST model works.

94	 We will demonstrate these benefits in sections 9.3.4 and 9.3.5, when we look at how to add new information.
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Figure 9.11 Overview of the Borkeld study area with built up areas (black), principal lakes and rivers, and all 
archaeological sites known in 2005.

no. Type total size modelling size testing size

1 Palaeolithic to Mesolithic 84 57 27

2 Late Bronze Age to Early Medieval Period 59 40 19

3 Late Medieval Period 164 112 52

Table 9.5 Summary of archaeological settlement site data sets used for the Borkeld DST case study.

The Borkeld data set also includes a lot of high-quality environmental data. A quick inspection of site distributions 
revealed the following sources of evidence to be of some relevance for site locations: height, slope, aspect, soil 
type, geomorphology, groundwater level, and hydrology.

Height, slope and aspect

A digital elevation model (DEM) was provided from centimetre precision LIDAR measurements. Unfortunately, 
the LIDAR sensors have also picked up all distortions caused by modern urban development and had to be 
cleaned before it could be used (figure 9.12; see comments below). The final “height” source of evidence was 
derived from the original (cleaned) 7 to 37 meter range by classifying the elevation measurements into 15 
classes representing 2 meter steps.
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Figure 9.12 Cleaned digital elevation model. The height is in meters above sea level (a.s.l.).
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Figure 9.13 Slope steepness measure (in degrees), derived from cleaned elevation data.
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A measure for the steepness of slopes can be derived directly from the cleaned DEM data (figure 9.13; see Horn 
1981). Even in the relatively flat Borkeld landscape, a difference of a few degrees can have decisive impact 
on soil properties, such as susceptibility to erosion. Thus, a classified “slope” map using 0.5 degree steps was 
included in the model.

Aspect, i.e. the direction in which a slope is facing, can also easily be derived from the cleaned DEM 
using a standard GIS algorithm (again, see Horn 1981 for mathematical details). The main problem with the 
aspect variable is that it is circular, with 1 degree of bearing lying adjacent to 360 degrees and ‘0’ representing 
totally flat areas (figure 9.14). The data was therefore reclassified into eight classes representing approximate N, 
NE, E, SE, S, SW, W, NW bearings in 45 degree steps.

Soil type and Geomorphology

The Borkeld data set contains a soil mapping with 11 classes (figure 9.15) and a very detailed map of 
geomorphology with 47 classes. Both were used in unaltered form in this case study.

Groundwater classes and Hydrology

Information about ground water depths and soil permeability was combined to create a map with three classes 
representing “very dry”, “dry” and “wetter” soils (figure 9.16).
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Figure 9.14 Aspect (bearing in degrees from East) derived from cleaned elevation data.
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Figure 9.15 Soil type classes in the Borkeld study area.
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Figure 9.16 Groundwater classes in the Borkeld study area.
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Figure 9.17 Distances from lakes and rivers in 100 m steps.

Proximity to open water for transportation, defence, nutrition and numerous other reasons is conventionally 
considered an important factor in locational behaviour. This case study uses the original Borkeld buffered 
hydrology map that has 100-m distance buffers around lakes and rivers (figure 9.17).

Altogether, this gives us seven environmental variables to capture a significant part of the locational 
behaviour reflected in the site data sets (table 9.6).

 no.  name  data range  no. of classes  description

 1  height  ca. 7.0 to 37.0 m  15 (2.0 m)  absolute elevation

 2  slope  0.0° to 9.0°  18 (0.5°)  measure of slope steepness

 3  aspect  1° to 360° + “0”  8 (45°)  direction of slope

 4  soil  1 to 11  11  soil type classes

 5  geomorphology  1 to 47  47  geomorphological classes

 6  groundwater  1 to 4  4  groundwater depth classes

 7  hydrology  1 to 17  17  distance classes (100 m) from open water

 (8)  visibility  0.0 to 1.0  8  relative visibility from each location

Table 9.6 Summary of maps used as sources of evidence in the Borkeld DST case study. The last evidence,‘visibility’, 
will be introduced in section 9.3.5.
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9.3.3	  Interpretation of the results

The DST modelling software we used (a module especially written for GRASS GIS) includes all necessary tools 
to calculate Basic Probability Numbers for the data presented in the previous section, to combine evidences 
and to explore the results. A calculation of the four most important DST functions (Belief, Plausibility, Belief 
Interval, and Weight of Conflict) for our 57 Palaeolithic and Mesolithic sites gives four different maps for the 
‘site’ and ‘no site’ hypotheses. We will here concentrate on the meaning of the maps for the ‘site’ hypothesis, 
keeping in mind that the belief outcomes for ‘site’ are not necessarily the inverse of ‘no site’, depending on how 
much uncertainty there is in the data.

Belief
The belief maps for ‘site’ and ‘no site’ constitute the basic predictive model information. They use a colour 
scheme going from black (lowest value) to white (highest value). The white patches thus represent areas where 
we would expect to find the most (figure 9.18) or the least (figure 9.19) buried archaeological sites, respectively. 
The belief maps for ‘site’ and ‘no site’ depicted here are not necessarily each other’s exact complement, because 
some of the belief mass may still be assigned to the uncertainty hypothesis. Belief values, like all DST measures, 
are normalized to range from 0 to 1.

Plausibility and Belief Interval
As was stated before, plausibility is a measure of the maximum belief in a hypothesis that could be achieved if 
none of the uncommitted belief mass spoke against it. The belief interval represents the difference between belief 
and plausibility. These measures are of rather theoretical interest and will not be used for decision support in 
our scenario. However, the issue of uncommitted belief (uncertainty) is obviously relevant and will be discussed 
further in the next section.

water

site

1.00
0.90

0.80

0.70

0.60

0.50

0.30

0.10

0.00

 0       1 km

Figure 9.18 Map of belief in the hypothesis ‘site’ for Palaeolithic and Mesolithic sites. Principal lakes and rivers as 
well as positions of sites used in building the model are indicated.
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Figure 9.19 Map of belief in the hypothesis ‘no site’ for Palaeolithic and Mesolithic sites. Principal lakes and rivers 
as well as positions of sites used in building the model are indicated.
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Figure 9.20 Map of the weight of conflict for all evidences for Palaeolithic and Mesolithic sites. Principal lakes and 
rivers as well as positions of sites used in building the model are indicated.
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Weight of Conflict
The Borkeld model for the Palaeolithic and Mesolithic sites shows considerable weight of conflict in many 
areas, indicating that the evidence used is contradictory (figure 9.20). This may be due to the fact that the model 
would benefit from better knowledge about the relationships between the known sites and the environmental 
data; we will see later that this is indeed the case, and how the weight of conflict can be reduced for this specific 
set of sites. The contradictions may also be caused by the nature of the archaeological data set: it does not 
differentiate between sites of different periods and characters. By comparison, the weight of conflict map for 
the Late Bronze Age to Early Medieval sites (figure 9.21) seems to indicate that the selected sources of evidence 
are more appropriate for those sites.

To sum up, DST provides us with seven maps to explore the two basic hypotheses:

b•	 elief(‘site’), plausibility(‘site’), belief(‘no site’) and plausibility(‘no site’) constitute the basic information 
body for decision support in impact mitigation scenarios.
belief interval(‘site’)•	 , Belief interval(‘no site’) and weight of conflict provide measures of uncertainty 
and contradiction and can be used to identify areas where caution is appropriate.

The information in these maps can be used to assess model performance; this is explored in section 9.3.6. But 
first we will have a closer look at how DST handles uncertainty and the addition of new evidence.
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Figure 9.21 Map of the weight of conflict for all evidences for Late Bronze Age to Early Medieval sites. Principal lakes 
and rivers as well as positions of sites used in building the model are indicated
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9.3.4  	E xtending the basic model: adding more uncertainty

At this point, it is time to explore the DST handling of uncertainty in more detail and to see how it can be used 
in practical management of cultural resources (CRM). Let us consider a basic CRM decision scenario: we are 
looking for an optimal location for a new, destructive development. CRM managers are required to point out 
areas of low archaeological value. As was argued before, the ‘no site’ belief map should be the basic tool in 
such a case. However, hard-earned experience justifies the assumption that this map is unreliable in its basic 
form, because the lack site information in hard-to-investigate parts of the study area may easily lead to an 
overrepresentation of ‘no site’ locations.

To quantify these doubts about the quality of our archaeological evidence, we will introduce some 
additional uncertainty related to land use categories in the study area (table 9.7 and figure 9.22). By asking each 
of our regional experts to rate the effect of each land use type on the discovery of archaeological sites, we obtain 
a bias number that, once normalized to a value between 0 (not biased towards ‘no site’) and 1 (highest bias 
towards ‘no site’), can be mapped and used to alter our belief in the ‘no site’ hypothesis.

It should be noted that the bias quantification demonstrated here is merely for illustrative purposes. Our 
intention is simply to show the principal method of introducing uncertainty into a Dempster-Shafer predictive 
model. Thus, the bias values for different land use classes as listed in table 9.7 remain subjective and poorly 
founded.

 class  simplified class expert 1 expert 2 expert 3 bias

0  built up  urban 0.4 0.5 0.6 0.4

1  grassland  pasture 0.8 0.6 0.7 0.7

2  deciduous woodland  woodland 0.7 0.8 0.8 0.7

3  coniferous woodland  woodland 0.7 0.8 0.8 0.7

4  maize, grain  arable 0 0 0 0.1

5  water  water 0.9 0.9 0.9 0.9

6  potatoes, beets  arable 0 0 0 0.2

7  other crop  arable 0 0 0 0.2

8  heather  moor 0.6 0.8 0.8 0.5

9  bare soil  - - - - 0.0

Table 9.7 Land use classes of the Borkeld area, with experts’ opinions regarding ‘no site’ bias, and the bias weights 
used here to alter the DST model.

A reclassification of the land use map yields the spatial distribution of ‘no site’ bias. Comparing the old and 
new ‘no site’ maps side-by-side (figure 9.23; compare with figure 9.19) shows how this results in a much lower 
confidence, but it also shows, more realistically, where additional field research should be directed to reduce the 
(commercial and scientific) risks. In fact, a summary of the ‘belief interval’ values for this model shows that up 
to one third of the evidence information remains on the uncertainty hypothesis, even though seven considerably 
detailed sources of information were used. In the next section we will show that this uncertainty can be reduced 
by introducing new relevant evidence, and excluding evidences that turn out to have little relevance for the 
particular set of sites being modelled.
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Figure 9.22 Categories of land use in the Borkeld study area.
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Figure 9.23 Map of belief in the hypothesis ‘no site’ for Palaeolithic and Mesolithic sites, as weakened by bias 
derived from land use classes. Principal lakes and rivers as well as positions of sites used in building the model are 
indicated. Compare with figure 9.19.
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Figure 9.24 Normalized visibility, derived from a cumulative viewshed analysis for the Borkeld test area. The 
positions of all Palaeolithic and Mesolithic sites known in 2005 are indicated.

9.3.5 	U pdating the basic model: optimizing evidences

Earlier, it was claimed that a DST model can be easily improved by updating the information fed into it. By 
updating, we mean providing better, more accurate information or adding new, relevant sources of evidence. 
Here we will demonstrate the updating process for our model of the Palaeolithic and Mesolithic sites by adding 
visibility (viewshed) information as another source of evidence, and excluding the evidences ‘aspect’ and 
‘groundwater depth’ which we suspect have little locational relevance for this specific group of sites.

Regarding the Palaeolithic and Mesolithic sites, both theory and an inspection of the available data 
suggests that a fair portion of them prefers “observer point” locations with a good view of the surroundings. 
We will therefore include visibility information, derived from a viewshed analysis of our elevation data, to 
improve the model results for this group of sites95. The raw visibility data are first normalized to a range of 0 to 
1, representing lowest and highest visibility from a specified point (figure 9.24), and then broken up into eight 
categories of equal width to represent the ‘visibility’ piece of evidence in our DST model.

A model run with this updated information confirms the validity of these choices: model gain is 
improved from 0.68 to 0.73 as the evidence now includes more relevant information (figure 9.25, compare 
with figure 9.18; table 9.9, compare runs 1 and 7), and the weight of conflict map for the revised model (figure 
9.26) shows that the sources of evidence are now more in agreement with each other than they were before the 
revision (figure 9.20).

95	 The visibility model used here was generated by a cumulative viewshed analysis in GRASS GIS: every cell in the raster 
model records the number of cells visible from that cell within a 2 km radius. The accuracy of the result suffers from the 
usual defects, such as edge effects, errors in the DEM etc. However, for our purposes it is sufficient to have a rough model of 
visibility.
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Figure 9.25 Belief map (‘site’) for the improved Palaeolithic and Mesolithic sites predictive model (compare with 
figure 9.18).
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Figure 9.26 Weight of conflict map for all sources of evidence for the improved Palaeolithic and Mesolithic sites 
predictive model (compare with figure 9.20).
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9.3.6 	T esting the models

It is now time to assess the performance of our DST predictive models for the Borkeld area. For demonstration 
purposes, we will concentrate on the belief maps for the ‘site’ hypothesis, and classify the belief values into 
just three decision support ranges. In what follows, the “low” range represents belief values from 0.0 to 0.33, 
“medium” from 0.34 to 0.66 and “high” from 0.67 to 1.0.

From a CRM point of view, sites located in the “high” belief range are at low risk, because the belief 
map correctly indicates the high archaeological value of their geographic setting. Of course, the “high” belief 
range itself should not take up too large a share of the model area; society would not accept the costs and 
limitations imposed by such an overprotection of the archaeological heritage. A good predictive model must 
therefore be able to place as large an amount of sites in as small an area of “high” belief as possible96. This ability 
is expressed by Kvamme’s gain statistic, defined as 1 - %area / %sites, and should be as close to 1 as possible. 
For example, a model which classifies 50% of the total area as “high” belief and captures 100% of the sites 
within that area will only achieve a gain of 0.5.

Likewise, from a CRM point of view, sites located in “low” belief areas represent failures of the 
predictive model. In a real-world scenario, these site would be under a severe threat of being destroyed or under-
managed. The number of sites in the “low” belief areas is therefore a direct measure of the model’s practical 
reliability. Finally, the “medium” belief range is hardest to interpret and use in a CRM context; for this reason 
our models should attempt to keep the share of the “medium” range as small as possible.

It would be desirable, of course, to have more detailed, quantitative measures for the different aspects 
of model performance. Currently, Kvamme’s gain statistic is the only one widely used in predictive modelling 
applications, although a number of additional ones have been published recently (Kvamme 2006).

Table 9.8 shows the performance results for the modelling sets of sites for the three periods. We can 
use this to estimate the model’s maximum expected performance given specific input data. For each site data 
set, a number of statistics are shown that relate the site datasets to the predicted areas of “low”, “medium” and 
“high”, respectively. The columns ‘sites’ and ‘%sites’ show the number and percentage of sites located in each 
belief range. These should be as low as possible for “low” belief areas and as high as possible for “high” belief 
areas. The columns ‘cells’ and ‘%cells’ show how much of the total study area is taken up by each of the belief 
ranges; the areas of “medium” and “high” belief should be as small as possible. ‘%sites’ and ‘%cells’ are used 
to calculate Kvamme’s gain, and in this column the number of greatest relevance is the one for the “high” belief 
areas, which should be as close to 1 as possible. When we next test the performance of our model using the test 
data sets set aside at the start, we may expect best results for the Late Bronze Age to Medieval Period, somewhat 
worse for the Palaeolithic to Mesolithic, and worst of all for the Late Medieval Period.

How well do our models handle the ‘new’ site information from our test data sets? Table 9.9, runs 1 to 
3, shows that our models perform only very slightly worse for the test data than they did for the original data 
sets. The loss in “high” belief gain is only 0.01 to 0.02, indicating that our models do a good job generalizing 
from the original data sets. This represents a significant improvement over the original 1990 predictive model 
(Ankum and Groenewoudt 1990), which degraded rapidly when checked against the additional site data that had 
become available by 2005 (e.g., almost half the Palaeolithic and Mesolithic sites were missed).

The overall performance of our model is worst for the Late Medieval sites, with a gain of only 0.56. 
Apparently, the sources of evidence chosen do not adequately reflect the locational behaviour in our Late 
Medieval sites data set, or the data set contains sites of different types and locational properties. This problem 
was already identified in the first Borkeld case study (Ankum and Groenewoudt 1990), and serves as a reminder 
of why it is important to split site data into temporal and functional classes before model building.

96	 see this volume chapter 8



9 - Dealing with uncertainty in archaeological prediction 

152 

cat.  description sites % sites cells % cells gain

Palaeolithic to Mesolithic

0  low belief(“site”) 10 17.86 131210 69.05 -0.74

1  medium belief(“site”) 3 5.36 13977 7.36 -0.27

2  high belief(“site”) 43 76.79 44829 23.59 0.69

Late Bronze Age to Early Medieval Period

0  low belief(“site”) 5 12.50 139033 73.17 -0.83

1  medium belief(“site”) 2 5.00 10642 5.60 -0.11

2  high belief(“site”) 33 82.50 40341 21.23 0.74

Late Medieval Period

0  low belief(“site”) 26 24.53 124420 65.48 -0.63

1  medium belief(“site”) 8 7.55 10884 5.73 0.24

2  high belief(“site”) 72 67.92 54712 28.79 0.58

Table 9.8 Performance of predictive models with the original site data used to build the models.

Runs 4 to 6 of table 9.9 show what happens to model performance when we introduce the ‘no site’ bias discussed 
in section 9.3.4: the increased uncertainty in our model weakens our ability to support the ‘site’ hypothesis to 
such a degree that the “high” gain drops to values of 0.24 to 0.45 – too low to be useful in decision making. 
However, there is also almost no risk of missing a site when making a “low archaeological value” decision, as 
the number of sites in those areas is now insignificantly small.

run  test data set sites “high” area “high” gain  misses

1  Palaeolithic to Mesolithic 27 23.59% 0.68 5

2  Late Bronze Age to Early Medieval Period 19 21.23% 0.73 4

3  Late Medieval Period 52 28.79% 0.56 14

4  Palaeolithic to Mesolithic, biased 27 70.17% 0.24 1

5  Late Bronze Age to Early Medieval Period, biased 19 51.64% 0.45 1

6  Late Medieval Period, biased 52 70.29% 0.27 2

7  Palaeolithic to Mesolithic, visibility added 27 18.72% 0.73 5

Table 9.9 Performance of predictive models as indicated by validation with the test data set.
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Finally, run 7 of table 9.9 shows the effect of improving the evidence information on performance. The addition 
of the ‘visibility’ evidence and the exclusion of ‘aspect’ and ‘groundwater depth’ have resulted in an 0.07 point 
increase of the “high” gain as compared with run 1. 

9.4 	D iscussion

It was the purpose of this case study to demonstrate two alternative approaches to the incorporation of uncertainty 
and expert judgment into formal predictive archaeological models. Out of a number of possibilities, we chose to 
pursue Bayesian analysis and Dempster-Shafer theory based on our earlier study of relevant published research. 
We enlisted the help of three archaeological experts to provide us with expert judgments about location 
fcators and bias factors for the case study area of the Borkeld (Rijssen-Wierden), scene of the first published 
archaeological predictive model in the Netherlands.

In view of the technical complexity of our demonstration models, we will here discuss not just how 
predictive models incorporating uncertainty may be of use to actors in the arena of archaeological heritage 
management, but also the problems we have faced in obtaining and evaluating expert opinions and in deciding 
whether any particular approach or model is ‘better’ than another.

Models for decision support
The models resulting from both of the approaches described here can be used as decision support tools, for 
example allowing those who are responsible for setting briefs to be more specific than has been possible until 
now: ‘look here for Bronze Age habitation sites’, or ‘we do not have enough information yet about this area 
yet; conduct a preliminary field assessment to gather these data’. In a project covering a sufficiently large area, 
statements of the probability of finding sites, or particular types of site, can be used directly to estimate the 
likely number of sites and to prepare budgets. However, on smaller development projects probability statements 
are less likely to be of direct use, and it is more likely that some sort of preliminary investigation (‘assessment” 
in the English Heritage jargon) will be needed. In this case the methodology developed by Orton and Nicholson 
(Orton 2000a; 2000b; 2003) can use a probability statement to design an assessment to ensure with a specific 
confidence level that, if no archaeological remains are found, there are none there. A probabilistic statement 
thus has the desirable property of being able to directly feed into an algorithm for designing fieldwork strategies 
for assessment or mitigation.

How ‘uncertainty’ approaches are going to be used, depends on the purpose of the model. For example, 
if the model is to be used to define zones of high archaeological expectation for municipal zoning schemes, then 
a simple division into ‘low’ and ‘high’ zones is required. If the subsidiary purpose then is to reduce as much as 
possible the area of the ‘high’ zone, then the model should aim at maximizing gain for the ‘high’ zone; if on the 
other hand the subsidiary purpose is to avoid, as much as possible, the uninvestigated destruction of sites, then 
it should aim to minimize gain for the ‘low’ zone. For predictive models to become true decision support tools, 
the ‘decider’ at local or regional government level must be able to set this kind of preference.

If, furthermore, predictive models are produced for each of a number of site type/period combinations 
(e.g., ‘Mesolithic hunting camps’), then the ‘decider’ can use his own predefined priorities to select some of 
these (and ignore others). Since each of the input models would incorporate the best available data and expertise, 
and each also provides absolute probabilities/risks as output, it should be possible to logically combine them 
(e.g., using binary OR) into a final model.

Another important requirement of predictive models as decision support tools is that they should be 
easily updatable with new evidence and expertise. Additional archaeological observations and minor changes 
to evidences (e.g. a finer scale soil map becomes available) in both Bayesian and DST approaches are simply 
used to re-calculate and update the model, but adding new evidences or substantially changing existing ones 
would also require new expertise to be generated. A workable solution would require that each new evidence is 
‘packaged’ with metadata containing the appropriate expertise.
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Quantifying expertise
For the Bayesian model, getting the required information from the experts can be somewhat of a struggle. The 
experts were asked to generalize from particulars, and to quantify aspects that they are used to thinking about 
in qualitative mode. However, we want to stress that the use of multiple experts, by disagreeing on some of 
these quantitative weights (e.g., the distance to water weight), provide us with a relatively objective measure 
of uncertainty. So, should we conclude that the more experts we can get, the better our models will be? No, 
because this introduces the question of the relative expertise of the experts: given that different experts have 
different types and degrees of expertise with relevance to the model being built, we would need to rate them, 
or their opinions, or both. We also need to specify how we rate expertise against actual data: how much data 
is required before we disbelieve the expert? The ‘data equivalent’ calculated in section 9.2 for our Bayesian 
analysis provides a first peek into what we may call the field of meta-expertise, but clearly this will need to be 
more thoroughly studied.

Experts’ opinions about the spatial patterning of archaeological remains does not simply fall from the 
sky – they are based on both theoretical considerations and personal or collective observations. To the extent that 
expert opinion is not independent of actual observations, its ‘weight’ should be lowered. Bias factors such as land 
use and land cover, discovery mode, and geological history have such a great impact on the patterning of known 
archaeological sites that researchers must put more effort into understanding and quantifying these factors. We 
recommend that the potential of non-site observations be studied in the context of linear developments.

Similarities and differences of DST and (Bayesian) probability models
Naturally, there are numerous similarities between DST and (Bayesian) probability theory, as both approaches 
try to provide an abstract framework for the same basic problem: reasoning using uncertain information. 
A comparison of the formulas for both Dempster’s Rule of combination and Bayes’ Theorem reveals their 
mathematical kinship; in fact, DST can be viewed as a generalization of Bayesian theory (Dempster 1968). 
Probabilistic models have the advantage that their output can be used straightforwardly in testing the model 
with new data (see also this volume chapter 8).

One significant practical difference between the two approaches is that Bayesian strictness is not 
required in a DST model: much simpler ways of quantifying evidence, such as ratings, have also been shown 
to work (e.g. Lalmas 1997). DST is geared towards practical applicability: making decisions under uncertain 
conditions with information that is hard to formalize as probabilities (see Kuipers, Moskowitz and Kassirer 
1988 for a much-cited example). This is why the term beliefs was introduced to replace probabilities in a 
DST context. DST is also more explicit in its representation of uncertainty as a model input. It is very easy 
to introduce uncertainty in a controlled way into a DST model and the output will reflect this directly, thus 
providing more realistic decision support for real-world CRM scenarios.

Conversely, adopting the more strict Bayesian approach means that it is absolutely clear what the 
quantified results mean – be they predictions of site densities or maps of our degree of confidence in these 
predictions. But there are further advantages to the Bayesian approach that address other problems and questions 
raised in the Baseline Report (van Leusen et al. 2005). For example, hierarchical models can be constructed 
which allow the aggregation of differing but similar classes of samples in a single analysis without assuming 
that they are identical. This could allow models to be built which account for chronological and functional 
subsets of sites in the landscape, whilst achieving the sample sizes necessary to achieve useably small posterior 
confidence ranges.

Non-site bias
It was observed in the Baseline Report that the failure of heritage managers both in the Netherlands and 
internationally to systematically record ‘non-site’ observations deprived model-builders of an important source 
of evidence. Observed ‘non-site’ locations, e.g. fields that were surveyed under good visibility conditions and 
where no archaeology was observed, can under certain conditions be used to estimate the probability of a site 
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occurring in a particular landscape setting. However, observed low site density in one suitable zone cannot be 
extrapolated to the next suitable zone, because people only ever use part of the suitable zone. So, to be useful, 
nonsite observations must be random to be representative for the study area. Although archaeologists have not 
systematically reported nonsite observations in the past, thousands of commercial archaeological assessments 
reported under ‘Malta’ legislation over the last decade present a good potential source for them. If such 
observations were incorporated in the posterior probability estimates of a Bayesian model, the uncertainties 
in the posterior uncertainty map could be lowered. For DST models, nonsite observations would strengthen 
the belief in the ‘no-site’ hypothesis for a specific environmental setting, and would reduce the remaining 
uncertainty. Given that nonsite locations are in the vast majority, and random observations are therefore likely 
to be nonsite observations, a single nonsite observation can only reduce uncertainty by a very small amount. We 
therefore need to collect large numbers of nonsite observations.

Outlook
Archaeological Heritage Managers in the Netherlands must make do with a relatively weak set of tools when 
it comes to assessing the archaeological ‘potential’ of an area. We have demonstrated, however, that the 
development of a flexible decision support tool based on GIS functionality is feasible. It remains to be seen, 
however, whether the ‘field’ perceives the need for a thorough revision of current procedures and products. The 
publication by the State Service for Archaeology, the Cultural Landscape and Monuments, in early 2008, of the 
third ‘generation’ of the Indicative Map of Archaeological Values of the Netherlands (IKAW; Deeben 2008), 
does not point in this direction.
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Appendix - the mathematical framework of dempster-shafer theory

This is a very brief introduction to the mathematical framework of DST. The full background can be found 
in the original publication by Shafer (1976) and, perhaps more accessibly, in numerous papers by Smets and 
colleagues (e.g. Smets 1994; 2005; Smets and Kennes 1994).

		  First, we will consider an abstract, standard situation in scientific research: building a model from a 
number of hypotheses and variables. Starting from scratch, there are:

the basic •	 hypotheses. They cover all possible outcomes of the model calculations.
a number of variables which are deemed to be of importance for the model.•	
a method to quantify the degree of support that variables lend to specific hypotheses (probabilities, •	
rankings, etc.).

For each hypothesis, it is now necessary to check to what degree the provided variables support or refute it and 
calculate the total degree of belief in that hypothesis. Note that we are not talking about the probability of a 
hypothesis being true, as that would imply using the more rigid mathematical framework of probability theory; 
the concept of belief in DST is significantly more flexible.

		T  he mathematical framework for the outlined procedure is provided by DST. At this point, we need to 
make some terminological definitions:

the set of hypotheses •	 H=h1..n, which represent all possible outcomes, is called Frame of Discernment 
(FoD).
a variable with relevance to the FoD is a •	 source of evidence. The entirety of sources of evidence is called 
body of evidence. A variable value is transformed into an evidence by calculating a Basic Probability 
Number (BPN) for it (this is also referred to as a basic probability assignment).
a BPN is the basic quantification of evidence in the DST. It consists of a value •	 mn in the range “0” to 
“1” for each hypothesis in the FoD. The restriction is that m1..n must sum to “1”, i.e. the entire basic 
probability mass must be distributed over the given FoD.

BPNs can be assigned to a singleton hypothesis in H as well as to subsets of it. What this means is that DST has 
the ability to represent uncertainty as subsets of H. Thus, if two hypotheses h1=”a” and h2=”b” are supplied, 
there will always also exist a set of hypotheses {h1,h2} for the belief that both could be true (“a OR b”). In fact, 
this is the defining property of DST as a theory of uncertainty; probability theory, as used by the Bayesian 
model, does not have this explicit representation of uncertainty. What this means for the case of archaeological 
predictive models will be discussed later.

Any number of sources of evidence can be combined using Dempster’s Rule of Combination:
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Dempster’s Rule computes a measure of agreement between two sources of evidence for various hypotheses in 
the FoD (in the formula above: A,B,C). It “focuses only on the hypotheses which both sources support” (Lalmas 
1997). The denominator normalizes the result to ensure that it stays in the range [0;1]. Any number of evidences 
can be combined by running the calculation recursively. This calculation can be computationally very expensive 
for a large number of hypotheses. From the result, a number of useful DST measures can be calculated. The 
most important ones are belief and plausibility.
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The belief function Bel(H) computes the total belief in a hypothesis A. The total belief in A is the belief mass of 
A itself plus the mass attached to all the subsets of B:

∑
⊂
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In other words, Bel(A) is all the evidence that speaks in favour of A.
As mentioned before, DST has a very important characteristic which sets it apart from probability 

theory: if Bel(h1)< 1, then the remaining evidence 1-Bel(h1) does not necessarily refute h1 (in probability theory 
we would have h2=1-h1 if the FoD was {H=h1,h2}). Thus, some of the remaining evidence might plausibly be 
assigned to (sets of) hypotheses that are subsets of or include A. This is represented by the plausibility function: 
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In other words, Pl(A) represents the maximum possible belief in A that could be achieved if it was known 
that the remaining uncertain information (caused by errors in the input data, incomplete data, contradictory 
evidence etc.) does not refute A. DST provides additional useful outputs which will be demonstrated later in the 
archaeological case study.

A BPN is a value mn in the range “0” to “1” for each hypothesis “1..n” in the FoD. The single restriction 
is that m1..n must sum to “1” for each source of evidence. A function that calculates a BPN for a set of hypotheses 
and meets these criteria is called a BPN mass distribution function.

In the case discussed here, it is necessary to calculate a BPN for each source of evidence by using only 
two types of information available in the GIS data base: (a) a categorized raster map and (b) a vector points map 
with the locations of already discovered sites. The basic idea is to check for differences in proportions between 
the sample (locations with sites) and the population (all locations). These differences are used to quantify the 
strength of belief in each of the FoD’s three hypotheses. Generally, there are many possibilities for calculating 
BPN mass distribution functions and it may take considerable effort to find the one that works best in a given 
situation (see e.g. Ejstrud 2005).

It was felt that the available IDRISI modelling tools, as used in Ejstrud’s (2003; 2005) study, fell short 
of catering for such complex relationships and a new implementation of DST in GRASS GIS was developed for 
use in the Borkeld case study. To be fair, arbitrarily complex BPN mass distribution functions can be designed 
in any GIS that supports raster map algebra, but a set of dedicated tools will make model design and updating 
much more efficient. The GRASS DST tools estimate m(h1) stepwise using a statistical approach. For this to 
work, we must supply two GIS maps:

a vector points map 1.	 S with the locations of known sites.
a categorized raster map 2.	 M that represents the evidence (e.g. “height”).

The second requirement means that continuous variables, such as “height”, have to be broken up into a finite 
number of discrete categories (e.g. “0-10 m, 11-20 m, 21-30 m, ...”). A choice must be made for a plausible 
categorization.

For each category C in the input evidence map M, we then compare the overall cell percentage of C in 
M (Perc(M)) with the percentage of category C cells that contain a site from S (Perc(S)). The assumption is that 
if Perc(M) > Perc(S) at a significant level then the evidence in M and S supports the hypothesis “no site” for all 
cells of category C in M and if Perc(M) < Perc(S) it supports “site”. If the difference is found to be of very high 
significance, the belief mass assigned to one of these two hypothesis tends towards “1”, if it is very low, it tends 
towards “0”.

Just how significant the difference in percentages is depends on (a) the magnitude of the difference 
(b) the size of the sample and (c) the number of cells in the entire region. This is catered for by calculating a 
z-statistic for each case. The z-statistic gives the probability of observing a difference in proportions as extreme 
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as Perc(M)-Perc(S) under the assumption that there is no significant difference between Perc(M) and Perc(S). 
In effect, this gives the probability of making a Type I error when declaring it significant (see “Handling 
uncertainty” for details on how this affects BPN values). If the total number n of sites in S is greater than 30, this 
will be derived from a standard normal distribution, otherwise from a t-distribution with n degrees of freedom 
(see Rogerson 2001 on the geographic application of this test).

Often, one will not be restricted as to what category ranges to choose (e.g. 1, 5 or 10 m intervals for 
evidence “height”). If there are too many categories in M, the result will be an overfitting of the BPN function. 
A model based on this will not be able to generalize well; its predictions are very likely to be wrong when 
checked against new data. On the other hand, if there are extremely few categories, the procedure might not be 
able to find significant evidence that supports either hypothesis. As a safeguard, a chi-square test is run over 
all categories. This calculates the probability of making an error when declaring the overall set of percentage 
differences significant.

Optionally, one or more raster maps may be supplied to represent the spatial distribution of “no site” 
bias, such as sparsely surveyed areas and one or more vector point attributes in the sites map can be chosen to 
represent “site” bias, such as unfounded trust in the location or identification of a site.




