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CCR5 in MS

CCR5 expression on microglia/macrophages

In chapter 3 we have demonstrated that the transcription factor CREB-1 is involved 
in the regulation of CCR5 expression. In earlier studies, we have observed that 
expression of CREB-1 is elevated in MS lesions, mainly in microglia and macrophages 
1. For example, CREB-1 expression is strongly enhanced in activated microglia in 
preactive lesions, compared to moderate expression of CREB-1 in microglia in NAWM. 
In addition, phagocytic macrophages inside active demyelinating lesions also express 
CREB-1. However, the level of CREB-1 expression in these macrophages is lower 
than that in activated microglia in preactive lesions. In chapter 2 we have observed 
that CCR5 expression in microglia and macrophages greatly parallels this expression 
(Figure 1): NAWM microglia display moderate CCR5 expression, whereas both 
microglia in preactive lesions and phagocytic macrophages in active lesions express 
high levels of CCR5. The fact that macrophages in active lesions express high levels of 
CCR5, while CREB-1 expression in these cells is lower than that in activated microglia 
might implicate that CCR5 expression does not completely parallel CREB-1 expression. 
However, these observations might also indicate that CCR5 expression is switched 
off at a later stage than CREB-1 expression. Indeed, phagocytosing macrophages 
in active lesions still display high CCR5 expression, whereas CCR5 expression in 
macrophages present at a later lesion stage, at the expanding rims of chronic active 
lesions, is markedly decreased. This indicates that CCR5 expression in macrophages is 
lost during late lesion development.
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The fact that the loss of CCR5 expression seems to be delayed compared to loss of 
CREB-1 expression, suggests that CCR5 expression on the cell membrane is fairly stable 
and has a low turnover rate. The observation in chapter 6 that statin treatment only 
partly reduces CCR5 expression on cultured microglia supports this hypothesis: statin 
treatment only affects the trafficking of newly formed or recycled CCR5 molecules 
to the cell membrane and not the internalization or breakdown of CCR5 molecules 
present on the cell membrane. Therefore, if the rate of CCR5 turnover is low, simvastatin 
does not affect expression of CCR5 molecules that are already present on the cell 
membrane during statin treatment and are not internalized during treatment. The fact 
that these cells do not functionally respond to CCL5 or CCL3 anymore illustrates that 
although CCR5 protein is still present on the cell membrane, the signal transduction 
pathways and cellular mechanisms downstream of the CCR5 receptor are affected by 
simvastatin.

CCR5 expression on astrocytes

In chapter 2 we have demonstrated that astrocytes in control and MS brain tissue 
express CCR5 molecules. In addition, we have observed CCR5 protein expression 
on cultured astrocytes. However, we have not been able to detect CCR5 mRNA in 
cultured primary astrocytes (chapter 3). There are two possible explanations for this 
apparent paradox. It could be that astrocytes do express CCR5 mRNA in vivo, but 
that CCR5 transcription is shut down by mechanisms such as DNA methylation and 
histone modifications when astrocytes are cultured. This would again suggest that the 
half-life of CCR5 proteins, produced by astrocytes in vivo, is long and therefore CCR5 
protein expression persists in culture. Alternatively, astrocytes might not be able to 
synthesize CCR5 de novo, but obtain CCR5 molecules via another mechanism. CCR5 
molecules could be transferred from CCR5 expressing cells, for example microglia/
macrophages, to astrocytes. This hypothesis is supported by the observation that 
primary peripheral blood mononuclear cells (PBMC) are able to shed microparticles 
that specifically contain CCR5. Through the release of these microparticles, PBMC 
are able to transfer CCR5 molecules to several cell types, including monocytes and 
endothelial cells 2. In addition, a similar transfer of MHC-II molecules by T cells 
has been reported 3. It could be that astrocytes obtain their CCR5 expression from 
neighbouring microglia and macrophages by this mechanism. This would also account 
for the fact that CCR5 expression is enhanced on astrocytes at a later stage than that 
on microglia and macrophages (Figure 1). If we assume that astrocytes are the main 
source of chemokines in an early stage of lesion formation, activated microglia, which 
upregulate CCR5 expression and are attracted to the lesion site, logically come in close 
contact to these cells. In addition, migrating microglia encounter many astrocytes on 
their way. At a later stage, astrocytes could obtain CCR5 from macrophages, which 
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are abundantly present in active lesions. Furthermore, at this stage, astrocytes might 
also obtain CCR5 from infiltrating inflammatory cells, for example CCR5 expressing T 
cells. As a result, initially, microglia and macrophages display increased expression of 
CCR5 and at a later stage astrocytes express enhanced levels of CCR5. 

Another indication that astrocytes obtain CCR5 expression through another 
mechanism than enhanced or de novo transcription is that their transcription factor 
profile in MS lesions differs from that of microglia and macrophages. As discussed 
above, we have shown in chapter 3 that the transcription factor CREB-1 is involved 
in the transcriptional regulation of CCR5. Whereas the expression profile of CCR5 
correlates with that of CREB-1 in microglia/macrophages in MS lesions (Figure 1, chapter
2 and 1), hypertrophic astrocytes in and around MS lesions, which display enhanced 
expression of CCR5, do not express CREB-1. Provided that CREB-1 is necessary for 
CCR5 transcription, this again would argue for an alternative mechanism underlying 
CCR5 expression on astrocytes. 

Of course, if the hypothesis that CCR5 molecules are transferred to astrocytes is true, 
the question still remains whether CCR5 expression on astrocytes is actually functional. 
In order to respond to, and migrate towards, a chemokine gradient, cells need intact 
intracellular signaling mechanisms in addition to chemokine receptor expression 
on their cell surface. These mechanisms consist of, amongst others, intracellular 
accessory molecules, such as G proteins that are linked to the intracellular part of the 
receptor, and second messenger systems leading to intracellular changes such as actin 
rearrangement 4,5. The report of Mack et al. indicates that CCR5 molecules that are 
transferred by microparticles might indeed be functionally active. Their findings show 
that, depending on the recipient cell type, transferred CCR5 molecules can be actively 

Figure 1. The kinetics of CCR5 and CREB-1 expression during MS lesion development. Expression of 
CREB-1 and CCR5 in microglia follow the same increasing-reducing pattern with peak expression in 

The kinetics of CCR5 and CREB-1 expression during MS lesion development. Expression of 
CREB-1 and CCR5 in microglia follow the same increasing-reducing pattern with peak expression in 

The kinetics of CCR5 and CREB-1 expression during MS lesion development. Expression of 

preactive and active lesions, respectively. CCR5 expression on astrocytes, which do not express CREB-1, 
CREB-1 and CCR5 in microglia follow the same increasing-reducing pattern with peak expression in 
preactive and active lesions, respectively. CCR5 expression on astrocytes, which do not express CREB-1, 
CREB-1 and CCR5 in microglia follow the same increasing-reducing pattern with peak expression in 

is gradually enhanced and reaches maximal levels in the chronic stages of MS lesions.
preactive and active lesions, respectively. CCR5 expression on astrocytes, which do not express CREB-1, 
is gradually enhanced and reaches maximal levels in the chronic stages of MS lesions.
preactive and active lesions, respectively. CCR5 expression on astrocytes, which do not express CREB-1, 
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internalized, which indicates that they are fully integrated into the plasma membrane 
and connected to the intracellular pathways downstream of CCR5 2. In addition, 
Undale et al. have shown that transferred MHC-II molecules are functionally active 3. 
However, it is unclear whether CCR5 functionality is determined by the presence of 
the intracellular machinery necessary for CCR5 function in the recipient cell or that 
these components are transported along with the CCR5 molecules. 

In vivo and in vitro observations indicate that CCR5 expression by astrocytes might be 
functional. In response to injury, reactive astrocytes, along with microglia, proliferate 
and migrate towards the site of injury, forming a glial scar around the damaged area. 
This process is known as reactive gliosis 6. In MS, high numbers of astrocytes can be 
found in and around late stage MS lesions, with a peak of astrocyte numbers in chronic 
inactive lesions, which are almost exclusively populated by astrocytes. Together, these 
observations suggest that at a certain point in the development of MS lesions astrocytes 
migrate towards the site of lesion. The expression of chemokine receptors most 
likely accounts for this recruitment. Since expression of the chemokines CCL3, CCL4 
and CCL5 is enhanced in MS lesions 7-9, CCR5 is one of the candidates. In addition, 
astrocytes have been shown to functionally respond to CCL3 in vitro 10,11. However, 
because the presence of both CCR5 mRNA and protein in astrocytes remains debatable, 
this response to CCL3 could also result from astrocytic expression of CCR1, which has 
been established 12. Therefore the functionality of CCR5 expression in astrocytes has 
not been definitively confirmed.

Role of CCR5 in MS lesion formation

Both microglia and astrocytes are thought to play an important role in the 
development of MS lesions 13,14. In addition, enhanced motility of these cells is an 
important aspect of MS pathology: in early lesion stages microglia cluster at certain 
places in the NAWM and in active demyelinating areas accumulation of macrophages 
can be found. Furthermore, in vitro and in vivo indications that migration of astrocytes 
towards sites of injury also occurs in MS are supported by the fact that the final stages 
of lesion development are characterized by high numbers of astrocytes. 

By evaluating the expression patterns of MHC-II and CCR5, molecules that can play 
a role in the initiation of an inflammatory reaction, and the transcription factors that 

Figure 2. Schematic representation of MS lesion formation. A Upon neuronal damage or another event 
of injury, stress factors, including cytokines and chemokines are synthesized. Microglia are activated 
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to the lesion. D Macrophages that lose their activation state and subsequently CCR5 expression move 
phagocytose myelin and produce inflammatory mediators. Astrocytes expressing CCR5 are attracted 
to the lesion. D Macrophages that lose their activation state and subsequently CCR5 expression move 
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outwards from the lesion center, leading to expansion of the lesion. CCR5 expressing astrocytes populate 
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outwards from the lesion center, leading to expansion of the lesion. CCR5 expressing astrocytes populate 
the center of the lesion.
outwards from the lesion center, leading to expansion of the lesion. CCR5 expressing astrocytes populate 
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contribute to this expression, such as CREB-1, a hypothetical scheme of the processes 
underlying MS lesion development can be proposed. This scheme is depicted in figure 
2. The initial step in MS lesion formation is characterized by activation and clustering 
of microglia in otherwise unaffected white matter (Figure 2A and B). In theory, this 
microglial activation and migration is induced by the localized production of stress 
factors, including cytokines and chemokines, which is triggered by for example neuronal 
damage (Figure 2A). As discussed in chapter 2, these factors are probably produced 
by astrocytes and microglia present at the site of injury 8,15,16. As we have discussed 
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above, we hypothesize that, when migrating to the lesion site, microglia transfer CCR5 
molecules to astrocytes that they encounter (Figure 2B). Subsequently, in the active stage 
of MS lesions activated microglia transform into foamy macrophages that phagocytose 
myelin (Figure 2C) 14,17. Activated microglia and foamy macrophages produce many 
cytotoxic and inflammatory mediators, including chemokines 8,16,18, which attract 
CCR5 expressing, and activated, astrocytes to the site of demyelination. When lesion 
development progresses, foamy macrophages move outwards from the center of the 
lesion, leading to progression of demyelination (Figure 2D). Gradually, their activated 
state is quieted, as observed by low expression of CREB-1 and decreased expression 
of CCR5, which allows them to move away from the source of chemokines inside 
the lesion. In contrast, because CCR5 expression on hypertrophic astrocytes is high, 
these astrocytes migrate towards and populate the lesion center (Figure 2D). Finally, 
the inflammatory reaction is stopped, either because macrophages return back to a 
resting state (as microglia), or because these cells are eliminated by apoptosis. Because 
of the supposed stability of CCR5 expression on astrocytes, these cells populating the 
center of the lesion still display high levels of CCR5 expression. Depending on the 
extent of demyelination, axonal damage and oligdendrocyte cell death, some degree 
of remyelination can occur 19, or MS lesions remain as demyelinated areas.

To understand where things go wrong in MS, a logical approach is to look into one 
of the first steps of lesion formation. One possibility is that microglia in MS patients 
are predisposed to be activated or that microglial activation is not switched off. A 
normally harmless trigger of microglial activation, such as for example neuronal cell 
death, will in this case initiate a cascade of aberrant microglial activation. This cascade 
is intensified by the factors that are secreted by these activated microglia, ultimately 
leading to damage to myelin and axons. Alternatively, it could be that the initial event 
that triggers microglial activation is deranged: a normally harmless event triggers 
excessive production of microglia activating factors, including chemokines, which 
excessively activate microglia, initiating the cascade of microglial activation leading to 
demyelination. Of course both these scenarios put an emphasis on the role of microglia 
in MS lesion formation. However, without proper understanding of the contribution of 
each glial (and neuronal) cell type to the pathogenesis of MS, these hypotheses remain 
speculative.   

Potential of statins in MS treatment

Obviously, the main question of the second part of this thesis is whether statins can 
be used as a treatment for MS. The answer to this question depends on the etiology 
of MS, which unfortunately still has not been uncovered. In addition to the widely 
investigated effects of statins on the function of T cells (as discussed in chapter 1
and shown in chapter 5), we have demonstrated that statins can also affect microglia 
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functions (chapter 6) and interfere with development of monocytes into professional 
APC (chapter 7). With regard to microglia and their function in the pathology of MS, it 
is still unclear whether these cells are friend or foe. The prevalent belief is that microglial 
activation is a key event in the development of MS lesions and that this activation 
results in demyelination and axonal damage 13,14,20-22, which would make this cell type 
the main player in MS pathology. If this notion is correct, statin treatment, targeted 
to the brain parenchyma could be advantageous in silencing microglia and blocking 
their migration to the site of lesion formation. In this respect, statins could prove to be 
a good treatment to prevent lesion formation and alleviate MS symptoms. However, 
microglial activation could also be a secondary effect and represent the activation of 
a survival mechanism. The CNS innate immune system would in this case attempt 
to minimize the extent of (bystander) damage by removing the debris of a primary 
destructive reaction targeted to the myelin sheet, mediated by the peripheral immune 
system. In addition, microglia might be involved in the tempering of this immune 
response. In this scenario microglia are important mediators of the CNS repair system 
and statin treatment could possibly hamper their beneficial functions in MS and prove 
to worsen the disease. 

As I will discuss below, there is evidence supporting the potential of statins in 
the treatment several immune-mediated diseases, including MS. However, before 
extrapolating these findings safely to clinical treatments other than lowering cholesterol 
levels, we should gain more insight in the mechanisms underlying the beneficial 
effects of statins. None withstanding, because the safety of statin treatment has already 
been established for the therapeutic ranges used for cholesterol lowering, preliminary 
clinical trials with statin treatment of MS patients have already been performed on a 
small scale, with cautiously promising results.

Therapeutic potential of statins for treatment and management of 
immune-mediated diseases

Several recent in vivo studies, performed with different experimental animal models 
for immune-mediated diseases, provide evidence for a beneficial effect of statins in the 
treatment and management of immunological disorders (Table 1). A number of studies 
in mouse and rat experimental autoimmune encephalomyelitis (EAE), a Th1-mediated 
central nervous system (CNS) demyelinating disease with symptoms similar to MS, 
have shown that oral treatment of EAE susceptible animals with atorvastatin and 
lovastatin not only protects these mice from developing this disease, but also reverses 
already established disease. Statin treatment clearly results in a delayed disease onset, 
milder clinical signs, normalization of the symptoms and protection against loss of 
myelin and perivascular inflammatory infiltrates 23-26. Adoptive transfer experiments 
revealed that this statin-induced protection is mediated through CD4+ cells and not 
CD8+ cells 23.
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Another report demonstrates the therapeutic potential of statins in rheumatoid 
arthritis (RA). In a Th1-driven model of murine inflammatory arthritis, simvastatin 
is able to suppress developing arthritis and reduce progression of clinically evident 
collagen-induced arthritis 27. It should be noted, however, that the effect of simvastatin 
on disease progression and severity in collagen-induced arthritis is less potent than the 
effect of atorvastatin treatment in EAE (60-70% reduction of clinical signs at a dose of 
40 mg/kg vs. 60-100% reduction at a dose of 10 mg/kg, and only reduced progression 
of arthritis was observed, no reversal of disease) 27. 

Lastly, in a murine model of allergic asthma, a Th2 driven airway inflammation, 
simvastatin treatment reduces inflammatory infiltration and the production of cytokines 
in the lungs 28. In the studies discussed above, orally given simvastatin seems to be less 
potent compared with atorvastatin. This difference could be due to first-pass hepatic 
metabolism of simvastatin after absorption from the gastro-intestinal tract, giving 
rise to several metabolites and reducing the effective dose of available simvastatin 29. 
However, differences in observed in vivo effects of statins and potency of these effects 
could also reflect differences in treatment regime (high-dose vs. low-dose, one time vs. 
daily administration).

Molecular mechanism of immune regulation by statins

Regulation of MHC2TA transcription

It has been reported that statins affect cell surface expression of MHC-II molecules by 
inhibiting the transcription of the MHC2TA gene 23,30-32 encoding the class II transactivator 
(CIITA), the master switch for MHC-II transcription 33-35. The transcriptional regulation 
of CIITA is controlled by the differential usage of at least three independent CIITA 
promoter units, each encoding a unique first exon: CIITA-PI, -PIII and –PIV 36. CIITA-PI 
and –PIII are used for the constitutive expression in DC and B cells, respectively. CIITA-
PIV is the promoter that is predominantly involved in IFN-γ-induced expression of 
CIITA in a variety of different cell types 36,37. However, CIITA-PIII can also be induced 
by IFN-γ, but this induction requires an additional 4 kb IFN-γ regulatory region, which 
is located 2 kb upstream of the CIITA-PIII core promoter 38,39.

The fact that statins would reduce cell surface expression of MHC-II molecules by 
inhibiting MHC2TA transcription is of interest because this would infer that the mode 
of action of statins on MHC-II expression involves interference in the transcriptional 
control of MHC2TA. In particular, it was suggested that statins specifically mediate 
their effect on IFN-γ-induced MHC-II molecule expression in non-bone marrow-
derived cells through downregulation of transcription of the IFN-γ-induced CIITA-
PIV-isoform 30,31. Besides impairing IFN-γ-induced MHC-II molecule expression, 
statins also downregulate membrane expression of MHC-II molecules in B cells and 
activated T cells (40 and chapter 5). Expression of MHC-II in activated T-cells, as well as 
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constitutive expression of MHC-II in B cells, is mediated by the PIII-isoform of CIITA 
36,39,41-43. This would imply that statins also affect the PIII-isoform of CIITA. Additionally, 
in microglial cells, statins have been shown to affect the IFN-γ-mediated induction of 
both the CIITA-PI and the PIV-isoform 23. As we discuss in chapter 4, together, these 
observations infer that statins interfere in transcription of all CIITA isoforms, which 
would explain the observed reduction in MHC-II molecule expression at the cell 
surface of a variety of hematopoietic and non-bone marrow-derived cells. However, 
we argue that this clearly presents an enigma, because the different CIITA promoters 
are mostly activated through non-overlapping regulatory pathways.

As we have shown in chapters 4 and 5, which describe our analysis of the effect 
of statins on cell surface expression of MHC-II molecules, we did not find such a 
downregulatory effect of statins on CIITA mRNA levels or on the activity of the CIITA-
PIII or CIITA-PIV promoter in various cell types. In addition to our findings, it has 
been shown that treatment of mice with simvastatin does not alter draining lymph 
node CIITA mRNA-levels, whereas under the same conditions an effect on cytokine 
production can be observed 27,28. Therefore, it seems that statins do not inhibit cell 
surface MHC-II expression by interference in MHC2TA gene transcription.

JAK/STAT signaling

Activation of the JAK/STAT pathway by IFN-γ is required for  the induction of 
various immuno-regulatory molecules 44. Signaling by IFN-γ through its receptor 
and associated Janus kinases (JAK) 1 and 2 leads to activation of signal transducer 
and activator of transcription 1 (STAT-1), followed by dimerization of this protein, 
translocation to the nucleus and binding to IFN-gamma activated site (GAS) elements 
in the promoters of IFN-γ responsive genes 44. In the case of MHCT2A, the STAT-1 
homodimer binds to the GAS element in promoter PIV 37. This would imply that if 
statins selective inhibit IFN-γ-induced CIITA-PIV activity 30,31, they would most likely 
interfere with JAK/STAT signaling. Indeed, statins have been shown to have an effect 
on some members of the STAT-family. For example, in vivo treatment with atorvastatin 
results in decreased phosphorylation of STAT-4 and induction of phosphorylation 
of STAT-6, which are required for Th1 and Th2 lineage commitment, respectively 23. 
However, the phosphorylation, nuclear translocation and DNA binding of STAT-1, 
which is required for CIITA-PIV activation upon IFN-γ triggering, is not affected by 
simvastatin 32. It has also been suggested that the suppression of IFN-γ-induced CD40 
expression in microglia by lovastatin is mediated through inhibition of IFN-γ-induced 
phosphorylation of STAT-1 following JAK-1 and JAK-2 activation 45. Contradictory, the 
inhibition of IFN-γ-induced expression of ICAM-1 on endothelial cells by lovastatin 
shows that lovastatin does not affect phosphorylation of STAT-1 by JAK-1 and JAK-2 
46. Together, these studies do not favor a direct involvement of statins in regulatory 
pathways affecting the transcription of genes encoding molecules that are important 
for antigen presentation and immune regulation.
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Lipid raft disruption

Because cholesterol plays an important role in the recruitment and concentration of 
proteins to the cell membrane, statins could affect the expression of membrane bound 
proteins in a way distinct from suppressing gene transcription. It has become clear 
that the plasma membrane is not a homogeneous environment of lipids, but rather a 
discontinuous field containing numerous microdomains that are essential for cellular 
function. Lipid rafts, also known as detergent-insoluble glycolipid-enriched complexes 
(DIGs) or glycosphingolipid-enriched membrane microdomains (GEMs), which are 
highly enriched in cholesterol and glycosphingolipids, are the best studied of these 
microdomains 47-49. Lipid rafts range in size from 50 to 70 nm and the proteins that are 
present within these microdomains are severely limited in their capacity to diffuse 
freely over the plasma membrane 49. The most important role of lipid rafts therefore 
seems to be the recruitment and concentration of cell signaling molecules to the plasma 
membrane 48. Glycosylphosphatidylinositol (GPI)-linked proteins are in general 
characteristic components of lipid rafts and rely for transport, recycling and function 
at the cell surface on the integrity of these cholesterol-containing vesicles 47. Lipid rafts 
have already been shown to be very important in both T and B cell signaling 50-52. 
Moreover, recent studies have shown that surface MHC-II molecules are also present 
in lipid rafts and that this association serves to increase the local concentration of MHC-
II molecules in distinct plasma membrane microdomains and so facilitate antigen 
presentation 53,54. Because cholesterol is one of the major components of lipid rafts, 
statin-mediated inhibition of cholesterol biosynthesis results in the disruption of these 
rafts 55. In chapter 5 we have shown that statins might affect membrane expression of 
MHC-II and other molecules associated with lipid rafts by disrupting these structures. 
Indeed, we have shown in chapter 5 that statin treatment of cells affects membrane 
expression of a variety of molecules, including MHC-II, of which the function depends 
on the integrity of lipid rafts 51,53,56-61. That statins affect the integrity of lipid rafts is 
underscored by the observation that statin treatment of lymphoid cells does not affect 
membrane expression of CD45 or the transferrin receptor (CD71) (chapter 5), molecules 
known not to be associated with lipid rafts 57,62,63. In addition, it has been shown that 
in vitro statin treatment results in disruption of membrane rafts and so impairs Fcγ-
receptor signaling at the level of tyrosine kinase activation 64. Moreover, oral simvastatin 
treatment at standard therapeutic dosages leads to a reduction in lymphocyte lipid raft 
levels in healthy volunteers 65. Obviously, impairment of immune receptor signaling 
through disruption of lipid rafts leads to reduced activation of downstream signal 
transduction cascades important for the induction of inflammatory mediators, so 
affecting immune activation at another level. Indeed, it has been shown that fluvastatin 
blocks Fcγ-receptor mediated activation of ERK and p38 MAP kinases in monocytes, 
resulting in lowered cytokine release 64.
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Isoprenylation

In addition to the effect of statins on lipid raft integrity, cholesterol depletion by 
statin treatment may affect not only the composition of cellular membranes and the 
expression of membrane-bound molecules, but also various other cellular processes in 
which cholesterol plays an important role, such as the production of steroid hormones 
and vitamin D, and the regulation of receptor function and signaling molecules 66-68. 
Moreover, since the isoprenoid intermediates of the cholesterol biosynthesis pathway 
also play important roles in various cellular processes, the inhibition of mevalonate 
synthesis most likely also results in interference in these processes. However, it should 
be noted that the enzymes involved in the side pathways of cholesterol synthesis, 
leading to non-sterol products, are less sensitive to inhibition of mevalonate synthesis 
than the enzymes leading to cholesterol synthesis 69. Statins could, in addition to 
inhibiting cholesterol synthesis, affect for example isoprenylation processes, such as 
farnesylation and geranylgeranylation. These mechanisms consist of post-translational 
lipid modifications leading to targeting of proteins to the cell membrane or other 
subcellular compartments and their consequential activation. As a result, these 
processes also play a role in protein-protein interaction and the assembly of multi-
subunit complexes. Targets of isoprenylation include nuclear lamins, Heme-A, the 
γ subunit of G-proteins, and small GTP binding proteins such as Ras and the Ras-
like proteins Rac, Rab and Rho 70-72. These Rho GTPases play a central role in various 
cellular events such as cytoskeletal organization, membrane trafficking, transcriptional 
activation, cell growth control and development 73,74. Statins could interfere with these 
processes by inhibiting their activation by isoprenylation. In fact, statins have been 
shown in vitro and in vivo to inhibit RhoA isoprenylation and activation, and Rho/Rho-
kinase signaling, leading to disruption of the actin cytoskeleton and disturbance of cell 
adhesion 75-80. For example, statins inhibit ICAM-1 expression on endothelial cells by 
preventing RhoA activation and subsequent ERK-1/2 phosphorylation 46,81, and affect 
T cell proliferation by reducing functional activity of Ras-dependent ERK pathways 
and Rho-dependent p38 activation 82. In addition, atorvastatin reduces lipoprotein-
induced actin polymerization, and RhoA and FAK activation in monocytic cells, which 
is essential for their adhesive and migratory capacities 75,76.

NF-κB activation

Some reports propose the inhibition of NF-κB activation as the mechanism by which 
statins reduce the expression of immune modulatory molecules. The transcription 
factor NF-κB induces transcription of several immune genes, including MHC class 
I genes and chemokines such as interferon-inducible protein 10 (IP-10) and MCP-
1. Indeed, atorvastatin has been show to reduce the expression of MCP-1 and IP-10 
presumably by inhibition of NF-κB activation 83. Because TNF-α is a potent inducer 
of NF-κB, statins might interfere in the induction of immunomodulatory molecule 
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expression by TNF-α. This is illustrated by the observation that simvastatin inhibits 
TNF-α-induced activation of NF-κB and so decreases VCAM-1 and ICAM-1 expression 
in human endothelial cells 84.

LFA-1 interaction

In addition to the inhibition of mevalonate synthesis, an anti-inflammatory effect 
of statins unrelated to inhibition of HMG-CoA reductase has been uncovered recently. 
It has been shown that statins (mainly lovastatin) can inhibit leukocyte adhesion by 
blocking interaction with leukocyte function antigen 1 (LFA-1, CD11a) and ICAM-
1. By binding to a novel allosteric site within LFA-1, the L-site, statins can block the 
adhesion of lymphocytes to ICAM-1 and so impair T-cell costimulation 85.

Treatment potential of statins for MS

As discussed above, statins affect the expression and functionality of a myriad of 
membrane-bound molecules and the release of various immune mediators. In this 
way, statins interfere in processes that are important for both adaptive and innate 
immune functions. These anti-inflammatory properties of statins would potentially be 
beneficial for the treatment of patients with immune-mediated disorders. Therefore, 
statins are currently considered as possible treatment agents for MS and other 
neurodegenerative diseases 86-92. Because activation of microglia is thought to be a key 
element in the development of MS 13,20,21, it could be argued that statin interference 
in the processes that result in microglia activation would benefit these patients. In 
chapter 6 we have shown that simvastatin is able to inhibit the activation-induced cell 
surface expression of various immunomodulatory molecules on microglia in vitro. For 
example, simvastatin treatment reduces the expression of MHC-II, thereby potentially 
interfering in APC capacity of microglia. In addition, we have shown in chapter 6
that simvastatin reduces expression of the chemokine receptors CCR5 and CXCR3 on 
microglia and abolishes chemokine-induced cell motility of microglia. Moreover, early 
results from clinical trials show that statin treatment might have favorable clinical effects 
in MS patients. Vollmer et al. have shown that in MS patients receiving simvastatin 
treatment the number and volume of gadolinium-enhancing (T1) lesions in the brain 
decrease significantly (Table 1) 88. However, yearly relapse rates and disability status 
scores did not change during the treatment and no changes in the immunological 
status of patients were observed. Moreover, because this study was short, small scale 
and non placebo-controlled, and patients were enrolled on the basis of disease activity 
(presence of lesions), conclusions from this study should be drawn with caution 88,89. 
Likewise, Sena et al. have shown in an earlier study that lovastatin treatment of MS 
patients reduces the number of T1 lesions in a number of patients, whereas disability 
scores remain stable and the majority of patients develop new T2-weighted lesions 92. 
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Although follow-up in this study lasted for 2 years 90, patient number was very low 
(n=7). In conclusion, more detailed knowledge on the actions of statins in the brain 
and larger, long-term, placebo-controlled clinical studies are needed before statins can 
truly be considered as save and effective treatment options for MS.

Conclusions and recommendations for future research

In this thesis I have shown that CCR5 expression in MS brain tissue greatly overlaps 
expression of MHC molecules and the expression of transcription factors involved in 
MHC regulation. In addition, I have determined that at least one of these transcription 
factors, namely CREB-1, is involved in the transcriptional regulation of CCR5. Many 
genes contain consensus sites for CREB binding and as such the transcription factor 
CREB-1 has been implicated in a wide variety of cellular processes 93. In the CNS, 
CREB-1 plays an important role in various neuronal processes, such as neuronal 
development, neuroprotection and disease. In addition, various signaling pathways, 
including neurotrophin-mediated signaling, result in enhanced CREB-1 expression 94. 
Furthermore, CREB-1 has also been implicated in axonal regeneration in the injured 
CNS 95. Together this indicates that there indeed might be a general state of activation 
of glial cells in MS brain tissue, resulting in an excessive reaction to a small injury in 
the brain parenchyma. However, to strengthen this hypothesis, we have to obtain a 
complete overview of this activation status and confirm that this common activation 
causes the aberrant expression of various immune molecules in MS. Ultimately, 
understanding of the factors that are activated in MS and the pathways by which these 
factors could be activated might provide clues to the source that triggers the activation 
process and the subsequent cascade of excessive reactions. 

In addition to determining the regulatory pathways that might be affected in MS, 
the function of CCR5 in normal and diseased brain should be further investigated, 
in order to obtain more insight in the role of CCR5 in MS pathogenesis. Particularly 
the function of CCR5 expression on astrocytes is a very interesting topic to explore, 
because it might shed some light on the role of astrocytes in MS pathogenesis.

Finally, there is ample experimental support that statins are able to function as 
immunomodulatory mediators. Because statins interfere in the mevalonate pathway, 
which controls isoprenylation and cholesterol biosynthesis, it can be argued that, 
besides immunoregulatory properties, statins have an impact on a variety of other 
cellular functions. These include lipid raft-mediated processes, which involve cell 
signaling events needed for activation and intracellular communication, and processes 
in which isoprenylated proteins play critical roles, such as those involved in actin 
rearrangement and cell motility. Whether the therapeutic doses used for treatment of 
hypercholesterolemic patients are sufficient to (safely) interfere in the inflammatory 
processes involved in various immune-mediated disorders and ameliorate disease 
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remains to be investigated. In addition, to pursue the potential of statins in the treatment 
of MS, we first have to determine the role of each (CNS) cell type in the pathogenesis 
of MS and subsequently the effect of statins on the abnormal cell functions found 
in MS patients. Given the general nature of the working mechanism of statins it is 
very important not to overlook potential adverse effects of statin treatment and the 
dosage at which these might occur. Therefore, great efforts should also be made in 
the targeting of statins to their intended place of action (and possibly their target cell), 
resulting in maximum efficacy of treatment with minimal incidence of adverse effects. 
Alternatively, agents that specifically interfere with downstream branches of the 
mevalonate pathway might be developed and examined for effectiveness in inhibiting 
specific (immune) functions of glial cells. 
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