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Abstract

The chemokine receptor CCR5 is implicated in the pathogenesis of various inflammatory diseases 
such as multiple sclerosis (MS), atherosclerosis, transplant rejection and autoimmunity. In 
previous studies, we have shown that MS lesions are characterized by enhanced expression of 
transcription factors associated with stress-responses, i.e. IRF-1, NF-κB and CREB-1, which 
modulate expression of both classes of major histocompatibility complex (MHC) molecules. The 
expression of MHC-I and MHC-II molecules greatly overlaps with the expression of CCR5 in MS 
lesions. Therefore, we investigated whether these factors are also involved in the transcriptional 
regulation of CCR5. Using in vitro assays, we determined that neither IRF-1 nor NF-κB is 
involved in the activation of the CCR5 promoter. This is corroborated by the finding that these 
factors are not involved in the induction of endogenous CCR5 transcription in various cell 
types. In contrast, we show that CCR5 expression is regulated by the cAMP/CREB pathway 
and that interference in this pathway affects endogenous CCR5 transcription. From this, we 
conclude that the cAMP/CREB pathway is involved in the regulation of CCR5 transcription 
and that, given the ubiquitous nature of CREB-1 expression, additional regulatory mechanisms 
must contribute to cell type-specific expression of CCR5.
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Introduction

Chemoattractant cytokines (CC) or chemokines are secreted proteins that mediate 
the migration of leukocytes towards sites of inflammation. Leukocyte trafficking is 
initiated following activation by chemokines through binding to specific chemokine 
receptors on their cell surface. The CC chemokine receptor 5 (CCR5) regulates 
trafficking and effector functions of memory/effector T-lymphocytes, macrophages, 
and immature dendritic cells (DCs).  Interactions between chemokines and chemokine 
receptors are promiscuous, i.e. most chemokines activate more than one receptor and 
most chemokine receptors can bind several chemokines 1. It is well established that 
CCR5 binds the chemokines CCL5 (RANTES), CCL3 (MIP-1α) and CCL4 (MIP-1β) 
to fulfill its role in the regulation of differentiation and anatomical distribution of 
leukocytes to meet with local requirements for an adequate immune response against 
pathogens. Because of its important immune regulatory role, CCR5 is also implicated in 
the pathogenesis of various inflammatory diseases such as atherosclerosis, transplant 
rejection and autoimmunity, and neurodegenerative diseases 2-6. In addition, CCR5 
also serves as a coreceptor for viral entry of HIV-1 7,8. CCR5 is mainly expressed on a 
subset of T-lymphocytes, monocytes, macrophages, DCs and microglia.

Multiple Sclerosis (MS) is a demyelinating disease with inflammatory aspects 
that are mediated by infiltrating leukocytes, resulting in extensive inflammation and 
demyelination of the central nervous system 9. Enhanced expression of CCR5 has 
been noted in MS affected central nervous system (CNS) tissue when compared with 
normal appearing white matter (NAMW) of patients and with control brain tissue of 
non-MS patients 10,11. In particular increased expression of CCR5 has been detected on 
reactive microglia near the edges of active demyelinating MS lesions and on phagocytic 
(foamy) macrophages present inside these lesions 10,11. In addition, expression of CCR5 
has been found on reactive astrocytes in a number of MS cases 10. 

In earlier studies, we have found that expression of MHC-II and MHC-I is enhanced 
in MS lesions 12. This enhanced expression is mainly found on activated microglia 
and foamy macrophages, but also on astrocytes. We have shown that this enhanced 
expression is due to a concomitant increase in the expression of transcription factors 
controlling expression of both classes of MHC molecules. These include MHC-specific 
transcription factors and general factors, such as IRF-1, NF-κB and CREB-1 12,13. The 
fact that the latter group can be activated by a variety of stresses including viral and 
bacterial infection, inflammation and tissue damage 14-16 suggests that a general state of 
cell activation is present in MS lesions. 

Because the expression of CCR5 on CNS resident cell resembles to a great extent 
the expression of both classes of MHC molecules found in MS lesions, we investigated 
whether IRF-1, NF-κB and CREB-1 are also involved in the regulation of CCR5 
transcription in various cell types. 

Using established human monocytic and glioma cell lines, cultured monocyte-
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derived DCs, and primary astrocytes and microglia, we determined that neither IRF-1 
nor NF-κB are involved in the activation of CCR5 promoters, nor in the induction of 
endogenous CCR5 transcription. In contrast, we found that the CREB pathway regulates 
the activity of the CCR5 promoter. Considering the ubiquitous nature of CREB-1, these 
findings suggest that additional genetic or epigenetic mechanisms contribute to the 
cell-type specific transcriptional regulation of CCR5.

Materials & Methods

Cell culture 

The cell lines THP-1, U251-MG and Tera-2 (ATCC, Manassas, Virginia) were cultured 
in Iscove’s modified Dulbecco’s medium (IMDM; BioWhittaker Europe, Verviers, 
Belgium) supplemented with 10% (v/v) heat-inactivated fetal calf serum (FCS; Greiner, 
Alphen a/d Rijn, The Netherlands), 100 IU/ml streptomycin and 100 IU/ml penicillin.

Transcription factor binding site search

Potential transcription factor binding sites were identified using the TFSEARCH 
program (http://www.cbrc.jp/research/db/TFSEARCH.html), which searches the 
TRANSFAC database 17,18. Cut of was set at 85% of the consensus TF binding site.

Preparation of nuclear extracts and EMSA

Nuclear extracts were prepared and electrophoretic mobility shift assays (EMSA) 
were performed as previously described 19. Briefly, 2 µl of nuclear extracts were 
incubated with 2 ng of [33P]-labeled dsDNA probe in binding buffer for 30 minutes on 
ice. Samples were run on a 6% polyacrylamide gel in 0.25x TBE buffer at 200 V for 150 
minutes. The ds-oligonucleotides used as probe for transcription factor binding sites 
are depicted in Table 1.

For competition assays, nuclear extracts were incubated with an unlabeled 
consensus oligonucleotide (Table 1) for 30 minutes prior to incubation with the labeled 
oligonucleotides. For supershift assays, after oligonucleotide/nuclear extract incubation 
1 µgof antibody was added and incubation was continued for an additional60 minutes 
on ice. The antibodies used (all obtained from Santa Cruz Biotechnology, Santa Cruz, 
CA) are depicted in Table 2. 

Transient transfection

CCR5 promoter constructs were a kind gift from Prof. S. K. Ahuja (University 
of Texas Health Science Center at San Antonio, San Antonio, TX). Tera-2 cells were 
transfected with the CCR5 upstream promoter-luciferase reporter constructs pGL3-
CCR5-pA1, pGL3-CCR5-pA2, pGL3-CCR5-pA3, pGL3-CCR5-pA4, the CCR5 
downstream promoter constructs pGL3-CCR5-pB1, pGL3-CCR5-pB3, pGL3-CCR5-
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pB4 23 or the pGL3-Basic luciferase reporter plasmid (Promega, Madison, Wisconsin) 
in combination with the actin driven Renilla pGL3 reporter construct (pRL, Promega) 
as an internal control. pGL3-B250 and pGL3-β2m have been described previously 19,20.

Cells were transfected in triplicate with 1 µg of promoter construct and 0.1 µg of actin-
pRL construct, using the calcium phosphate coprecipitation method 24. For cytokine 
induction experiments, cells were treated with IFN-γ (500 U/ml; Boehringer-Ingelheim, 
Alkmaar, The Netherlands) or TNF-α (10 ng/ml; BioSource, Nivelles, Belgium) for 24 
hours after transfection. For transcription factor induction experiments, cells were co-
transfected with 0.5 µg of the previously described 25 pRc/RSV expression vectors of 
IRF-1, CREB-1, CBP, p300, P/CAF, ATF-1 or ICER. Cells were harvested 48 hours after 

EMSA probe Oligonucleotide sequence* Location**

ISRE β2m20 5’-TAAGAAAAGGAAACTGAAAACG-3’ -
CCR5-ISRE-1 5’-CTCCGCATGGTGAAAGTAAGAACC-3’GCATGGTGAAAGTAAGAACC-3’GCATGGTGAAAGT -4026
CCR5-ISRE-2 5’-GCAATTAGCTTTACCTTTTCAGCTTCT-3’ -3367
CCR5-ISRE-3 5’-GGACTGCTGAAAGAGTAACTAAGAGTT-3’CTGAAAGAGTAACTAAGAGTT-3’CTGAAAGAGTAACT -3255
κB β2m20 5’-ACGGGAAAGTCCCTC-3’ -
CCR5-κB-1 5’-GAACAGAGTGAAAATCCCCACTAAGA-3’ -2650
CCR5-κB-2 5’-CTTACTGTTGAAAAGCCCTGTGATCT-3’ -2340
CCR5-κB-3 5’-ATCCAGTGAGAAAAGCCCGTAAATAA-3’ -2155
CRE consensus21 5’-AGAGATTGCCTGACGTCAGAGAGCTAG-3’ -
CCR5-CRE-1 5’-AACACAAAAGTGGAGTAACGCACA-3’AGTGGAGTAACGCACA-3’AGTGGAGT -4369
CCR5-CRE-2 5’-CAGGTCTAGCACGTCATTTAACAG-3’GCACGTCATTTAACAG-3’GCACGTCA -4226
CCR5-CRE-3 5’-TATCTTGCCGAGGTCACAAAGCAA-3’ -4172
CCR5-CRE-B1 5’-GATTGGGGGCACGTAATTTTGCTG-3’GCACGTAATTTTGCTG-3’GCACGTAA -3028
CCR5-CRE-B2 5’-AGCCAAGGTCACGGAAGCCCAGAG-3’ -2950
CCR5-CRE-B3 5’-AGATTTTCAGATGTCACCAACCGC-3’ -2866
CCR5-CRE-B4 5’-CCATATACTTATGTCATGTGGAAA-3’TTATGTCATGTGGAAA-3’TTATGTCA -2788
CCR5-CRE-B5 5’-GGTTAATGTGAAGTCCAGGATCCC-3’ -2445
CCR5-CRE-B6 5’-TGGGCTTTTGACTAGATGAATGTA-3’TGACTAGATGAATGTA-3’TGACTAGA -2267
CCR5-CRE-B7 5’-TAGTGGGATGAGCAGA5’-TAGTGGGATGAGCAGA5’-TAGTGGGA GAACAAAA-3’ -2187
CCR5-CRE-B8 5’-GCTTATTTTAAGCTCAACTTAAAA-3’ -2102
CCR5-CRE-B9 5’-TCTAGCTCTGATATCCTTTATTCT-3’ -2235
CCR5-CRE-B10 5’-CGTAAATAAACCTTCAGACCAGAG-3’ -2138
CCR5-CRE-B11 5’-ATTCTTTTCGCCTTCAATACACTT-3’ -2061
CCR5-CRE-B12 5’-ACTCCACCCTCCTTCAAAAGAAAC-3’ -2028
CCR5-CRE-B13 5’-TGATTTGCACAGCTCATCTGGCCA-3’ACAGCTCATCTGGCCA-3’ACAGCTCA -1972

Table 1. ds-oligonucleotide sequences used for EMSA

* Potential protein binding sites are underlined
** Location relative to start ORF (+1) according to accession no: AF031236 and AF031237
* Potential protein binding sites are underlined
** Location relative to start ORF (+1) according to accession no: AF031236 and AF031237
* Potential protein binding sites are underlined

22
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transfection and luciferase activity was measured using the dual-luciferase reporter 
assay system (Promega).

Primary cell culture and stimulation

Peripheral blood mononuclear cells (PBMC) were isolated from blood of normal 
healthy donors using a Ficoll gradient (Pharmacy Leiden University Medical Center, 
Leiden, The Netherlands). Isolated PBMC were stimulated with 10 µM Forskolin 
(Calbiochem, La Jolla, CA) for 4 to 6 h, after which RNA was isolated.

To obtain DCs, monocytes derived from freshly isolated PBMC were cultured in 
RPMI-1640 medium (Gibco BRL, Life Technologies, Breda, The Netherlands) with 
regular supplements and stimulated with a combination of 1000 U/ml recombinant 
human GM-CSF and 1000 U/ml IL-4 (both BioSource) for 7 days. Subsequently, the 
obtained cells were stimulated with LPS (100 ng/ml; Sigma-Aldrich, Steinheim, 
Germany) or IFN-γ (500 U/ml) for 24 hours each, after which RNA was isolated. 

Human brain tissue was obtained by rapid autopsy according to standardized 
procedures under the management of the Netherlands Brain Bank, Amsterdam, The 
Netherlands. All patients or their next of kin had given written consent for autopsy 
and use of their brain tissue for research purposes. Brain samples were obtained from 
a patient without neurological complications and a patient with Multiple Sclerosis. 
Isolation of human adult astrocytes and microglia was performed as described 
previously 26. Astrocytes were cultured in poly-L-lysine coated 75 cm2-culture flasks 
(Greiner) in DMEM/HAMF10 (Gibco BRL Life Technologies) with regular supplements. 
For microglia isolation, cells were purified by a percoll/myelin-gradient buffer and 
plated in 25 cm2-culture flasks (Greiner).

Antibody name Protein reactivity Catalogue no.

IRF-1 (C-20) IRF-1 sc-497
IRF-2 (C-19) IRF-2 sc-498
IRF-4 (M-17) IRF-4 sc-6059
ICSBP (C-19) IRF-8 sc-6058
NF-κB p50 (NLS) NF-κB p50 sc-114
NF-κB p65 (A) NF-κB p65 (Rel A) sc-109
RelB (C-19) RelB p68 sc-226
cRel (C) c-Rel p75 sc-71
CREB-1 (24H4B) CREB-1 p43 sc-271
ATF-1 (C41-5.1) ATF-1 p35 sc-243
ATF-1 (25C10G; ATF/CREB) ATF-1, CREB-1, CREM-1 sc-270

Table 2. Antibodies used for EMSA supershift assays
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For stimulation, astrocytes cultures grown in 75 cm2 flasks were trypsinized and 
seeded into 25 cm2 flasks at a density of approximately 1 x 105 astrocytes per flask. 
Cells were stimulated with LPS (100 ng/ml) or IFN-γ (500 U/ml) each for 8 hours prior 
to RNA-isolation. Microglia grown in 25 cm2-culture flasks were stimulated with TNF-
α (10 ng/ml or IFN-γ (500 U/ml) each for 8 h, followed by RNA-isolation.

RNA isolation and RT-PCR

Total RNA was isolated using the RNA-Bee extraction method (Tel-Test, 
Friendswood, Texas). cDNA was synthesized from 4 µg of each RNA sample using 
AMV reverse transcriptase (Promega). CCR5, NF-κB p50, HLA-DRA, CIITA-PIV and 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) products were amplified by 
PCR reaction. Primer sequences and condition used are depicted in Table 3. PCR cycles 
consisted of 30 seconds denaturation at 95°C, 30 seconds annealing and 30 seconds 
elongation at 72°C. For each PCR reaction 2,5 µl of 1:5 diluted cDNA was used in a 
total reaction volume of 25 µl, containing 1× PE PCR reaction buffer (Perkin Elmer, 
Roche Molecular Systems, Branchburg, NJ), 0.5 mM of each dNTP, 10 pmol of each 
primer and 2.5 U AmpliTaq DNA polymerase (Perkin Elmer). The PCR products were 
separated and visualized on an ethidium bromide stained agarose gel.

PCR 
product Primer sequence (5’-3’) Tann

* Number 
of cycles

MgCl2concentration2concentration2

CCR5
F-CTGAGACATCCGTTCCCCTA

60°C 32 3 mM
R-GCTCTTCAGCCTTTTGCAGT

NF-κB p50
F-GAACTCCTCCATTGTGGAACC

62°C 32 1.5 mM
R-CCCGGAGATTTGCTGTCATG

HLA-DRA
F-GGCCATAAGTGGAGTCCC

55°C 30 3 mM
R-CTATACTCCGATCACCAA

CIITA-PIV
F-AGCTGGCGGGAGGGAGAGGCCACC

60°C 35 1.75 mM
R-CATACTGGTCCAGTTCCGCGATATTGG

GAPDH
F-GGTCGGAGTCAACGGATTTG

60°C 22 1.5 mM
R-ATGAGCCCCAGCCTTCTCCAT

Table 3. PCR primer sequences and conditions

* Tann: annealing temperature
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Results

Location of potential binding sites in the CCR5 promoter region for transcription 
factors induced by inflammatory signaling pathways

The organization and promoter usage of the CCR5 gene has been elucidated 
previously by Mummidi et al. using luciferase-reporter constructs containing CCR5 
regulatory regions (Figure 1) 23,27. Two distinct functional promoter regions for the CCR5 
gene were identified: a downstream promoter region, designated P1, and an upstream 
promoter region, designated P2. Using the TFSearch program we evaluated the CCR5 
promoter regions for potential interferon-stimulated response elements (ISREs), which 
bind interferon regulatory factors (IRFs), κB elements, which bind  nuclear factor κB 
(NF-κB), and  cAMP-response elements (CRE elements) which can bind the common 
activator of transcription CREB-1 (cAMP-response element (CRE)-binding protein) 
and its family members.

Figure 1. Gene and promoter organization of human CC chemokine receptor CCR5. Schematic 
representation of the CCR5 gene and its promoters. Exons (1 through 3) are depicted by boxes. Both 

 Gene and promoter organization of human CC chemokine receptor CCR5. Schematic 
representation of the CCR5 gene and its promoters. Exons (1 through 3) are depicted by boxes. Both 
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Figure 1 shows the location of the TFSearch-identified potential binding sites for 
these transcription factors (see also Table 1). The potential NF-κB-binding sites (CCR5-
κB-1 through κB-3) are situated only in the downstream promoter region, whereas 
the putative CRE sites (CCR5-CRE-1 through CRE-3) are all located in the upstream 
promoter region. One of the identified potential binding sites for proteins of the IRF 
family, CCR5-ISRE-1, is located in the upstream promoter region, whereas the other 
ISREs, CCR5-ISRE-2 and ISRE-3, are located in the region in which the upstream 
promoter and the downstream promoter overlap each other.

Protein/DNA interactions at the identified putative transcription factor binding 
sites in the CCR5 promoter region

We tested the capacity of the identified regulatory sites in the promoter regions of 
the CCR5 gene to bind specific transcription factors in vitro by EMSA. Using extracts 
of THP-1 and U251 cells stimulated with TNF-α (which induces NF-κB activity), we 
studied in vitro complex formation at the κB sites present in the CCR5 downstream 
promoter. We could detect constitutive protein binding to the CCR5-κB-1 and CCR5-
κB-2 probes but not to the CCR5-κB-3 probe using nuclear extracts of both cell types. 
Similar to binding to the κB element of the β2m promoter 20, the amount of protein 
binding to the CCR5-κB-1 was dramatically increased after TNF-α stimulation (Figure 
2A). Binding of this TNF-α-induced factor to the CCR5-κB-1 was specific for the κB 
sequence in the oligonucleotide probe because it could be competed away with the 
β2m κB probe. In contrast, protein binding to CCR5-κB2 proved to be not specific. 

To identify the proteins bound to these sites we performed a supershift analysis 
with antibodies directed against several members of the NF-κB family. We found that 
TNF-α stimulation of THP-1 and U251 cells induced binding of both subunits p50 and 
p65 of NF-κB to CCR5-κB-1 (Figure 2B). In addition, we could identify the constitutive 
binding to the CCR5-κB-1 site as binding of NF-κB p50 in THP-1 cells and binding of 
NF-κB p65 in U251 cells. In contrast, the complex found with CCR5-κB-2 could not be 
shifted with any of the antibodies, confirming that this binding is non-specific.

 Next, in vitro binding to the putative ISREs was tested using nuclear extracts of U251 
cells, either unstimulated or stimulated with IFN-γ. IFN-γ stimulation induced binding 
of one main and two minor protein complexes to CCR5-ISRE-1 and CCR5-ISRE-3, 
and to a lesser extent to CCR5-ISRE-2 (Figure 3A). Binding of these IFN-γ-induced 
complexes could be competed away with an ISRE consensus probe, indicating that the 
binding is specific for the ISRE sequence in the probes. In THP-1 cells we could detect 
only very weak binding to CCR5-ISRE-1 and CCR5-ISRE-3 (not shown).

Previously we have shown that IRF-1 is the main IRF that is induced by IFN-γ in U251 
and THP-1 cells 20. In addition, U251 cells constitutively express IRF-2, whereas THP-
1 cells constitutively express both IRF-2 and the lymphoid/myeloid-specific factors 
IRF-4 and IRF-8 (data not shown, 20). Supershift analysis revealed binding of IRF-1 to 
CCR5-ISRE-1 and CCR5-ISRE-3 using nuclear extracts from U251 cells, whereas IRF-2, 
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present in U251 cells, as determined by its binding to the β2m ISRE, did not bind to 
the CCR5 ISREs (Figure 3B). Furthermore, the CCR5-ISRE-1 and CCR5-ISRE-3 failed 
to bind IRF-4 and IRF-8 expressed in THP-1 nuclear extracts, while these factors did 
interact with the β2m-ISRE (results not shown, 20). These findings indicate that only 
IRF-1 binds to CCR5-ISRE-1 and CCR5-ISRE-3 after IFN-γ stimulation.

Finally, we analyzed binding to the putative CRE sites in the CCR5 upstream 
promoter. We detected constitutive binding of three complexes in nuclear extracts from 
THP-1 and U251 cells to the CCR5-CRE-2 and -CRE-3, although binding to the latter 
was very weak (Figure 3C). Binding to both CCR5-CRE-sites was specific for the CRE-
region in the probe, as determined by competition with a CRE consensus probe 21.

The CREB family consists of three members: CREB-1, activating transcription factor 
1 (ATF-1) and cAMP responsive element modulator (CREM), which all bind to CRE 
sequences as homo- or heterodimers 28. With antibodies directed against either CREB-1 
or ATF-1 and an antibody that recognizes CREB-1, ATF-1 and CREM-1, we determined 
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that all three antibodies induced a supershift of one or more of the complexes bound 
to CCR5-CRE-2 and CCR5-CRE-3 (Figure 3D). The supershift patterns revealed that 
both CREB-1 and ATF-1 bind to CCR5-CRE-2 as well as CCR5-CRE-3. In addition, the 
middle complex formed at CCR5-CRE-2 was identified as  CREM-1 binding, because 
it was only shifted by the antibody directed against multiple members of the CREB 
family (ATF/CREB), whereas the upper and lower complexes were shifted by both this 
antibody and the antibodies against CREB-1 and ATF-1, respectively (Figure 3D).

Taken together, these analyses reveal that the CCR5 promoter contains at least two 
ISREs, one κB site and one CRE site that can be bound in vitro by their respective 
transcription factors that are present in THP-1 or U251 cells, either constitutively or 
induced by IFN-γ or TNF-α.

Figure 3. Transcription factor binding to the ISREs and CRE sites in the CCR5 promoter. A EMSA showing 
binding of complexes to the ISREs of CCR5 (ISRE-1 through ISRE-3) and the ISRE of human 
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Transactivation capacity of the putative regulatory sites

To test whether the binding sites that displayed in vitro binding of transcription 
factors in EMSA are actually functional, we performed luciferase-reporter assays in the 
cytokine-responsive teratocarcinoma cell line Tera-2 using various promoter constructs 
generated by Mummidi et al. 23 (Figure 1). 

Transient transfection of the CCR5 promoter constructs revealed that none displayed 
any constitutive activity (Figure 4). This notion is in line with the absence of CCR5 
transcription in Tera-2 cells (unpublished observations). We then first investigated 
whether we could activate the CCR5 downstream promoter, which contains the in 
vitro NF-κB binding CCR5-κB-1 element, by TNF-α treatment. Exposure of Tera-2 cells 
to TNF-α revealed that the full-length CCR5 downstream promoter construct (CCR5-
pB1) could not be activated by TNF-α, whereas a promoter construct containing the 
β2m promoter, responsive to TNF-α 20, did display enhanced activity upon TNF-α
treatment (Figure 4A). These results indicate that the putative CCR5-κB-1 site found 
in the CCR5 promoter is not functional, despite in vitro NF-κB protein binding. In 
addition, we were not able to induce activity of the CCR5-pA1 upstream promoter 
construct by TNF-α treatment (Figure 4A), thereby excluding the presence of functional 
non-consensus NF-κB binding sites in the CCR5 promoter region, which remained 
undetected by the TFSearch analysis.

Next we determined whether the CCR5 promoter constructs were responsive to 
IFN-γ and the IFN-γ-induced transcription factor IRF-1. IFN-γ treatment did not result 
in the activation of the CCR5-pA1 upstream promoter construct that contains both 
CCR5-ISRE-1 and CCR5-ISRE-3, or the CCR5-pB1 downstream promoter construct 
that contains CCR5-ISRE-3. The activity of these constructs was comparable to the 
activity of the truncated constructs (CCR5-pA4 and CCR5-pB4) lacking these sites, and 
the control plasmid. In contrast, the IFN-γ-responsive HLA-B promoter 19 did show 
activity upon IFN-γ treatment (Figure 4B). In addition, cotransfection of an expression 
vector of IRF-1 did not lead to activation of the two CCR5 upstream promoter 
constructs containing both CCR5-ISREs (CCR5-pA1 and CCR5-pA2), or the CCR5-
ISRE-3-containing downstream construct (CCR5-pB1) (Figure 4C). Again, activity did 
not rise above activity of a construct lacking CCR5-ISREs (CCR5-pB3) or the control 
plasmid, while another promoter known to be activated by IFN-γ, the γ, the γ β2m promoter 
20, was activated by IRF-1 (Figure 4C). This demonstrates that, like the CCR5-κB-1 site, 
the putative CCR5-ISREs in the CCR5 promoter are not functional, although they do 
bind IRF-1 in vitro. Furthermore, these analyses exclude the presence of non-consensus 
ISREs in the full-length promoter-reporter constructs, which could potentially bind 
IRFs leading to IFNγ-mediated induction of CCR5.

Finally, we tested whether CREB-1, which can bind to the CRE-2 and CRE-3 sites 
in vitro, is able to transactivate the CCR5 upstream promoter. Cotransfection of the 
full-length upstream promoter construct, which contains both CCR5-CRE sites, with 
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an expression vector for CREB-1 did not lead to activation of this promoter construct 
(Figure 4D, CCR5-pA1). Furthermore, CREB-1 cotransfection was not able to activate 
any of the truncated upstream promoter constructs, CCR5-pA2 through –pA3, either 
(not shown). Surprisingly however, CREB-1 did activate the full-length downstream 
promoter CCR5-pB1 and to an even higher extent the two truncated downstream 
promoter constructs. The activity of the latter two reached a level comparable to CREB-
1 induced activity of a β2m promoter construct (Figure 4D). These findings implicate 
that, whereas the CRE sites found in the upstream promoter are not functional, the 
downstream promoter region must contain at least one functional CREB-binding site.

In addition to this, we tested the capacity of ATF-1 to activate the CCR5 promoter 
and the cooperation of CREB-1 with several coactivators using the construct which 
displayed maximal CREB-1 transactivation, CCR5-pB3. We found that similar to CREB-
1, ATF-1 induced CCR5 promoter activity (Figure 4E). However, its transactivation 
capacity was considerably lower than that of CREB-1, and ATF-1 could not further 
enhance CREB-1-induced transactivation. Subsequently, we also investigated whether 
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the coactivators CBP (CREB-binding protein), p300 and P/CAF (p300/CREB-associated 
factor) 28,29 would modulate CREB-1 mediated activation of CCR5. Cotransfection of the 
CREB-responsive CCR5-pB3 construct with CREB-1 and these coactivators revealed 
that CBP, p300 and P/CAF did not enhance CREB-1 induction of CCR5 promoter 
activity (Figure 4F), indicating that exogenous expression of CREB-1 is sufficient to 
activate the CCR5 promoter.

Taken together, these data suggest that the CREB pathway is involved in the 
transactivation of the CCR5 promoter region, whereas the IRF and the NF-κB pathways 
are not.

Protein binding to CRE-sites in the downstream promoter

Because we found that CREB-1 is capable of activating CCR5 downstream promoter 
constructs, we analyzed the CCR5 downstream promoter region more closely for 
potential CRE-sites. Figure 5A depicts the position of putative CRE sites identified 
in the downstream promoter region (designated CCR5-CRE-B1 through -CRE-B13). 
Using EMSA, we observed protein/DNA complex formation with several of the CCR5-
CRE-B sites (Figure 5B), which we further analyzed by supershift analysis. CCR5-CRE-
B1 through –CRE-B4 are located in the region that is included in the downstream CCR5 
promoter construct CCR5-pB1. However, this region is also included in the upstream 
promoter constructs (CCR5-pA1 through -4), which are not responsive to CREB-1 
(Figure 1 and 5A). Of these sites, CCR5-CRE-B1 and -CRE-B3 displayed a clear binding 
of CREB-1 and a weaker binding of ATF-1 (Figure 5C). In addition, CCR5-CRE-B1 
bound another lower-weight complex, which could not be shifted away with the used 
antibodies directed against several members of the CREB-1 family. We detected weak 
binding of CREB-1 to CCR5-CRE-B2 and CREB-1 and ATF-1 to -CRE-B4, which also 
bound other complexes that were not shifted with these antibodies. 

In addition to these sites, two other sites displayed protein binding in EMSA analysis. 
These sites, CCR5-CRE-B7 and -CRE-B13, are located in the region that is included 
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in all CREB-responsive downstream promoter constructs (Figure 5A). CCR5-CRE-B7 
displayed rather weak binding of both CREB-1 and ATF-1, whereas we only found 
weak binding of CREB-1 to CCR5-CRE-B13 (Figure 5C). In addition, we found very 
weak binding of CREB-1 and ATF-1 to CCR5-CRE-B5, located in promoter constructs 
CCR5-pB1 and CCR5-pB3, and hardly detectable binding of CREB-1 to CCR5-CRE-B8 
and CCR5-CRE-B12, located in all downstream promoter constructs (not shown).

Modulation of endogenous CCR5 expression

Finally, we evaluated whether stimulation of the investigated signaling pathways 
could lead to transcription activation or modulation of CCR5 expression in monocyte-
derived DCs and in primary cells originating from the central nervous system. First, 
we analysed primary human monocyte-derived DCs for constitutive and LPS- or IFN-
γ-induced CCR5 expression. Neither LPS (a potent inducer of NF-κB activation) nor 
IFN-γ did enhance the constitutive transcription of CCR5 in monocyte-derived DCs 
significantly, as determined by RT-PCR (Figure 6A,C). Likewise, LPS and IFN-γ did 
not modulate the constitutive transcription of HLA-DRA, whereas both stimuli did 
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enhance expression of the p50 subunit of NF-κB in these monocyte-derived DCs.
Subsequently, we investigated CCR5 transcription in cultured astrocytes and 

microglia stimulated with LPS, TNF-α or IFN-γ by RT-PCR.  While cultured monocyte-
derived DCs constitutively express CCR5, we could not detect constitutive CCR5 
expression in cultured astrocytes (Figure 6A,C). In addition, LPS stimulation did not 
induce CCR5 expression in these cells, whereas NF-κB p50 expression was induced by 
LPS treatment. Furthermore, we were unable to detect CCR5 expression in astrocytes 
upon IFN-γ treatment, while HLA-DRA expression was induced (Figure 6A,C).  In 
contrast, primary cultured microglia did express CCR5 constitutively (Figure 6B,C).  
Consistent with the results obtained with primary monocyte-derived DCs, neither 
IFN-γ nor TNF-α treatment resulted in enhanced CCR5 expression, whereas these 
treatments did lead to enhanced expression of the inducible Class II Transactivator 
(CIITA) PIV isoform or the induction of NF-κB p50 expression (Figure 6B,C). Likewise, 
we were not able to induce CCR5 mRNA expression by either IFN-γ or TNF- α treatment 
in U251 or THP-1 cells (data not shown). 
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Finally, we investigated whether the CREB pathway is involved in endogenous 
expression of CCR5 as found in T-cells. Therefore, we treated human PBMC with 
forskolin, an agent that induces the CREB family member inducible cAMP early 
repressor (ICER) in various cell types, including PBMC 30,31. ICER competes with CREB 
for DNA binding and acts as a repressor of CREB-mediated transcription 30. We found 
that CCR5 expression was markedly reduced in PBMC after forskolin treatment (Figure 
7A,B). Therefore, we examined whether ICER affects CCR5 promoter activity, by 
cotransfecting the CREB-responsive CCR5 promoter construct CCR5-pB3 with CREB-1 
and ICER expression constructs. Indeed, we found that ICER strongly inhibited CREB-
induced transactivation of the CCR5 promoter (Figure 7C). 

These findings confirm that of the signaling pathways investigated, only the cAMP/
CREB pathway contributes to CCR5 transcriptional activation.

Discussion

In the current study we have evaluated the contribution of IRF-1, NF-κB and CREB-1 
to the transcriptional regulation of the chemokine receptor CCR5. Our results indicate 
that only CREB-1 is involved in the transcriptional regulation of CCR5 and that CCR5 
expression is not induced nor modulated by IRF-1 and NF-κB.  

Although it has been previously suggested that NF-κB could upregulate CCR5 in T-
cells 32, our data indicate that the identified NF-κB binding sites do not seem to play a 
role in the transcriptional regulation of CCR5 expression in the cell types investigated 
in this study. This is illustrated by the lack of CCR5-promoter activation by TNF-α and 
the failure of LPS and TNF-α to induce or enhance endogenous CCR5 transcription. At 
the same time, these agents did induce activity of the NF-κB responsive β2m promoter 
and transcription of the NF-κB subunit p50. 

By monitoring endogenous CCR5 expression we showed a lack of inducibility by 
IFN-γ of CCR5 in several cell types, while at the same time IFN-γ-induced expression 
of HLA-DRA or activation of IFN-γ-responsive CIITA-PIV isotype was noted. The lack 
of IFN-γ-mediated activation of endogenous CCR5 transcription is corroborated by the 
failure of IFN-γ and IRF-1 to activate the promoter construct containing CCR5-ISRE-
1 and -3, that displayed in vitro IRF-1 binding. The lack of CCR5 promoter activation 
by IFN-γ and IRF-1 does not seem to result from the presence of a region upstream 
of the ISREs 32,33 that inhibits IFN-γ-mediated transactivation, because the truncated 
constructs, which did include CCR5-ISRE-3, were not responsive to IFN-γ or IRF-1 
either. In addition, it also seems unlikely that binding of an inhibitory IRF causes the 
unresponsiveness of the ISRE-containing promoter constructs. Previously we have 
shown that IRF-2 inhibits the transactivation of the β2m promoter by IRF-1 20. However, 
whereas we did find binding of IRF-2 to the ISRE of β2m in U251 cells, we could detect 
no binding of IRF family members other than IRF-1 to CCR5-ISRE-1 and CCR5-ISRE-3 
(Figure 3B). 
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In contrast to the lack of CCR5 transcriptional regulation through IFN-γ and TNF-
α-induced activating pathways, our findings indicate that CREB-1 is involved in the 
transcriptional regulation of CCR5. Of the identified CRE sites in the downstream 
promoter, CCR5-CRE-B1 and CCR5-CRE-B3 showed the most prominent binding of 
CREB-1/ATF-1. However, these sites are located in the region that is also included in 
the upstream promoter constructs, which are not responsive to CREB-1 cotransfection. 
Therefore, it is reasonable to assume that these sites most likely do not contribute to 
the transactivation of the downstream promoter by CREB-1. In contrast, CCR5-CRE-
B7 and CCR5-CRE-B13, which displayed weaker binding of CREB-1/ATF-1 and CREB-
1, respectively, are located in the region which all downstream promoter constructs 
encompass and therefore most likely do contribute to the transactivation of the CCR5 

Figure 7. Inhibition of CCR5 transcription and CCR5 promoter activation by forskolin and ICER, 
respectively. 
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promoter by CREB-1. The CRE site in the upstream promoter region, CCR5-CRE-2, 
proved also not to contribute to CCR5 transcription despite binding of CREB-1/ATF-1 
(Figure 3D). However, this site also seems to bind CREM-1. It is known that, depending 
on the isoform obtained from alternative splicing, CREM-1 can act as either an activator 
or repressor of transcription 28,34. For example, ICER is the collective name of a family of 
inducible CREM isoforms that lack a transactivation domain and therefore are natural 
antagonists of CREB-1, repressing its transactivation function 30. Therefore it could be 
argued that the CREM-isoform binding to CCR5-CRE-2 might represent a repressive 
CREM isoform or ICER, inhibiting activation of the CCR5 upstream promoter by 
CREB-1. However, EMSA analysis revealed considerable binding of both CREB-1 and 
ATF-1, which suggests that the CREM-binding to CCR5-CRE2 is not able to compete 
with the binding of CREB-1 and ATF-1. 

The fact that the upstream promoter constructs are not responsive to CREB-1, 
whereas the downstream promoter constructs are, might suggest a repressive function 
of the upstream promoter region. This hypothesis is underscored by the fact that the 
longest downstream promoter construct (CCR5-pB1), including part of the upstream 
region (Figure 1), is less responsive to CREB-1 than the truncated downstream promoter 
constructs CCR5-pB3 and -pB4 (Figure 4D). Therefore it seems that this upstream region 
indeed suppresses CREB-1-mediated activation of the downstream promoter. These 
findings corroborate those of others, that mapped a repressive element, corresponding 
to the region upstream of -2750, affecting the CCR5 promoter 32,33. This region is included 
in CCR5-pB1 and not in CCR5-pB3 and –pB4 (Figure 1).

Many genes contain consensus sites for CREB binding and as such the transcription 
factor CREB-1 has been implicated in a wide variety of cellular processes 35. In the 
central nervous system CREB-1 plays an important role in various neuronal processes, 
such as neuronal development, neuroprotection and disease 36. In addition, various 
signaling pathways, including neurotrophin-mediated signaling, result in enhanced 
CREB-1 expression 36. In effect, CREB-1 plays an important role in the transcriptional 
control of anti-apoptotic factors such as Bcl-2 following neurotrophin signaling 37. 
Furthermore, CREB-1 has also been implicated in axonal regeneration in the injured 
CNS 38. Previously, we have detected enhanced expression of CREB-1 in MS affected 
microglia, which could reflect a stress signaling-induced upregulation of CREB-1
transcription 12. In addition, a concomitant increase in CCR5 expression on MS affected 
microglia has also been documented 10,11. The fact that we now have shown that CREB-1 
is a bona fide inducer of CCR5 promoter activation is in line with these observations.

In conclusion, we show that CREB-1 is an important inducer of CCR5 expression.  
Interestingly, whereas CREB-1 is ubiquitously expressed and its expression can be 
induced by various stimuli, expression of CCR5 in healthy subjects is confined to T-
lymphocytes, DCs, macrophages, monocytes and microglia. This specificity of CCR5 
expression could be the result of differences in signal transduction pathways that lead 
to differential phosphorylation and additional modifications of CREB-1, altering its 
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transcriptional activation state 28,29. In addition, differential expression of CCR5 could 
be due to cell-specific splicing of the CREM gene, giving rise to either activating or 
repressive CREM isoforms that could affect CREB-1 transactivation of the CCR5 
promoter 34. However, these mechanisms are also quite common and therefore are not 
likely to account for the cell-specific expression of CCR5. Thus, these data suggest the 
existence of additional regulatory constraints imposed on CCR5, which control tissue-
specific expression. Alterations in these regulatory mechanisms might also explain the 
aberrant expression of CCR5 in MS and in a number of other inflammatory diseases. 
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