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ABSTRACT

We study the rest-frame ultraviolet (UV) sizes of massive ( M0.8 1011~ ´ ☉) galaxies at z3.4 4.2<⩽ , selected
from the FourStar Galaxy Evolution Survey, by fitting single Sérsic profiles to Hubble Space Telescope/WFC3/
F160W images from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. Massive quiescent
galaxies are very compact, with a median circularized half-light radius r 0.63 0.18e =  kpc. Removing 5 16
(31%) sources with signs of active galactic nucleus activity does not change the result. Star-forming galaxies have
r 2.0 0.60e =  kpc, 3.2 1.3 ´ larger than quiescent galaxies. Quiescent galaxies at z 4~ are on average
6.0 1.7 ´smaller than at z 0~ and 1.9 0.7 ´smaller than at z 2~ . Star-forming galaxies of the same stellar
mass are 2.4 0.7 ´smaller than at z 0~ . Overall, the size evolution at z0 4< < is well described by a power
law, with r z5.08 0.28(1 )e

1.44 0.08=  + -  kpc for quiescent galaxies and r z6.02 0.28(1 )e
0.72 0.05=  + - 

kpc for star-forming galaxies. Compact star-forming galaxies are rare in our sample: we find only 1 14 (7%) with
r M M( 10 ) 1.5e

11 0.75 <☉ , whereas 13 16 (81%) of the quiescent galaxies are compact. The number density of
compact quiescent galaxies at z 4~ is 1.8 0.8 10 Mpc5 3 ´ - - and increases rapidly, by 5> ,́ between

z2 4< < . The paucity of compact star-forming galaxies at z 4~ and their large rest-frame UV median sizes
suggest that the formation phase of compact cores is very short and/or highly dust obscured.

Key words: cosmology: observations – galaxies: evolution – galaxies: formation – galaxies: high-redshift –
infrared: galaxies

1. INTRODUCTION

In recent years, massive quiescent galaxies have been found
beyond z = 3 (e.g., Chen & Marzke 2004; Wiklind et al. 2008;
Fontana et al. 2009; Mancini et al. 2009; Marchesini
et al. 2010; Guo et al. 2013; Muzzin et al. 2013; Stefanon
et al. 2013; Spitler et al. 2014) and even at z 4~ , when the
universe was only 1.5 Gyr old (Straatman et al. 2014).
Quiescent galaxies at high redshift (z 1> ) exhibit compact
morphologies, with small effective radii (e.g., Daddi
et al. 2005; van Dokkum et al. 2008; Damjanov et al. 2009),
which tend to become smaller with increasing redshift (van der
Wel et al. 2014). At z 3~ , they have sizes of ∼1 kpc, (3–4) ×
smaller than early-type galaxies of similar stellar mass at z 0~
(Shen et al. 2003; Mosleh et al. 2013) and (2–3) × smaller than
star-forming galaxies at the same redshift.

How compact quiescent galaxies are formed is still unclear.
Simulations propose mechanisms in which gas-rich major
mergers can induce central starbursts, resulting in a compact
merger remnant (Hopkins et al. 2009; Wellons et al. 2015), or
in which massive star-forming clumps move to the centers if

galaxy disks are unstable (Dekel et al. 2009; Dekel &
Burkert 2014). Alternatively, they may have formed in a more
protracted process at high redshift, when the universe was more
dense (Mo et al. 1998).
To understand these scenarios, it is necessary to identify

compact quiescent galaxies and their progenitors at the highest
redshifts. Compact star-forming galaxies been found in small
numbers at z = 2–3 (Barro et al. 2014a, 2014b; Nelson
et al. 2014), but many host active galactic nuclei (AGNs),
complicating the interpretation of the observations. At the same
time, rest-frame ultraviolet (UV) or optically measured sizes of
star-forming galaxies may be affected by dust-obscured central
regions, thereby increasing their effective radii.
In this work, we investigate the sizes of a stellar-mass

complete sample of star-forming and quiescent galaxies at
z 4~ . Throughout, we assume a standard CDML cosmology
with 0.3, 0.7MW = W =L and H 70 km s Mpc0

1 1= - - . The
adopted photometric system is AB.

2. SAMPLE SELECTION

The galaxies were selected using deep Ks-band images from
the FourStar Galaxy Evolution Survey (ZFOURGE; I. Labbé
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et al. 2015, in preparation), a near-IR survey with the FourStar
Infrared Camera (Persson et al. 2013), covering three
11 11¢ ´ ¢ pointings, located in the fields CDFS (Giacconi
et al. 2002), COSMOS (Scoville et al. 2007), and UDS
(Lawrence et al. 2007). The ZFOURGE Ks-band selected
catalogs are at least 80% complete down to K 24.53, 24.74s =
and 25.07 mag in each field, respectively (Papovich
et al. 2015). Photometric redshifts and stellar masses were
derived using five near-IR medium-bandwidth filters on
FourStar (J J J H H, , , ,s l1 2 3 ), which provide a fine sampling of
the age-sensitive Balmer/4000 Å break at z1.5 4< < , in
combination with public data over a wavelength range
0.3 8 mm- (Straatman et al. 2014). Here, we make additional
use of Hubble Space Telescope (HST)/WFC3/F160W data
from CANDELS (Grogin et al. 2011; Koekemoer et al. 2011;
Skelton et al. 2014) to examine galaxy sizes and Spitzer/MIPS
24 mm data from GOODS-South (PI: Dickinson), COSMOS
(PI: Scoville), and SPUDS (PI: Dunlop) to measure infra-
red flux.

The galaxies in this work have photometric redshifts
z3.4 4.2<⩽ , stellar masses of M Mlog ( ) 10.5510 ⩾☉ , and

Ks-band signal-to-noise ratios (S/Ns) of S N 7> . They are
separated into quiescent and star-forming galaxies according to
their rest-frameU V- versusV J- colors (Labbé et al. 2005;
Williams et al. 2009; Spitler et al. 2014), yielding 19 quiescent
and 25 star-forming galaxies (Straatman et al. 2014). Of these,
34 have HST/WFC3/F160W coverage. One quiescent galaxy
has an S N 3< in F160W and is not included. Another star-
forming galaxy with a highly uncertain redshift solution was
also rejected from the sample, along with two star-forming
galaxies that appear to consist of two sources each in the
higher-resolution HST images. In total, we study 16 quiescent
and 14 star-forming galaxies. We include a control sample at

z2 3.4<⩽ (326 sources) at similar mass and S/N.

3. GALAXY SIZES FROM HST/WFC3 IMAGING

3.1. Sérsic Fits

Sizes and structural parameters were measured by fitting
Sérsic (Sérsic 1968) profiles on 6 6 ´  HST/WFC3/F160W
image stamps using GALFIT (Peng et al. 2010). In particular,
we measure the half-light radius, encapsulating half the
sources’ integrated light. The corresponding parameter in
GALFIT is the half-light radius along the semimajor axis
(r1 2,maj), which can be converted to circularized effective

radius (r r b a( )e 1 2,maj= ), with b a as the axis ratio.
We manually subtracted the background in each image

stamp, masking sources and using the mode of the pixel flux
distribution. Sky estimation in GALFIT was turned off.
Neighboring objects at r 1. 1>  from the source were
effectively masked by setting their corresponding pixels in
the image to zero flux and increasing those in the noise image
by ×106. Close neighboring objects were fitted simultaneously.

We created mean point-spread functions (PSFs) for each
field by stacking image stamps of bright stars (masking all
neighboring sources). As many of the galaxies are small, we
investigate the impact of the PSF choice. We repeated the
fitting using the hybrid PSF models of van der Wel et al.
(2012) and find marginally larger ( 5%< ) sizes. In particular,
for the smallest galaxies (r 0. 20e <  ), we find a median
r r 0.93 0.05vdWe e,PSF =  .

Errors on the individual measurements were calculated using
a Monte Carlo procedure. After subtracting the best-fit
GALFIT models from the sources, we shifted the residuals
by a random number of pixels, added back the model, and used
this as input for GALFIT. Repeating this 200> ´ for each
galaxy, errors were calculated as the 1s variation on these
measurements. We report our results in Table 1.
In the fits, the Sérsic index (nSérsic) was restricted to

n0.1 8.0Sersic< <́ . If nSérsic reached the extreme value 0.1 or
8.0, GALFIT was rerun while forcing nSérsic = 1 for star-
forming and nSérsic = 4 for quiescent galaxies. These values
correspond to the median nSérsic of galaxies with well-
constrained fits and S N 15F160W > .
At z 4~ , this happens for 6/16 (38%) quiescent and 2 14

(14%) star-forming galaxies. To explore systematic effects
introduced by the choice of profile, we set nSérsic=1.0 or
nSérsic=4.0 for bright ( ABmag ( ) 24.5F160W < ) and compact
sources (r 0. 20e <  ) and find on average r rn ne, 1 e, 4 == =
0.80 0.13 , corresponding to a systematic uncertainty of
20%. We add this in quadrature to the uncertainties from the
Monte Carlo procedure for each galaxy. Systematic biases of
this level do not affect the main results. For comparison, van
der Wel et al. (2012) derived typical systematic uncertainties
on the size of 12%~ for faint F160W = 24–26 and small
r 0. 3e <  galaxies.

As many galaxies have a modest S/N, we tested the
reliability of our measurements by a simulation, in which we
inserted source models, convolved with the instrument PSF, in
the F160W images. These have adopted magnitudes of

AB25 mag ( ) 26F160W< < and a size of r0.06 ( ) 0.3e<  < .
We find r r 0.97 0.05e,out e,in =  , with re,in and re,out the input
and output effective radii, respectively, showing that we can
recover the sizes of faint compact sources without bias. As an
additional test, we determine the size distribution of point
sources by inserting PSFs in the images and measuring their
size. We can constrain the size of bright objects to 0. 01 at 95%
confidence, which we adopt as a minimum uncertainty on the
sizes.
We crossmatched our sample at z2 4.2<⩽ with the size

catalogs of van der Wel et al. 2014, based on the 3D-HST
photometric catalogs (Skelton et al. 2014). We find that the
sizes and Sérsic indices agree well, with a median
r r 1.004 0.01HSTe,ZFOURGE e,3D =  and n n HSTZFOURGE 3D- =

0.012 0.058-  .
We test for color gradients between rest-frame UV sizes and

rest-frame optical sizes, using a rest-frame color and stellar-
mass matched control sample at z 3~ . We find F160W (rest-
frame 4000 Å) sizes are 0%± 6% and 6%± 11% smaller than
F125W (rest-frame 3000 Å) sizes for star-forming and
quiescent galaxies, respectively.

3.2. Stacking

We also measure the average sizes by stacking the
background-subtracted image stamps of the two subsamples,
normalizing each by mean stellar mass. Neighboring sources
were masked. The final stacks were obtained by calculating the
mean value at each pixel location of the image stamps.
We ran GALFIT using the same input parameters as for the

individual galaxies. Errors were estimated by bootstrapping,
i.e., randomly selecting galaxies, recreating the image stacks,
and rerunning GALFIT.
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Table 1
Properties of 16 Quiescent and 14 Star-forming Galaxies

ID R.A. Decl. z Ks,tot Htot
a HGalfit

b S NF160W
a

M 1011 rKRON
a r1 2,maj re b a nsércic Av 24 mm c,d

(deg) (deg) (mag) (mag) (mag) M( ) (′) (′) (kpc) (μJy)

QUIESCENT
ZF-CDFS-209 53.1132774 −27.8698730 3.56 22.6 24.1 24.3 ± 0.0 64.6 0.76 0.23 0.06 ± 0.01 0.27 ± 0.07 0.37 ± 0.08 4.00 0.3 −0.9 ± 3.5
ZF-CDFS-403 53.0784111 −27.8598385 3.660e 22.4 23.7 23.5 ± 0.0 118.0 1.15 0.22 0.12 ± 0.03 0.82 ± 0.18 0.85 ± 0.05 7.78 ± 0.94 0.8 99.8 ± 148.5c

ZF-CDFS-4719 53.1969414 −27.7604313 3.59 23.4 25.2 25.2 ± 0.1 33.5 0.45 0.23 0.12 ± 0.03 0.60 ± 0.14 0.48 ± 0.08 1.88 ± 0.84 0.3 1.9 ± 3.4
ZF-CDFS-4907 53.1812820 −27.7564163 3.46 23.6 25.0 25.1 ± 0.1 38.2 0.40 0.28 0.08 ± 0.02 0.56 ± 0.13 0.86 ± 0.12 3.28 ± 0.90 0.8 1.4 ± 3.6
ZF-CDFS-5657 53.0106506 −27.7416019 3.56 23.0 24.6 24.2 ± 0.1 26.7 0.76 0.33 0.52 ± 0.16 3.22 ± 0.93 0.72 ± 0.11 4.45 ± 0.98 0.3 1.7 ± 3.8c

ZF-CDFS-617 53.1243553 −27.8516121 3.700e 22.3 23.5 23.5 ± 0.0 135.1 0.69 0.22 0.10 ± 0.02 0.55 ± 0.11 0.59 ± 0.03 4.00 0.3 86.3 ± 3.4c,d

ZF-COSMOS-13129 150.1125641 2.3765368 3.81 23.6 25.2 24.9 ± 0.1 10.8 1.78 0.46 0.52 ± 0.13 2.15 ± 0.48 0.34 ± 0.08 0.56 ± 0.24 0.6 110.1 ± 10.2d

ZF-COSMOS-13172 150.0615082 2.3786869 3.55 22.4 24.4 24.4 ± 0.1 37.2 1.45 0.27 0.08 ± 0.02 0.49 ± 0.12 0.64 ± 0.13 3.94 ± 1.11 0.6 2.7 ± 7.6
ZF-COSMOS-13414 150.0667114 2.3823516 3.57 23.4 25.4 25.4 ± 0.1 14.0 0.44 0.32 0.20 ± 0.06 0.83 ± 0.29 0.34 ± 0.14 1.51 ± 1.00 0.2 7.1 ± 8.7
ZF-UDS-10684 34.3650742 −5.1488328 3.95 24.1 25.9 25.2 ± 0.2 8.5 0.85 0.32 0.50 ± 0.17 2.42 ± 0.77 0.47 ± 0.18 4.63 ± 1.68 1.0 8.8 ± 12.8
ZF-UDS-11483 34.3996315 −5.1363320 3.63 23.6 26.0 25.9 ± 0.2 8.9 1.02 0.35 0.11 ± 0.05 0.52 ± 0.25 0.43 ± 0.24 4.59 ± 2.01 1.0 1.8 ± 10.2
ZF-UDS-2622 34.2894516 −5.2698011 3.77 23.0 24.6 24.5 ± 0.1 29.9 0.87 0.30 0.13 ± 0.03 0.76 ± 0.19 0.66 ± 0.10 4.00 0.9 12.2 ± 10.6
ZF-UDS-3112 34.2904282 −5.2620673 3.53 23.2 24.9 24.9 ± 0.1 25.7 0.43 0.30 0.07 ± 0.02 0.39 ± 0.13 0.66 ± 0.19 4.00 0.0 −10.9 ± 10.6
ZF-UDS-5418 34.2937546 −5.2269468 3.53 23.3 24.9 24.9 ± 0.1 20.7 0.44 0.30 0.07 ± 0.02 0.50 ± 0.14 0.83 ± 0.17 4.00 0.5 48.4 ± 10.6
ZF-UDS-6119 34.2805405 −5.2171388 4.05 23.8 25.5 25.4 ± 0.2 10.6 0.55 0.32 0.26 ± 0.15 1.26 ± 0.75 0.49 ± 0.20 4.00 1.0 −12.5 ± 8.7
ZF-UDS-9526 34.3381844 −5.1661916 3.97 24.2 25.9 25.8 ± 0.3 11.5 0.89 0.21 0.10 ± 0.05 0.39 ± 0.35 0.34 ± 0.24 2.03 ± 2.28 1.8 38.7 ± 8.7c,d

STACK L L 3.66 L L L L 0.81 L L 0.85 ± 0.35 L 4.14 ± 0.71 L L

STAR-FORMING

ZF-CDFS-261 53.0826530 −27.8664989 3.40 23.2 24.2 24.5 ± 0.1 27.1 1.07 0.40 0.61 ± 0.14 3.54 ± 0.80 0.62 ± 0.06 1.21 ± 0.25 1.9 12.1 ± 4.4c

ZF-CDFS-400 53.1025696 −27.8606110 4.10 24.3 25.1 25.1 ± 0.2 23.9 0.52 0.33 0.24 ± 0.13 1.45 ± 0.78 0.78 ± 0.11 3.40 ± 1.40 0.9 31.3 ± 3.6c,d

ZF-CDFS-509 53.1167717 −27.8559704 3.95 24.2 25.1 25.0 ± 0.0 29.1 0.41 0.25 0.31 ± 0.06 1.55 ± 0.32 0.52 ± 0.05 0.51 ± 0.17 1.0 −4.5 ± 4.1
ZF-COSMOS-12141 150.0815277 2.3637166 4.00 24.0 24.7 24.1 ± 0.2 18.8 0.45 0.34 0.81 ± 0.27 3.58 ± 1.09 0.40 ± 0.10 4.92 ± 1.35 1.1 0.9 ± 8.0
ZF-COSMOS-3784 150.1817627 2.2390490 3.58 22.9 23.9 23.8 ± 0.1 26.6 0.36 0.38 0.53 ± 0.13 3.40 ± 0.78 0.77 ± 0.10 1.88 ± 0.33 0.5 −2.4 ± 10.2
ZF-UDS-11279 34.3843269 −5.1402941 3.72 25.0 26.6 26.4 ± 0.3 4.5 0.46 0.32 0.15 ± 0.10 0.96 ± 0.54 0.81 ± 0.23 1.00 2.2 29.3 ± 12.5
ZF-UDS-4432 34.3581772 −5.2409291 3.76 23.8 24.5 24.2 ± 0.2 17.5 0.83 0.37 0.75 ± 0.39 3.61 ± 1.74 0.46 ± 0.11 4.27 ± 1.65 1.5 669.0 ± 10.7d

ZF-UDS-4449 34.3409157 −5.2405076 3.84 23.1 24.4 24.9 ± 0.1 17.2 0.41 0.35 0.44 ± 0.10 1.90 ± 0.41 0.38 ± 0.07 0.23 ± 0.14 1.0 L
ZF-UDS-4462 34.3408661 −5.2402906 3.92 23.0 24.0 24.0 ± 0.1 27.9 0.39 0.26 0.39 ± 0.09 2.09 ± 0.45 0.60 ± 0.08 1.69 ± 0.27 0.8 22.6 ± 9.4
ZF-UDS-5617 34.3407745 −5.2240300 4.17 24.5 26.0 24.5 ± 0.3 6.3 0.42 0.37 2.33 ± 0.72 10.74 ± 3.30 0.45 ± 0.18 4.92 ± 1.51 1.3 9.5 ± 9.7
ZF-UDS-8379 34.4104004 −5.1821156 3.77 23.8 25.2 25.2 ± 0.1 14.0 0.65 0.25 0.30 ± 0.07 1.50 ± 0.34 0.50 ± 0.09 0.52 ± 0.28 2.6 355.8 ± 25.0d

ZF-UDS-8399 34.4105759 −5.1825032 3.44 24.4 25.3 25.0 ± 0.1 11.9 0.43 0.23 0.69 ± 0.16 2.28 ± 0.49 0.20 ± 0.05 0.14 ± 0.17 2.5 106.6 ± 25.1d

ZF-UDS-8580 34.3544159 −5.1797152 4.07 23.7 24.6 24.7 ± 0.1 19.8 0.66 0.26 0.36 ± 0.08 1.82 ± 0.37 0.54 ± 0.05 0.18 ± 0.09 1.1 7.1 ± 8.4
ZF-UDS-9165 34.3225441 −5.1713767 4.06 23.4 24.2 24.6 ± 0.1 33.8 0.68 0.31 0.11 ± 0.03 0.66 ± 0.14 0.72 ± 0.09 1.00 0.3 43.3 ± 10.1d

STACK L L 3.84 L L L L 0.55 L L 2.62 ± 1.15 L 2.17 ± 2.41 L L

Notes.
a F160W, S/N, and circularized KRON radius (rKRON) crossmatched from 3D-HST (Skelton et al. 2014; van der Wel et al. 2014).
b GALFIT and 3D HST magnitudes are consistent within 0.05 ± 0.03 mag on average, with a dispersion of 0.24.
c X-ray detection (Xue et al. 2011).
d L L7 10IR

12> ´ ☉.
e zspec (Szokoly et al. 2004).
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In Figure 1, we show the stacks and examples of individual
galaxies. The stack of quiescent galaxies is redder than the
stack of star-forming galaxies and has a more compact
morphology. We also show stellar-mass surface density profiles
( M M r r( kpc ) ( ) ( )2 2pS = <☉ ), obtained from the light profile
measured in concentric apertures of radius r and assuming a
constant mass-to-light ratio. For the stacked profiles, we used
the mean mass of the galaxies in each stack. They are
consistent with the individual profiles within the uncertainties,
suggesting that the stack does not reveal an extended low
surface brightness component, down to a surface brightness
limit of 28.3 mag arcsec 2- .

3.3. Contamination by AGN

A substantial fraction of sources show signs of AGN activity
either from X-ray detections or strong 24 mm (rest-frame 5 mm ,
tracing hot dust). As WFC3/F160W ( 1.5396 ml m= ) corre-
sponds to rest-frame 2960–3500 Å (UV) at z3.4 4.2<⩽ , it
could be that an AGN is dominating their central light, leading
to small sizes of the single Sérsic fits.

In the quiescent sample, we find four X-ray-detected
galaxies, two of which are spectroscopically confirmed type-
II QSOs (Szokoly et al. 2004). Another has strong 24 mm ,
which could either point toward dust-obscured star formation
or AGN activity. Several have small positive residuals after
subtracting the best fit, suggesting the presence of a central
point source. These 5 16 (31%) galaxies were re-fit with two
components, a Sérsic model, and a point-source-like model
(represented by a Gaussian with FWHM 0.1= pixels) to trace
possible AGN light. In these models, the point source accounts
for 4.3%–68% of the total light (with 57% and 68% for the
type-II QSOs, but on average 6.2% for the remaining three
AGN candidates). The average size of the Sérsic component
increases by 1.5´ (from a median r 0.13 0. 12e =   to
r 0.20 0. 03e =   ).

Among the star-forming galaxies two are X-ray detected and
four are very bright at 24 mm (L L7 1012> ´ ☉ or

MSFR 1200 yr 1> -
☉ ). Re-fitting with a two-component model

attributes 0.9%–39.4% of the light to a point source, while the
extended component changes in size by 0.65´ (from
r 0.31 0. 15e =   to r 0.19 0. 02e =   ). We note that for the
most extended sources, adding central light reduces the
Sérsic index nSérsic of the extended component and can result
in a smaller re.
We additionally estimated the possible AGN contribution

from the galaxy spectral energy distributions (SEDs). We first
determine the best-fitting power law blueward of rest-frame
0.35 mm and at observed 8 mm (Kriek et al. 2009). Then we fit
the sum of the power law and the original best-fit EAZY
template (Brammer et al. 2008) to the data. The contribution of
the AGN power-law template to F160W is 1.1%–7.4% for the
five quiescent galaxies and 0.9%–2.9% for the six star-forming
galaxies.
While the two-component fits and SEDs indicate that a

point-source contribution is probably small, the true contribu-
tion and its effect on the sizes remain unclear.

4. RESULTS

We show the effective radius as a function of stellar mass in
Figure 2. Quiescent galaxies at z 4~ are very compact, with a
bootstrapped median size r 0.63 0.18e =  kpc. When we
remove AGNs, we find a similar result: r 0.57 0.18e =  kpc.
Star-forming galaxies have r 2.0 0.60e =  kpc. They are

3.2 1.3 ´ larger than quiescent galaxies. Both samples have a
large spread in size, with some almost as large as at z 0~ ,
showing that at z 4~ the population is already very diverse.
On average, the sizes lie well below the z 0~ relation (Mosleh
et al. 2013), by 6.0 1.7 ´ for quiescent and 2.4 0.7 ´ for
star-forming galaxies. Quiescent galaxies are also 1.9 0.7 ´
smaller than at z2 2.2<⩽ .
In Figure 3, we show Sérsic index versus size for the z 4~

galaxies and a sample at a similar mass at z2 2.2<⩽ . Star-
forming galaxies have a smaller Sérsic index, with, on average,
nSérsic 1.3 0.7=  , compared to nSérsic 3.2 1.2=  for quiescent
galaxies. The difference between the two populations is also
clear from the stellar-mass density profiles in Figure 1, with
quiescent galaxies having steeper profiles and more centralized

Figure 1. Left: example galaxies at z 4~ of varying magnitude. Second: stacks of the quiescent and star-forming subsamples, with the corresponding best-fit models
and residuals after subtracting the models. Third: F814W/F125W/F160W stack color composites. Right: stellar-mass surface density profiles. Thin orange and blue
lines represent individual measurements of quiescent and star-forming galaxies, respectively. Thick lines represent the stacks. The inset shows the surface brightness
profiles of the stacks, with horizontal lines indicating 3s brightness limits of 28.3 mag arcsec 2- , measured in annuli of 0. 06 (0.43 kpc) width at r 1> . The
background limit for individual galaxies (dotted line) is 26.8 mag arcsec 2- .
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flux. In Figure 3, we also plot maxáSñ , defined as the average
stellar-mass density inside the radius where M( kpc )2S -

☉ falls
of by a factor of two (Hopkins et al. 2010), with uncertainties
from the Monte Carlo procedure described in Section 3.1.

Quiescent galaxies at z 4~ have a median maxáSñ =
M3.3 1.1 10 kpc10 2 ´ -

☉ , much higher ( 10~ )́ than for

star-forming galaxies: maxáSñ = M0.3 0.1 10 kpc10 2 ´ -
☉ ,

and more similar to z2 2.2<⩽ quiescent galaxies:
M1.7 0.3 10 kpcmax

10 2áSñ =  ´ -
☉ .

When stacking, we find r 0.85 0.35e =  kpc (quiescent)
and r 2.6 1.2e =  kpc (star forming), and Sérsic indices
n 4.17 0.90sersic = ́ and nsérsic 2.18 2.03=  , respectively.
The effective radius of the quiescent stack is slightly larger
than the median of the individual galaxies, by 1.3 0.3 ´ at

1s< significance, but overall the results are consistent.
In Figure 4, we show the median sizes at the respective mean

redshifts of the two subsamples. Comparing with lower
redshift, they continue to follow a trend of decreasing size
with increasing redshift. Our control sample of galaxies at

z2 3.4<⩽ with M M10.5 log ( ) 1110 <⩽ ☉ corresponds well
with the results of van der Wel et al. (2014), which suggest the
same trend.

We fit a relation of the form r A z(1 ) kpcB
e = + at

z0 4< < , using the measurements of van der Wel et al.
(2014) at z 2< . We find r z5.08 0.28(1 )e

1.44 0.08=  + - 

kpc for quiescent and r z6.02 0.28(1 )e
0.72 0.05=  + - 

kpc for star-forming galaxies. We note that our sample at
z 4~ includes higher-mass ( M Mlog ( ) 1110 ⩾☉ ) galaxies. If
we remove the most massive galaxies, we find the same
evolutionary relation.

To test for incompleteness for diffuse galaxies, we redshift a
stellar-mass matched sample with r 2 kpc> and n 2.5Sersic <́
at z 2.5~ to z= 3.7 and find 70% completeness.

5. DISCUSSION

Our results show that the galaxies at z 4~ in this study obey
similar relations between size and star-forming activity as
galaxies at lower redshift. Quiescent galaxies are compact,
while star-forming galaxies are more extended and diffuse. The
difference is also clear when selecting purely on size: if we
define compactness as r M M( 10 ) 1.5e

11 0.75 <☉ (van der Wel
et al. 2014), 13 14 (93%) of massive compact galaxies would
be classified as quiescent, and 13 16 (81%) of larger galaxies
as star forming (Figure 3).
The number density of compact, M Mlog ( ) 10.5510 ⩾☉ ,

quiescent galaxies at z 4~ is 1.8 0.8 10 Mpc5 3 ´ - - ,
increasing by 5> ´ between z3.4 4.2<⩽ and z2 2.2<⩽ ,
toward1.0 0.3 10 Mpc4 3 ´ - - . This suggests we are probing
a key era of their formation, and we would expect to see their
star-forming progenitors in abundance.
Small effective radii for star-forming galaxies have been

reported at z = 2–3 (Barro et al. 2014a, 2014b; Nelson
et al. 2014). They are rare in our sample: we find 1/14 with
r M M( 10 ) 1.5e

11 0.75 <☉ . On average, star-forming galaxies at
z 4~ are twice as large as quiescent galaxies at z 2~ . If they
are the direct progenitors of z 4< compact quiescent galaxies,
we expect them to be similar, not only in size, but also in
Sérsic index and central surface density (Nelson et al. 2014).
However, we find smaller nSérsic for star-forming galaxies,
while the central densities indicate that they must increase in

maxáSñ by 5–10× to match the more cuspy profiles of z = 2–4
quiescent galaxies.
In a recent simulation, Wellons et al. (2015; Ilustris) trace

the evolution of galaxies to z = 2. They indeed identified two
theoretical formation tracks: one in which a brief and intense
central starburst prompted by a gas-rich major merger causes
the galaxies’ half-mass radius to decrease dramatically. The
second is that of a more gradual but early formation, with small

Figure 2. Circularized effective radius for galaxies at z 4~ . In purple and green, we show our control sample at z2 2.6<⩽ and z2.6 3<⩽ and in orange the
median of van der Wel et al. (2014) at z2 2.5< < . The black solid line is the z 0~ relation of Mosleh et al. (2013). X-ray detections and bright 24 mm sources are
indicated with stars and open circles. The median sizes are r 0.63 0.18e =  kpc (quiescent galaxies) and r 2.0 0.60e =  kpc (star-forming galaxies).
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galaxy sizes due to the higher density of the universe. In the
second case, nearly all of the stellar mass is in place at z 4> .

Comparing with the observations, we find that 19/44 of
massive z 4~ galaxies are classified as quiescent, whereas all
similarly massive galaxies in Illustris are still actively star
forming, with a typical MSFR 100 200 yr 1= - -

☉ . This level of
star formation is ruled out at 3s> by Herschel observations of
the z 4~ quiescent galaxies (Straatman et al. 2014). At the
same time, the fraction of compact galaxies in our sample is
47%, versus 20%~ in Illustris. Hence, massive galaxies appear
to quench their star formation earlier and to be more compact
than in simulations.

The paucity of compact star-forming galaxies at z 4~ and
their large median rest-frame UV size is puzzling. At face
value, it suggests that the rapid increase in number density of
compact quiescent galaxies cannot be explained by simple
shutdown of star formation in typical star-forming galaxies of
similar stellar mass. A possible solution is a rapidly forming
dense core, i.e., a central starburst. Then the chance to observe
the progenitors in our sample is small, as it is proportional to

the duration of the main star-forming episode. For example, if
compact cores of z2 2.2<⩽ quiescent galaxies formed at
random times between z2.5 6< < , with a typical 100Myr
central starburst duration, their predicted number density at
z 4~ would be 6 10 Mpc6 3~ ´ - - . The observed number
density of compact star-forming galaxies is 1.4 
1.4 10 Mpc6 3´ - - : smaller, but in a similar range given the
large uncertainties.
We note that the remarkably high fraction of quiescent galaxies

at z 4~ (Figure 4) is still uncertain. Current limits on the average
dust-obscured SFR are weak ( M75 yr (3 )1 s< -

☉ ; Straatman
et al. 2014); hence, some of the quiescent galaxies could be star
forming. Cosmic variance is significant ( 30%~ ). Highly obscured
massive star-forming galaxies might also be missed by near-IR
surveys (e.g., Daddi et al. 2009; Caputi et al. 2012), although the
abundance and redshift distribution of such galaxies is still very
uncertain. Finally, extended (r 3> kpc) galaxies with small nSérsic
and low surface brightness are more difficult to detect than
compact galaxies (e.g., Trujillo et al. 2006).

Figure 3. Top left: UVJ diagram of z 4~ galaxies (symbols as in Figure 2). Small squares represent galaxies at z2.0 2.2<⩽ . Top right: stellar mass vs. size.
Bottom left: Sérsic index vs. size. Bottom right: stellar mass vs. maximum stellar-mass density. The horizontal dashed line is the empirical limit of Hopkins et al.
(2010). Only one z 4~ star-forming galaxy is compact. On average, quiescent galaxies have smaller sizes, higher Sérsic indices, and higher central densities than
star-forming galaxies.

6

The Astrophysical Journal Letters, 808:L29 (8pp), 2015 July 20 Straatman et al.



We caution that the light profiles measured here may not be
representative of the stellar-mass distribution due to color gradients,
with rest-frame UV sizes larger than rest-frame optical sizes. This
would imply that the size evolution is stronger. However, using a
control sample at z 3~ , we find no difference between UV and
optical, consistent with van der Wel et al. (2014), who show this
effect is 10% at z 2~ and decreasing with redshift.

Galaxy sizes may also be overestimated if dust is obscuring a
central starburst. Submillimeter sizes of obscured starbursting

galaxies could be small: 1 kpc< (e.g., Ikarashi et al. 2014;
Simpson et al. 2015). A direct comparison of ALMA
submillimeter and rest-frame optical/UV morphologies for the
same objects with measured stellar mass will reveal the effect
of dust obscuration on UV/optically measured galaxy sizes.

This research was supported by the George P. and Cynthia
Woods Mitchell Institute for Fundamental Physics and
Astronomy, the National Science Foundation grant AST-

Figure 4. Top: effective radius vs. redshift for galaxies with M M10.5 log ( ) 11.010< <☉ at z2 3.4<⩽ (van der Wel et al. 2014) and M Mlog ( ) 10.5510 ⩾☉ at

z3.4 4.2<⩽ (filled squares). Quiescent galaxies follow r z5.08 0.28(1 )e
1.44 0.08=  + -  kpc and star-forming galaxies r z6.02 0.28(1 )e

0.72 0.05=  + - 

kpc (solid curves). The histograms show the size distribution at z 4~ . Bottom: number density (left) and quiescent fraction (right), including galaxies without HST
coverage. In the left panel, we include the relative Poissonian uncertainties and the effect of cosmic variance. The total uncertainty on number density increases to 40%
at z 4~ .
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