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ABSTRACT: We investigated aquaculture production of
Asian tiger shrimp, whiteleg shrimp, giant river prawn, tilapia,
and pangasius catfish in Bangladesh, China, Thailand, and
Vietnam by using life cycle assessments (LCAs), with the
purpose of evaluating the comparative eco-efficiency of
producing different aquatic food products. Our starting
hypothesis was that different production systems are associated
with significantly different environmental impacts, as the
production of these aquatic species differs in intensity and
management practices. In order to test this hypothesis, we
estimated each system’s global warming, eutrophication, and
freshwater ecotoxicity impacts. The contribution to these
impacts and the overall dispersions relative to results were
propagated by Monte Carlo simulations and dependent
sampling. Paired testing showed significant (p < 0.05) differences between the median impacts of most production systems
in the intraspecies comparisons, even after a Bonferroni correction. For the full distributions instead of only the median, only for
Asian tiger shrimp did more than 95% of the propagated Monte Carlo results favor certain farming systems. The major
environmental hot-spots driving the differences in environmental performance among systems were fishmeal from mixed fisheries
for global warming, pond runoff and sediment discards for eutrophication, and agricultural pesticides, metals, benzalkonium
chloride, and other chlorine-releasing compounds for freshwater ecotoxicity. The Asian aquaculture industry should therefore
strive toward farming systems relying upon pelleted species-specific feeds, where the fishmeal inclusion is limited and sourced
sustainably. Also, excessive nutrients should be recycled in integrated organic agriculture together with efficient aeration solutions
powered by renewable energy sources.

1. INTRODUCTION

Aquaculture is the only solution for meeting the growing demand
for aquatic products in a world where capture fishery catches
have stagnated.1,2 Asia is the main producing region with 88% of
global aquaculture production by volume, and the European
Union (EU) is the largest single market with 36% of total world
imports by value.1 However, while consumption trends have

rapidly increased in the European Union, concerns have been
raised regarding the environmental sustainability of fish and
crustacean products imported from Asia. These concerns are
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associated with detrimental environmental consequences such as
global warming, eutrophication, ecotoxicity, land-use and land-
use change (LULUC), excessive energy use, and freshwater
use.3−5

Environmental impacts related to aquaculture commodities
have been quantified in various life cycle assessment (LCA)
studies.3 However, only a handful of these have focused on Asian
aquaculture. Four LCA studies have evaluated Vietnamese
pangasius catfish,6−9 three have studied shrimp farming,4,10,11

two have focused on Indonesian finfish,12,13 and one has studied
Thai finfish.14 Only three of these quantified the uncertainties
related to results.4,11,15 Little is therefore known about the level
of confidence behind conclusions made in previous studies,
despite the increasing importance of LCA results in policy
contexts.9 Seafood standards are, for example, starting to
incorporate carbon footprints into their recommendations,16

and a PAS2050 (publicly available specification) standard has
been developed for seafood and other aquatic food products.17

For such standards to be realistic and effective, differences in
impact need to be statistically substantiated.
In the present study, we performed LCAs and statistically

evaluated the environmental impacts for some of the most
common Asian aquaculture commodities found on European
markets15 (see Table 1). From this selection, the most important
producing regions and production systems were identified and
evaluated.15,18,19 Noteworthy is that some of these production
systems currently are not eligible for export due to existing
import regulations into the European Union (e.g., tilapia
integrated with pigs in China). System characterization was
based on farm scale, pond type, species combination, and other
features of the production systems.15,19

The present study builds upon the final LCA case study
report15 (available at: http://media.leidenuniv.nl/legacy/d35-
annexreport.pdf) of the Sustaining Ethical Aquaculture Trade
project (www.seatglobal.eu) but also includes calculated fresh-
water aquatic ecotoxicity potential characterization factors
(FAETPs) for a number of aquaculture-related chemicals by
use of the USEtox model, including uncertainty estimates for
characterization factors.20

In order to provide a level of confidence behind conclusions,
the hypothesis “different production systems providing the same
aquaculture commodity to European consumers are associated
with different environmental impacts” was tested statistically.
The null hypothesis tested assumed that the environmental life-
cycle impacts of commodities originating from different
aquaculture system were equal (e.g., system A = system B).
Two approaches were used for testing the differences between

paired results as obtained in dependent sampling:9 one used
significance tests (H0: mA = mB at α = 0.05), and the other
analyzed the percentage of Monte Carlo (MC) runs in which the
difference was lower or higher than 0 [p(xA − xB < 0) or p(xA −
xB > 0) at p = 0.95]. This dual approach was chosen as each
answers different questions. Significance tests for the median
analyze whether the distribution of differences has a median that
deviates significantly from zero, while MC frequencies indicate
how often a type of farming system is expected to perform better
than another. Given the large differences in nutritional, culinary,
and monetary value of the different species,21 comparisons were
made only across countries and systems, not across species.

2. MATERIALS AND METHODS
2.1. Goal and Scope. The study aimed to evaluate the

comparative eco-efficiency per functional unit of 1 tonne of

frozen product for some selected aquaculture commodities
commonly imported to Europe from Bangladesh, China,
Thailand, and Vietnam. The products surveyed were frozen
peeled tail-on (PTO) whiteleg shrimp (Litopenaeus vannamei),
PTO Asian tiger shrimp (Penaeus monodon), headless shell-on
(HLSO) giant river prawn (Macrobrachium rosenbergii), tilapia
fillets (mainly Oreochromis niloticus), and pangasius catfish fillets
(Pangasianodon hypophthalmus). The production chains were
modeled up to European ports, assuming that any processes (e.g.,
retailing, cooking, and composting) downstream of this system
boundary would be equivalent.
Three impact categories were evaluated: global warming,

eutrophication, and freshwater toxicity. The selection of these
represents a trade-off among access to good quality data (e.g.,
important emissions driving some impact categories could not be
specified for Asian processes, such as halon causing ozone layer
depletion or palladium resulting in abiotic resource depletion),
avoidance of extensive multiple comparison problems, diversity
of inventory flows and impacts (e.g., acidification gave similar

Table 1. Farming Systems Evaluated in This Studya

code species region key characteristics

Bangladesh

BD K giant river prawn Khulna avg 2 kg of fish coproduced/
kg of prawn

BD B giant river prawn Bagerhat avg 3.3 kg of fish
coproduced/kg of prawn

BD S&P giant river prawn and
Asian tiger shrimp

both integrated with Asian tiger
shrimp

BD W Asian tiger shrimp West lower stocking density, not
always fed, with fish

BD E Asian tiger shrimp East higher stocking density, no
fish

BD S&P Asian tiger shrimp and
giant river prawn

West integrated with giant river
prawn

China

CN HL whiteleg shrimp Guangdong lined high-level ponds with
pumped water exchange

CN LL whiteleg shrimp Guangdong low-level earthen ponds
with tidal water exchange

CN GD tilapia Guangdong intensive to semi-intensive
farms, <30 postlarvae·m2

CN HI tilapia Hainan intensive to semi-intensive
farms, <30 postlarvae·m2

CN R tilapia both farmed in freshwater
reservoirs

CN IG tilapia Guangdong ponds fertilized by
integrated pigs on dikes

Thailand

TH E whiteleg shrimp East electricity as main energy
source on farm

TH S whiteleg shrimp South LPG as main energy source
on farm

Vietnam

VN SI Asian tiger shrimp Soc Trang
and Bac
Lieu

semi-intensive with <30
shrimp postlarvae·m2

VN I Asian tiger shrimp Soc Trang intensive with >30 shrimp
postlarvae·m2

VN I whiteleg shrimp Ben Tre intensive with >30 shrimp
postlarvae·2

VN S pangasius catfish An Giang and
Can Tho

small farms with no full-time
labor

VN M pangasius catfish An Giang and
Can Tho

medium farms, privately
owned with full-time labor

VN L pangasius catfish An Giang and
Can Tho

large corporate farms

aSystems will hereafter be referred to by the code or characteristic
shown in boldface type.
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outcomes to global warming15), and the different uncertainties
they are subject to. Impacts were allocated among multiple
coproducts originating from the same process (e.g., fillets and
heads from fish processing) based upon mass and economic
proceeds (monetary value times mass), in order to evaluate the
sensitivity of this highly influential methodological choice3 and to
strengthen conclusions. These two allocation methods were
chosen as they generally constitute two extreme outcomes and
since they can be consistently applied to all allocation situations.
Sensitivity inmany other pivotal parameters of aquaculture LCAs
(amount of feed used, emissions from agricultural fields and
aquatic systems, characterization factors, etc.)3 was accounted for
as part of the variable distribution and therefore considered in the
statistical evaluation. Other modeling decisions that could
influence outcomes (e.g., cutoff) were not evaluated in the
present research, as they were deemed to be of only limited
importance to our comparative setup. For a more complete set of
impact categories and methodological choices, please see
Henriksson et al.15,18 and Supporting Information.
The data sourcing procedure was based upon the protocol

presented in Henriksson et al.22 Following this protocol,
secondary data were weighted (in this study based upon the
squared coefficient of variation, wt = 1/CV2) according to their
inherent uncertainty (inaccuracies in measurements andmodels)
and unrepresentativeness (mismatch between representativeness
and use of data), defined by the numerical unit spread assessment
pedigree and quantitative uncertainty factors in Frischknecht et
al.23 Overall dispersions were quantified as the sum of inherent
uncertainty, spread (variability resulting from averaging), and
unrepresentativeness, in accordance with the protocol.24 Life
cycle inventory (LCI) models were constructed, propagated, and
characterized by use of CMLCA 5.2 software (www.cmlca.eu)
and subsequently aggregated toward the functional unit over
1000 MC simulations with dependent sampling.9 Covariance
was not accounted for in the current models because of

methodological limitations. Distributions were tested by the
Anderson−Darling goodness-of-fit test in EasyFit v5.5 software
(www.mathwave.com), and significance tests were conducted in
SPSS v21 (for a more detailed description of the statistical
approach, see Supporting Information).
The median impact of each system was pairwise-tested against

all other systems used to produce the same commodity, for all
three impact categories. Since the distributions were quite
skewed, we decided to test equality of medians with the
nonparametric Wilcoxon signed-rank test rather than equality of
means with a paired t-test. Significant differences were
considered as α = 0.05. However, since 216 comparisons were
made among the five species and 20 systems, for two allocation
factors and three impact categories, there is over 99.99%
probability that at least one of our hypothesis would be a false
positive [1 − (1 − 0.05)^(36 comparisons × 2 allocation factors
× 3 impact categories)]. A Bonferroni correction was therefore
implemented, adjusting the α level to αb = 0.05/216 = 0.00023.
The alternative approach, looking at the cumulative frequency

of one alternative to be favorable to another according to theMC
runs, was assumed to hold if cumulative frequencies were higher
than 95%, as described by Heijungs and Kleijn25 and Huijbregts
et al.26

2.2. Life Cycle Inventory Data Collection. Primary data
for the current study involved several actors in the aquaculture
value chains (Figure 1). Initial data collection on basic farming
practices was conducted between October 2010 and February
2011 for approximately 200 farmers for each species in each of
the four countries (in total, about 1400 farmers were
interviewed). Farm selection was performed by a random
sampling design of farm clusters representing the most important
productionmethods.19 From this data set, 20 production systems
were identified as systematically different based upon basic
parameters such as feed used, energy sources, and integrated
species18 (Table 1). A follow-up in-depth survey was then

Figure 1. Simplified flowchart of the processes included in this LCA, where arrows symbolize transportation, dashed lines indicate upstream processes,
unshaded boxes indicate processes modeled from primary data, and shaded boxes indicate processes modeled from secondary data.
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conducted between 2011 and 2013 with focus on more LCI-
specific data and other actors in the aquaculture value chain,
including feed mills, capture fisheries, and agricultural producers.
A complete set of data is available as Supporting Information and
as an annex to SEAT deliverable D3.518 (available at http://
media.leidenuniv.nl/legacy/d35-annexreport.pdf).
2.3. Life Cycle Impact Assessment Data. Eutrophying

emissions were characterized on the basis of the Redfield ratio,
with the assumption of an average phytoplankton biomass
composition of 106 carbon atoms, 16 nitrogen atoms, and 1
phosphorus atom, as suggested byHeijungs et al.27 and neglect of
any uncertainty. Emissions resulting in global warming were
characterized by use of the characterization factors and
uncertainty estimates presented in the fifth IPCC report
(Table S1).28,29 Characterization factors for freshwater ecosys-
tem impacts were derived from Rosenbaum et al.20 or, for
noncharacterized chemicals used in aquaculture farming,
calculated via the USEtox model (Tables S2−S4). Ecotoxicity
data for potentially toxic chemicals applied in aquaculture farms
used in the model were sourced primarily from Rico et al.30 and
Van den Brink,31 and secondarily from the U.S. Environmental
Protection Agency’s (EPA) ECOTOX database (cfpub.epa.gov;
accessed 25 May 2014) (Tables S3 and S4). For chemical
characteristics, measured data were prioritized (primarily from
sitem.herts.ac.uk/aeru/vsdb/atoz.htm; accessed 25 May 2014)
before quantitative structure−activity relationships (QSARs)
were used (toxnet.nlm.nih.gov, accessed 25 May 2014; Episuite
v4.11 from U.S. EPA). All chemicals applied to agricultural fields
and ponds were assumed to be lost to the environment, in
consistency with ecoinvent v2.2. For acute exposure, EC50 and
LC50 values were considered, and for chronic exposure, no
observed effects concentration (NOEC) and lowest observed
effects concentration (LOEC) values were used (see Table S2).
Dispersions around the FAETPs were calculated as the sum of
dispersions around acute and chronic effect concentrations
within and among genera, and the unrepresentativeness of these
data. No dispersions were available, however, for the FAETPs
readily available in Rosenbaum et al.20

3. RESULTS AND INTERPRETATION
Significant conclusions among systems for each species are
summarized below. Only conclusions that held for both
allocation factors were considered. Relative differences as
percentages and contribution analyses are available in Supporting
Information (Tables S5−S34 and Figures S1−S3). Dispersions
related to the contribution analysis could unfortunately not be
quantified by the present approach. These values are instead
based upon the so-called baselines (point-value estimates), which
in the current study were defined by arithmetic means, in line
with the arithmetical structure of CMLCA.32

3.1. Asian Tiger Shrimp. Asian tiger shrimp farming in
Western Bangladesh was related to significantly lower median
global warming and eutrophication impacts than all other
systems and also had the lowest median freshwater ecotoxic
emissions alongside intensive farming in Vietnam. This is
explained by the fact that many Asian tiger shrimp farms in
Western Bangladesh use limited feed and/or fertilizer inputs,
resulting in a net sink for nutrients. The median eutrophying
impacts of Bangladeshi farms in the east were, in the meantime,
comparable with those from either of the Vietnamese shrimp
farming systems but worse with regard to freshwater ecotoxicity.
Asian tiger shrimp integrated with prawn performed the worst for
all impact categories except global warming. The poorer

performance of the Bangladeshi systems with regard to toxicity
was largely due to more extensive use of agricultural products as
feed, for which pesticides are used. In Vietnam, intensive
production of Asian tiger shrimp had significantly lower
ecotoxicological and eutrophying impacts, as compared to
semi-intensive production, but similar global warming impacts
(Table 2).

3.2. Whiteleg Shrimp. For all three impacts, the median
related to the production of frozen peeled whiteleg shrimp was
significantly larger for the Thai farms compared to the
Vietnamese farms. Farming in low-level ponds in China was
also related to lower median environmental impacts compared to
farming in eastern Thailand. Chinese high- and low-level farms
(Table 3), however, had similar global warming and
eutrophication impacts, while low-level farms had lower
freshwater ecotoxicity impacts. The environmental impacts of
whiteleg shrimp farming in China were also similar to those of
farming in Vietnam, while the allocation factor used greatly
influenced results due to more extensive use of fishmeal from
mixed fisheries and livestock byproducts in feeds. None of the
impacts was significantly different when analyzing the entire
distribution of differences between systems.

3.3. Giant River Prawn. Allocation also had a large influence
on the outcomes of the Bangladeshi giant river prawn systems
(Table 4). Farms where such prawn were polycultured with
Asian tiger shrimp had more favorable median outcomes than
prawn from Khulna province farmed without shrimp with regard
to global warming and eutrophication, while the situation was the
opposite in terms of freshwater ecotoxicity impacts. Distributions
of differences did not differ among systems.

3.4. Tilapia. Among the Chinese tilapia systems, fillets from
ponds in Guangdong were associated with significantly lower
median impacts compared to fillets from Hainan (Table 5). The
Hainan farms were also related to larger median eutrophication
and ecotoxicity impacts than farms integrated with pigs and
reservoir systems. Distributions of differences did not differ
among systems.

3.5. Pangasius Catfish. All evaluated environmental median
impacts caused by the production of pangasius catfish fillets were
found to be significantly lower in the studied large-scale farms as
compared to those calculated for small- and medium-scale farms.
(Table 6). Small-scale farms also resulted in significantly lower
median eutrophication impacts than medium-scale farms.
Distributions of differences did not differ among systems.

Table 2. Ranking of Relative Environmental Performance
Related to Asian Tiger Shrimp Provided to European
Consumersa

aVN = Vietnam; BD = Bangladesh; I = intensive; SI = semi-intensive;
W = west; E = east; S&P = shrimp and prawn. Different letters
indicate significantly different ranges identified by the Wilcoxon
signed-rank test, and different colors indicate ranges where more than
95% of the runs favored the green alternative over the red.
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4. DISCUSSION

4.1. Analytical Approach. Unlike previous comparisons of
point values, the current approach offered a level of confidence to
support conclusions; and unlike previous comparisons of
ranges,11 consideration of only relative uncertainties reduced
type II statistical errors (incorrectly accepting the null
hypothesis). Of the systems tested, most differed significantly,
despite the conservative Bonferroni correction.33 This is largely
due to the large sample size used (n = 1000), a sample size
deemed as sufficient but not excessive. Historically, the number
of MC iterations has been limited by computing power, and
mathematical solutions for calculating the number of iterations
needed to achieve a desired confidence level have even been
proposed (so-called sequential stopping boundaries).34 One
could therefore argue that, by increasing the number of MC runs,
any hypothesis test on means or medians will always produce
significant results. This, by the way, not only is true for Monte
Carlo but also is a danger of large real samples, and it is an

inherent characteristic of classical hypothesis testing.35 Using the
alternative to significance tests showed that only the comparison
of Asian tiger shrimp systems deviated in more than 95% of the
MC runs in their environmental impacts.
From a naive point of view, the two statistical approaches give

contradictory answers, but in reality they answer different
questions. The more suitable of the two approaches therefore
depends upon the question that needs answering: is the median
of A significantly different from the median of B, or is a random
pick of A demonstrably better than a random pick of B? Thus,
while significance tests provide a conventional answer with
respect to the median (or mean) impact, the proportional
outcomes favoring a certain type of farming system might be
more informative for a policy decision. In alternative words,
statistical tests are about comparing distribution parameters,
while the other approach is about a random pick from a
distribution. While our belief is that operating within the
paradigm of statistical hypotheses testing is too valuable to
discard,9 statistical significance should not always be taken at face

Table 3. Relative Environmental Performance of Whiteleg Shrimp Provided to European Consumersa

global warming eutrophication ecotoxicology

rank mass economic mass economic mass economic

best CN HL a VN I a VN I a VN I a CN LL a VN I a
CN LL a CN LL b CN LL a CN LL b CN HL b CN LL b
VN I b CN HL bc CN HL a CN HL b VN I b CN HL c
TH S c TH S bc TH S b TH S c TH S c TH S d

worst TH E d TH E c TH E b TH E d TH E d TH E d
aVN = Vietnam; TH = Thailand; CN = China; I = intensive; E = east; S = south; LL = low-level; HL = high-level. Different letters indicate
significantly different ranges identified by the Wilcoxon signed-rank test. For none of the comparisons did 95% of the runs favor one alternative over
the other.

Table 4. Relative Environmental Performance of Giant River Prawn Provided to European Consumersa

global warming eutrophication ecotoxicology

rank mass economic mass economic mass economic

best BD B a BD S&P a BD S&P a BD S&P a BD B a BD S&P a
BD S&P a BD B b BD B b BD K b BD S&P b BD B b

worst BD K b BD K b BD K c BD B c BD K c BD K b
aBD = Bangladesh; B = Bagerhat; K = Khulna; S&P = shrimp and prawn. Different letters indicate significantly different ranges identified by the
Wilcoxon signed-rank test. For none of the comparisons did 95% of the runs favor one alternative over the other.

Table 5. Relative Environmental Performance of Tilapia Fillets Provided to European Consumersa

global warming eutrophication ecotoxicology

rank mass economic mass economic mass economic

best CN GD a CN GD a CN GD a CN GD a CN GD a CN GD a
CN R b CN R a CN INT b CN INT b CN INT b CN R a
CN INT c CN INT b CN R c CN R b CN R b CN INT b

worst CN HI d CN HI b CN HI d CN HI c CN HI c CN HI c
aCN = China; GD = Guangdong; HI = Hainan; I = integrated; R = reservoir. Different letters indicate significantly different ranges identified by the
Wilcoxon signed-rank test. For none of the comparisons did 95% of the runs favor one alternative over the other.

Table 6. Relative Environmental Performance of Pangasius Catfish Fillets Provided to European Consumersa

global warming eutrophication ecotoxicology

rank mass economic mass economic mass economic

best VN LG a VN LG a VN LG a VN LG a VN LG a VN LG a
VN SL b VN SL b VN SL b VN SL b VN SL b VN SL b

worst VN MD b VN MD b VN MD c VN MD c VN MD b VN MD b
aVN = Vietnam; SL = small; MD = medium; LG = large. Different letters indicate significantly different ranges identified by the Wilcoxon signed-
rank test. For none of the comparisons did 95% of the runs favor one alternative over the other.
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value.35−37 However, differences that are proclaimed to be
“significant” should be supported by statistical tests.
4.2. Aquaculture Findings. Reflecting on previous

aquaculture LCAs, many of the conclusions in the current
research confirm the general outcomes of LCAs of fed
aquaculture systems worldwide. Like tilapia and African catfish
farming in Cameroon, eutrophication was mainly related to farm
effluent,38 and like most salmon farming, the provision of feed
(including fisheries, agriculture, and livestock) was related to
most greenhouse gas emissions39 (see Figures S1−S3). Lowering
the feed conversion ratio would consequently offer environ-
mental improvements, where formulated feeds tailored to the
nutritional needs of each species served in portions ensuring high
availability (e.g., floating pellets) should be promoted.
Reductions in aquaculture impacts, moreover, require agriculture
to switch to less toxic pesticides or adopt organic farming
practices to the extent possible. Developing models for reusing
pond effluents and sediments locally as fertilizers, as already
practiced in traditional Chinese aquaculture, would also reduce
the impacts of both agri- and aquaculture, as nutrients in modern
aquaculture systems are largely lost to adjacent water bodies
where they result in eutrophication. Production systems with
limited environmental interactions that allow for nutrients to be
captured, and the influence by external parasites and bacterial
diseases to be reduced (thus reducing the reliance on and
discharge of therapeutants), should therefore also be favored.
Use of wild fish in aqua-feeds is one of the major critiques of

the aquaculture sector, based on both environmental and
socioeconomic arguments.40,41 In the present research this also
stood out as one of the major causes for global warming and
eutrophication for many systems (see Figures S1 and S2).
Limiting the inclusion and choosing more sustainable sources of
fishmeal in feeds therefore need to be priorities for reducing the
environmental impacts of farmed aquatic products, especially for
shrimp. This goal can be achieved only if both feed producers and
farmers, who often believe that larger fishmeal inclusions result in
faster growth, recognize advancements in dietary substitution
and supplements. A more sustainable source could be derived
from processing byproducts, as many of these are still discarded
(e.g., shrimp byproducts in Bangladesh). This would not only
reduce pressure on wild fish stocks41,42 but also reduce
eutrophying emissions at landfills and recycle nutrients.6 Finally,
it is important to always favor feed ingredients, terrestrial or
aquatic, that do not compete with their direct use as human food,
as malnutrition still is widespread in some regions of Asia and
elsewhere.
Intensity of systems had no clear correlation with the impacts

evaluated in the present study. Paddle-wheel aerators were,
however, more intensively used in ponds with higher stocking
densities, with consequent global warming impacts. Monitoring
oxygen levels in ponds could therefore help to optimize the use of
paddle wheels, and more energy-efficient forms of aeration
should be developed and promoted. The use of coal to generate
the electricity that powers aerators and other activities also needs
to be curbed or improved, as does the electricity efficiency of
freezers.
On-farm chemical use made only small contributions to the

overall life-cycle freshwater ecotoxicity impacts, with the
exception of benzalkonium chloride and other chlorine-releasing
compounds used as disinfectants. Chlorine is volatile and
therefore used in large quantities, but the presence of organic
matter leads to chlorinated compounds (e.g., halogenated
hydrocharbons) that are more stable and induce long-term

toxicity. The use of alternative, less toxic, biocidal or disinfection
methods is therefore promoted.

4.3. Limitations and Future Research Needs. When
chemical and other emissions are considered, it is important to
acknowledge that LCA has limited capacity to account for
spatiotemporal aspects in both LCI and life cycle impact
assessment (LCIA) phases.43,44 Thus, even if many of the local
impacts related to the grow-out sites appeared not to exceed the
buffering capacity of local ecosystems, they cannot be discounted
as inconsequential. For example, with regards to therapeutant use
in the present study, the peak predicted environmental
concentrations for 61% of the treatments applied by grow-out
farmers resulted in a risk quotient higher than 1, implying a
potential risk to important structural end points of aquatic
ecosystems not accounted for in the LCAs.31 Similarly, for
eutrophication, discharge of sediments and/or sludge from
postharvested ponds could have severe ecological consequences
through peaks in turbidity, oxygen depletion, or ammonia
toxicity. Neither are additive and synergistic effects of different
stressors accounted for in current LCA methodology, high-
lighting the added value of adopting the refined spatiotemporal
windows and mixture toxicity approaches currently used in risk
assessment alongside LCA.31 A risk assessment approach could
also provide better insights into other impacts that have been
deemed as relevant for aquaculture LCAs,45 such as reduced
dissolved oxygen levels, introduction of nonindigenous species,
and spread of disease and parasites.
The large dispersions around the characterization factors for

freshwater ecotoxicity originated partially from ecotoxicological
effect factors, with large discrepancies in experimental acute and
chronic effect concentrations and within and among genus.
Chronic effects on different types of algae often expressed the
largest irregularities. Many additional assumptions exist around
the chemical properties, some of which had to be resolved by use
of QSARs. Given that these values are purely based upon the
theoretical properties of molecules, QSAR estimates can differ
greatly from reality.37 Many other parameters related to
inventory and impact assessment models also lack confidence
estimates,46,47 which in some cases were almost impossible to
quantify.48,49 For example, in the present research no uncertainty
estimates were assigned to eutrophication potentials, as the
uncertainty around the actual environmental consequences are
hard to quantify given their complex nature and geographically
specific context, with discrepancies induced by factors such as
planktonic species assemblage, bioavailability of nutrients, fate of
emissions, abiotic factors, and nutrient compositions in receiving
environments.50 More recent impact assessment methods that
address these challenges by presenting country- or even region-
specific characterization factors51,52 can, in the meantime, induce
new uncertainty in the form of unknown locations of emissions.
In addition to this, uncertainties also arise from the limited

number of distributions available to represent data in LCA at
present and the general negligence of covariance.48 Still, these are
only some of the many assumptions made over the different
phases of an LCA, where quantitative uncertainty estimates
remain incomplete or undefined, resulting in a fragile pyramid
where the ranges of results capture only part of the underlying
uncertainty. Significant differences thus consider only the
dispersions quantified, confirming the strict relative meaning of
comparative LCAs.9 Other types of uncertainties, including
several methodological choices, may also be more easily
illustrated by performing sensitivity analyses49 until more
sophisticated approaches become available.53,54
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More extensive data on emissions related to LULUC are
warranted, as the removal of mangrove for pond constructs is
known to greatly influence both global warming and
eutrophication results.4 More inventory and characterization
data related to freshwater ecotoxicity are also invited, as many
emissions with possible environmental effects had to be excluded
from the present study due to resource constraints. The
inclusions of infrastructure, its maintenance, and waste disposal
might, for example, alter the conclusions made related to
freshwater ecotoxicity, as metals were a major driver for this
impact category. Moreover, it is important to acknowledge that
the data in the present research represents farming practices
between 2010 and 2011, while aquaculture practices are notable
for changing rapidly. For example, an outbreak of early mortality
syndrome led to a rapid shift from Asian tiger shrimp to whiteleg
shrimp for many Vietnamese farmers during the period of this
research. Wild fish stocks, agricultural yields, and monetary
values are also variable over time. More extensive databases and
better software that allow for more rapid data processing and
invite practitioners to utilize methodological advancements are
therefore desired, in order to promote more scientifically robust
conclusions in future LCA studies.
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(54) Beltran, A.; Guineé, J.; Heijungs, R. A statistical approach to deal
with uncertainty due to the choice of allocation methods in LCA.
Proceedings of the 9th International Conference on Life Cycle Assessment in
the Agri-Food Sector, San Francisco, CA, October 8−10, 2014; http://
lcafood2014.org/papers/163.pdf.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.5b04634
Environ. Sci. Technol. 2015, 49, 14176−14183

14183

http://www.ecoinvent.org/files/200712_frischknecht_jungbluth_overview_methodology_ecoinvent2.pdf
http://www.ecoinvent.org/files/200712_frischknecht_jungbluth_overview_methodology_ecoinvent2.pdf
http://www.ecoinvent.org/files/200712_frischknecht_jungbluth_overview_methodology_ecoinvent2.pdf
https://openaccess.leidenuniv.nl/handle/1887/8061
http://www.climatechange2013.org/report/review-drafts/
http://www.climatechange2013.org/report/review-drafts/
https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/supplementary/WG1AR5_Ch08SM_FINAL.pdf
https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/supplementary/WG1AR5_Ch08SM_FINAL.pdf
https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/supplementary/WG1AR5_Ch08SM_FINAL.pdf
file:///C:/Users/Scott/Downloads/ART%202012%20-%20Methods%20of%20assessment%20of%20direct%20field%20emissions%20for%20agricultural%20systems.pdf
file:///C:/Users/Scott/Downloads/ART%202012%20-%20Methods%20of%20assessment%20of%20direct%20field%20emissions%20for%20agricultural%20systems.pdf
file:///C:/Users/Scott/Downloads/ART%202012%20-%20Methods%20of%20assessment%20of%20direct%20field%20emissions%20for%20agricultural%20systems.pdf
http://lcafood2014.org/papers/163.pdf
http://lcafood2014.org/papers/163.pdf
http://dx.doi.org/10.1021/acs.est.5b04634

