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1 Introduction

A fundamental result in the theory of elliptic curves, the Mordell-Weil theorem, states
that the Abelian group of points of an elliptic curve (or more generally an Abelian variety)
E over a number field K is finitely generated. Thus, E(K) is isomorphic to E(K)ors @ 7,
where E(K)tors is the torsion subgroup of E(K) and r > 0 is the rank of E(K).

For every number field K, we will denote by @ (K) the set of all the possible isomorphism
types of E(K)¢rs where E runs through all elliptic curves over K. Let ®(d) denote the
union of the ®(K) with K running over all number fields of degree d. Determining the
set @ (d) for fixed integers d, as well as the set ®(K) € O (d) for fixed number fields K of
degree d, are both interesting problems.

Let C,, be a cyclic group of order m. Mazur’s torsion theorem [23, 24] tells us that
P (Q) = ©(1) consists of the following 15 groups:

Cm» m=1,...,10,12,

(1)
Co®Copy, m=1,...,4.

Similarly, by a theorem of Kamienny ([16], Theorem 3.1) and Kenku and Momose ([20],
Theorem (0.1)), ®(2) consists of the following 26 groups:
Cm» m=1,...,16,18,
C®dCyy, m=1,...,6,
CdCsy, m=1,2,
Cy @ Cy.

(2)

Over cubic fields, we know that if a point on an elliptic curve has prime order p, then
p < 13 by results of Parent [31, 32]. We also know all the isomorphism types in ®(3) that
appear as the torsion groups of infinitely many non-isomorphic elliptic curves [12], and
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this list is strictly smaller than ®(3) (see [29]), as opposed to what happens in the rational
and quadratic cases.

Unfortunately, ®(d) has as yet not been determined for any d > 3, although Maarten
Derickx (personal communication) has told us that the computation of ®(3) should be
within reach.

As for results on ®(K) for specific K, Mazur determined ®(Q) = ®(1) (see [23]), the
second author determined ®(Q(¢3)) and ®(Q(Z4)) (see [26]), and methods of determin-
ing ®(K) for other quadratic fields K were given by Kamienny and the second author in
[17]. The second author also tried to determine @ (K) for certain cubic fields K with small
discriminant, but managed to obtain only partial results in [28].

In this paper we develop a criterion, based on a careful study of the cusps of modular
curves Xj (m, n), which can tell us that certain groups do not occur as torsion groups
of elliptic curves over a number field K. This criterion is essentially a generalization of
a criterion of Kamienny; see [14]. Kamienny showed that for certain #, the curve X;(n)
cannot have non-cuspidal points over an extension of degree d of QQ, where d is less than
the gonality of X; (n), as points of degree d on X; (1) would force functions of a smaller
degree than the gonality to exist, which is impossible.

We generalize Kamienny’s approach both by using the modular curves X; (m, n) instead
of X1(n) and by viewing the number fields K as extensions of a suitable subfield L of
Q(¢&m)- This generalization is somewhat technical (for example, it requires a careful con-
sideration of the fields of definitions of cusps), but gives us more flexibility in ruling out
torsion groups of the form C,, @ C,,. Our criterion, on its own or in combination with
other techniques, allows us to advance our understanding of the torsion groups of elliptic
curves over K, both when K is a fixed number field and when K runs through all number
fields of degree d. In particular, we make progress in determining ®(3) and @ (4) by ruling
out a number of possibilities for torsion groups of elliptic curves over cubic and quartic
fields. As for determining @ (K) for a fixed cubic or quartic field K, a natural choice for
a quartic field K, in view of [26], is the ‘next’ cyclotomic field, Q(¢5). Since there are no
cubic cyclotomic fields, we choose the cyclic cubic field Q ({13 + {153 + §f3 + ;1132)

In Section 2, we state and prove our main results (Theorem 1 and Corollary 3).
In Sections 3 and 4, we use Theorem 1 to determine & (Q (;‘13 + 4“153 + {183 + ;‘1132))
and ®(Q(¢5)), achieving to our knowledge the first determination of ®(K) for a
cubic and a quartic field, respectively. In Sections 5 and 6, we use Corollary 3,
together with other techniques, to prove that a large number of finite groups
do not occur as torsion groups of elliptic curves over cubic and quartic fields,
respectively.

The computer calculations were done using Magma [3]. Showing that the rank of
Jacobians over Q is 0, unless otherwise mentioned, has been done by showing that the
L-function of (the factors of) J is non-zero. By results of Kato [18], the Birch—Swinnerton-
Dyer conjecture is true for quotients of modular Jacobians, so this computation uncondi-
tionally proves that the rank is 0.

2 Main results

Notation. If K is a number field, Ok denotes its ring of integers. If p is a prime ideal
of Ok, we write k(p) for the residue field Ok /p, and Nm(p) = #k(p). Furthermore, we
denote by Ok, p the localization of O at p.
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Definition. Let m and # be positive integers with m | n. Let L be a subfield of Q(¢y,),
and let pg be a prime of L. Let X be the curve X1 (m, n)q(,, viewed as a (proper, smooth,
but possibly geometrically disconnected) curve over L. We consider triples (X, X', 7),

where

e X isa flat, proper model of X over Of,, such that the j-invariant extends to a map
ji X — PéL,p ;

e X’ isaflat, proper and regular curve over Op p, such that the curve X’ = &7 over L is
geometrically connected;

e 7: X — X'isaproper and generically finite map of Oy p,-schemes.

Given such a triple (X, X', ), we write Z for the topological inverse image of the
section co under the map j: X — IP’%DL,M, and Z’ for the topological image of Z under 7
equipped with the reduced induced subscheme structure. With this notation, we call
(X, X', ) anice (L, po)-quotient of X (m, n) if the following conditions are satisfied:

(1) The scheme Z’ is normal and lies in the smooth locus of X" over O .
(2)  The image of the open subscheme X \ Z under 7 equals X’ \ Z’.

For our applications, the curve X’ will also be a modular curve and 7 will have a mod-
uli interpretation (e.g. forgetting part of the level structure). In this setting (X, X', ) is
automatically a nice (L, po)-quotient.

Theorem 1. Let A be a group of the form C,, & C, with m | n, let K and L be number
fields with L € Q(&,,) € K, and letd = [K : L). Let po be a prime of L, let p be the residue
characteristic of yo, and let e be the largest absolute ramification index of a prime of K
dividing po. Let Sk ,p, be the set

Sk,po = {8 > 1|48 divides [k(p) : k(po)] for some prime p of K over po} .
Let

A ifp>e+1
maximal p-divisible subgroup of A ifp < e+ 1.

Al =

Let (X, X', ) be a nice (L, po)-quotient of X1(m,n). Let X' = X, and let ' be the
Jacobian of X'. Let h be the least common multiple of the ramification indices e(q/po) where
L(Z) is the function field of an irreducible component Z of Z' and q is a prime of L(Z)
over po. Assume that the following conditions are satisfied:

i) The gonality of X’ over L is at least dh + 1.
ii) The group J'(L) has rank 0.
iii) Ifp = 2, then the 2-torsion subgroup of J'(L) is trivial.
iv) For all primesp | po of K, there does not exist an elliptic curve over k(p) with a
subgroup isomorphic to A’.
v) For all primes p | po of K, neither 3Nm(p) nor 4Nm(p) is divisible by #A’.
vi) For all irreducible components Z of Z', if the function field L(Z) has a prime q
over g such that [k(q) : k(po)] is in Sk p,, then q is the unique prime of L(Z) over po.

Then there does not exist an elliptic curve E over K such that E(K) has a subgroup
isomorphic to A.
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We will prove Theorem 1 below; we begin with an auxiliary result.

Lemma 2. Let A, K, L and po be as in Theorem 1. Under the conditions iv) and v) of
Theorem 1, any elliptic curve E over K equipped with an embedding 1: A — E(K) has
multiplicative reduction at all primes of K lying over po.

Proof. Let p be a prime of K over pg. By Ep we denote the reduction of E modulo p, i.e.
the special fibre of the Néron model of E at p. Then we have a reduction map

E(K) — Ep(k(p)).

This map is injective on ((A”) by ([19], Appendix) and the definition of A’. The group
Ep (k(p)) therefore contains a subgroup isomorphic to A’.

By assumption iv), E does not have good reduction at p. If E had additive reduction,
then by the Kodaira—Néron classification in ([33], Appendix C, §15), Ep (k(p)) would be a
product of the additive group of k(p) and a group of order < 4, contradicting assumption
v). We conclude that E has multiplicative reduction at p. O

Proof of Theorem 1. Let Xy, and &), be the special fibres of X" and X" over po. Let
J’ be the Néron model of J' over Of . It is known from ([2], §9.5, Theorem 4) that J"
represents the functor P/E, where P is the open subfunctor of Picx//0, ,, given by line
bundles of total degree 0 and E is the schematic closure in P of the unit section in P(L).
We have a commutative diagram

P(Of,py) — P(k(po))

| |

J' (L) == T (OLpy) = T’ (k(po)),

where the injectivity of the bottom horizontal map follows from assumptions ii) and iii)
together with ([19], Appendix).

Suppose the theorem is false. Let E be an elliptic curve over K equipped with an embed-
ding A — E(K). These data determine a point of X (K) whose Zariski closure is a prime
divisor D on X. Let Dy, be the schematic intersection of the divisor D with X},,, and let
(+D)y, be the schematic intersection of 7,.D with X); ,- By Lemma 2, E has multiplicative
reduction at all primes of K over po, so the support of Dy, is contained in Z. Let Z be the
support of (7,D)y,; then the definition of Z’ implies that Z is contained in Z’. We can
write (,D)y, as a linear combination ), 1,2z, where the n, are positive integers.

Let z be a point of Z. Since (X, X/, ) is a nice (L, pp)-quotient, there is a unique irre-
ducible component Z, of Z’ containing z, and the coordinate ring of Z, is the integral
closure of Ofp, in the function field L(Z,) of Z,. Hence k(2) can be identified with the
residue field k(q,) of some prime q, of L(Z,) over py; in particular, [k(q;) : k(po)] equals
k(z) : k(po)]. On the other hand, k(z) can also be identified with a subfield of the residue
field k(p;) of some prime p, of K over pg, so [k(z) : k(po)] divides [k(p;) : k(po)]. This
implies that [k(q;) : k(po)] =[k(2) : k(po)] is in Sk p,. By assumption vi), g, is the only
prime of L(Z,) over po. This implies that the schematic intersection of Z, with X‘; , equals
e,z, where e, = e(q,/po). We note that e, divides 4.
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We consider the effective divisor D’ on X’ defined by
nzh
D=y *7z,.

By the above description of the intersections of D and the Z, with Xéo, the divisor
hr.D — D" on X’ specializes to the zero divisor on X, . This implies that the class of
hm D — D' in P(k(po)) is zero. By the commutativity of the above diagram and the injec-
tivity of the bottom map, the class of hm,.D — D" in J'(L) is also zero. By assumption i),
we conclude that the divisors #m,.D and D’ are equal. The generic fibre of D is supported
outside Z; since (X, X', ) is a nice (L, pg)-quotient, the generic fibre of 77, D is supported
outside Z’. On the other hand, the generic fibre of D' is supported on Z’, a contradiction.

The following corollary of Theorem 1 is useful for eliminating groups from & (d).
Corollary 3. Let A be a group of the form C,, & C, withm | n, let d > 1 be an integer,

and let L be a subfield of Q(¢y,). Let po be a prime of L, let p be the residue characteristic of
po, and let ¢ = Nm(pg). Let

s —ls=1 K is an extension of Q(¢,,) with [K : L] = d,
Po = ~ | pisa prime of K over pg, and § divides [k(p) : k(po)]]
Let
o A ifp>d+1
maximal p-divisible subgroup of A ifp <d + 1.

Let (X, X', 1) be a nice (L, po)-quotient of X1(m, n). Let X' = X, and let ] be the Jaco-
bian of X'. Let h be the least common multiple of the ramification indices e(q/po) where
L(Z) is the function field of an irreducible component Z of Z' and q is a prime of L(Z)
over po. Assume that the following conditions are satisfied:

i) The gonality of X’ over L is at least dh + 1.
ii) The group J'(L) has rank 0.
iii) Ifp = 2, then the 2-torsion subgroup of J'(L) is trivial.
iv) Foralli € Sy,, there does not exist an elliptic curve over a field ofq' elements with a
subgroup isomorphic to A’.
v) Neither 3¢® nor4q® is divisible by #A'.
vi) For all irreducible components Z of Z', if the function field L(Z) has a prime q
over g such that [k(q) : k(po)] is in Sy, then q is the unique prime of L(Z) over po.

Then there does not exist an elliptic curve over an extension of degree d of L with a

subgroup isomorphic to A.

Proof. Under the conditions of the corollary, the conditions of Theorem 1 are satisfied
for every extension K of degree d over L such that L € Q(¢,) C K. O

We end this section with some remarks on checking the conditions of Theorem 1 and
Corollary 3. The conditions are straightforward to check in practice, apart from condition
ii) if L # Q. An easy way to make sure that condition vi) holds is to choose pg totally inert

in Q(&y).
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Remark 4. An important special case occurs when L equals Q(¢,), the prime pg does
not divide 7, the curve X’ equals X and x is the identity on X. In this case the conditions
simplify as follows: (X, X', =) automatically extends to a nice (L, po)-quotient, and we have
A’ = A and & = 1. Moreover, the following remarks are useful to check condition vi) in
these cases.

Let r be a divisor of n. The cusps of X;(m, n) represented by points (a : b) € P}(Q),
where a, b are coprime integers with gcd(b, n) = r, all have the same field of definition,
which we denote by F,, ,, ». By generalities on cusps and by the existence of the Weil pair-
ing, we have Q(¢m) € Funr S Q(&y). Explicitly, the field F,,» can be described as
follows. Let H®  C Hynr € Gy C (Z/nZ)* denote the subgroups

n,n,r

Gun=1{s€ (Z/nZ)* |s=1 (mod m)},
H® —={se(Z/nZ)* |s=1 (mod lem(m,n/r)},

m,n,r
HY, .. if gcd(mr,n) > 2,
Honr =0 0™ 41y i ged(mr, n) < 2.
ni,n,r 2 —

Note that in the latter case m is 1 or 2, so —1 is in G,,,. Using the canonical identifica-
tion of Gal(Q(¢&,)/Q) with (Z/nZ)*, the field F,, ,, is then the field of invariants of H,, ,,
acting on Q(&y).

The set {L(Z) : Z is a cusp of X (m, n)} is now equal to {Fy,,» : r | n}, and condition
vi) can be checked by computing the defining polynomials for F,, ; , over L and factoring
them modulo py.

In the case m = 1, we have

) Q) ifr > 2,
B Q({n/r)+ ifr <2.

1nr

3 Torsion groups of elliptic curves over Q (£13 + &35 + &85 + £,7)
In this section, we consider the cyclic cubic field

K=Q (o343 + 5+ 03)

of discriminant 132. This field can be written as K = Q(w) where w has minimal
polynomial x3 + x? — 4« + 1.

Theorem 5. For every elliptic curve E over K, the torsion group E(K)iors is one of the
groups from Mazur’s torsion theorem.

Proof. By results of Parent [31, 32], no prime p > 13 divides the torsion order of an
elliptic curve over a cubic field. It therefore remains to prove that E(K) does not contain
any of the following groups:

Cy where n = 11, 13, 14, 15, 16, 18, 20, 21, 24, 25, 27, 35, 49,
Cy ® Cy, wherem =5,6.
For later use, we note that 3 is totally inert, 5 is totally split and 13 is totally ramified

in K. Let p5 be one of the primes above 5, and let pj3 be the unique prime above 13.
We will prove the theorem case by case.
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The cases C13, C14 and Cy5 In these cases, the modular curve Xj (») is an elliptic curve,
and an easy computation in Magma shows that X; (n)(K) = X1(n)(Q). It is well known
that X; (1) (Q) contains only cusps (see for example [23]), hence Y7 (#)(K) is empty.

The cases Cyp, Ca4, C2 ® Cjo and Cy & Cja Recall that X((20) and X(24) are elliptic
curves. A computation in Magma shows that X¢(20)(K) = X,(20)(Q) and Xo(24)(K) =
X0(24)(Q), and it is known that X((20)(Q) and X¢(24)(Q) consist purely of cusps (see
for example [24]). As an elliptic curve with a point of order » admits a cyclic isogeny of
degree n, it follows that Y7(20)(K) = Y1(24)(K) is empty. Similarly, an elliptic curve with
torsion Cy @ Coyyy, over K is 2-isogenous to a curve with a cyclic 2m-isogeny, and hence
Y1(2,10)(K) and Y1 (2, 12)(K) are empty.

The cases C13, C16 and Cyg The modular curves Xj(n) are all hyperelliptic curves of
genus 2. Magma computations show that J;(13), /1(16) and /; (18) all have rank 0 over K.

We compute /1 (13)(F5) =~ Cig, and as J1(13)(K) — Ji(k(ps)) = J1(F5) and /1(Q) =~
Ci9, it follows that J; (13)(K) = J1(13)(Q) =~ Cig. Therefore Y;(13)(K) is empty. A similar
argument deals with the case n = 18.

For n = 16, it is not enough to use just one prime. We compute #/1(16)(F5) = 40,
#]1(16)(Fo7) = 1220 and /1 (16)(Q) =~ Cy & Cyp. Since ged (40, 1220) = 20, it follows that
J1(16)(K) = J1(16)(Q). We conclude that Y7(16)(K) is empty.

The cases C, for n = 21, 25, 27, 35,49 We apply Theorem 1 using L = Q, po = (5) for
n = 21,27,49 and pg = (13) for n = 25,35, X’ = X and 7 = id. Conditions i), ii) and iii)
are satisfied since in all cases X (n) is of gonality at least 4 (see [12]), and rk J; (n)(Q) = 0.
Condition iv) holds because of the Hasse bound over F5 and F;3. Condition v) clearly
holds. For n € {27, 35,49}, condition vi) holds because py is totally inert in Q(¢,). Forn =
21, condition vi) holds because Sk ) = {1} and there are no primes of degree 1 above 5
in Q(£3), Q(£7) and Q(&21) ™. Finally, for n = 35, condition vi) holds because Sk, 13, = {1}
and there are no primes of degree 1 above 13 in Q(&5), Q(¢7) and Q(¢35) ™. O

4 Torsion groups of elliptic curves over Q(¢s)
In this section, we will determine ® (K), where K is the field Q(¢5). We will use the (as of
yet unpublished) result that the largest prime dividing the order of a point over a quartic

field is 17 (see [7]) and the fact that there is no 17-torsion over cyclic quartic extensions

of Q (see [6]).

Theorem 6. Let K = Q(¢5). Then for every elliptic curve E over K, the torsion group
E(K)tors is one of the following groups:

Cy, wheren=1,...,10,12,15, 16,
C,®dCyy wherem=1,...,4, (3)
Cs @ Cs.

There exist infinitely many elliptic curves with each of the torsion groups from the list (3),
except for Ci5 and Cie.
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Proof. As mentioned at the beginning of this section, we need only consider primes
p < 13 as possible divisors of the order of a torsion point.

Before proceeding, we find all elliptic curves over K containing a point of order 15
and show that the torsion subgroup of these curves is exactly C;5. Recall that X;(15) is
isomorphic to the elliptic curve with Cremona label 15a8. We compute that the group of
K-points of this elliptic curve is isomorphic to Cig. Of the 16 points, 8 are cusps, and we
compute that the remaining 8 points correspond to elliptic curves over K with torsion
subgroup Cjs. In particular, there exist no curves with torsion Cis, for any integer n > 1
and no curves with torsion Cs @ Cjs.

There exist elliptic curves with points of order 16 over K; one such example is the
base change of X;(15). Since X7 (16) has genus 2, the set X;(16)(K) is finite by Faltings’s
theorem.

It remains to prove that E(K) does not have a subgroup isomorphic to one of the

following groups:

Cy where n = 11,13, 14,17, 18, 20, 21, 24, 25,27, 32, 35, 49,
C,® Cyy, wherem =5,6,8,
Cs & Cyo.

We will prove this case by case.

The cases C, for n = 11, 14, 20, 49 and C; & C»,, for m = 5, 6 These cases are dealt
with by simply computing X; (n) (K) = X1 (n)(Q), for n = 11, 14, X (20)(K) = X0(20)(Q)
for Cyp and Cy & Cio, X0(24)(K) = X0(24)(Q) for Cy4 and Cy @ Cj3 as in the proof of
Theorem 5. Similarly, noting that X((49) is an elliptic curve, we compute X(49)(K) =
X0(49)(Q), which consists only of cusps.

The case Cy; The curve X((21) is an elliptic curve and a computation shows that
X0(21)(K) = Xp(21)(Q). However, the difference between this case and the previous ones
is that Yp(21)(K) is not empty and hence one needs also to check that the elliptic curves
with 21-isogenies do not have any K-rational points. This can be done by using division
polynomials; see [28, 29] for details.

The cases C13 and C1g These cases are dealt with exactly as in the proof of Theorem 5.

The cases Cy7, C3p and Cy @ C16 We apply Theorem 1 with L = Q, pp = (11) (which
is totally split in K), X’ = X and = = id. The curves X;(27), X;1(32) and X; (2, 16) all have
gonality at least 5 by ([13], Theorem 2.6) (see also [8]), and their Jacobians all have rank 0.
This implies conditions i), ii) and iii). Condition iv) follows from the Hasse bound over
F11, and condition v) clearly holds. Finally, condition vi) holds in the case Cy7 because 11
is totally inert in Q(¢27), and in the cases C3y and Cy @ Ci6 because Sk 11 = {1} and there
are no primes of degree 1 above 11 in the fields Q(4), Q(¢s), Q(¢16)™ and Q(¢32) ™.

The case Cy5 We apply Theorem 1 with L = Q, po = (2) (which is totally inert
in K), X’ = X and 7 = id. The modular curve X;(25) has gonality at least 5 (see [13],
Theorem 2.6), and /1 (25) (Q) has rank O (see [22]) and trivial 2-torsion; this implies condi-
tions i), ii) and iii). Although 25 is in the Hasse interval of Fj¢, a search among all elliptic
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curves over 16 shows that all such curves E with 25 points satisfy E(F16) >~ Cs @ Cs. This
shows that condition iv) holds. Condition v) clearly holds. Finally, condition vi) is satisfied
because 2 is totally inert in Q(&25).

The case C35 We apply Theorem 1 with L = Q, pg = (3) (which is totally inert in K),
X' = X and 7 = id. The curve X;(35) has gonality at least 5 (see [13], Theorem 2.6),
and J1(35)(Q) has rank 0; this shows that conditions i) and ii) hold. One easily checks
conditions iii) and v). By ([35], Theorem 4.1), there are no elliptic curves with order a
multiple of 35 over k(p) = Fg;; this implies condition iv). The prime 3 is totally inert in
Q(25), Q(¢7) and Q(¢35) ", which implies condition vi).

The case C5 @ C19 We apply Theorem 1 with L = Q(¢5), po one of the primes above 11
(which is totally split in L), X' = X¢(50); and 7 the map defined by the inclusion

50
01

Magma that Jo(50) (K) has rank 0; this implies condition i) and ii). One easily checks con-

a~T'1(5,10)a C To(50), where o = ) The gonality of X’ is 2, and we compute in

ditions iii) and v). Condition iv) follows from the Hasse bound over k(pg) = Fi;. Finally,
condition vi) follows from the fact that all cusps of X" are defined over L. O

5 Results for all cubic fields

We now apply the results of Section 2 to prove that certain groups are not in ®(3). We
note that the cases C40, Ca9 and Css5 (and more) were also proved independently by Wang
in [34].

Theorem 7. The groups Cy @ Cao, Cag, Cag and Cssz do not occur as subgroups of elliptic
curves over cubic fields.

Proof. To prove the cases Cy @ Cap, Ca9 and Css, we apply Corollary 3 with L = Q,
po = (3), X’ = X and & = id. We have S, = {1,2, 3}. Conditions i) and ii) hold because
X1(2,20), X1(49) and X;(55) have gonality at least 4 and their Jacobians have rank 0
over Q. Condition iv) holds because 40, 49 and 55 are all outside the Hasse intervals of
Fs3, Fg and [Fy;. Condition iii) and v) clearly hold. Condition vi) follows from the fact that
there are no primes of degree 1, 2 or 3 above 3 in the fields Q(¢,) for n € {5,7,11} and
Q(¢y) T for n € {20,49, 55). Finally, the case Cy follows from the case C & Cyg in view of
the covering X; (40) — X1(2, 20). O

6 Results for quartic fields

In this section, we show that certain groups of the form C,, & C,,, with m | nand m > 3,
are not in ®(4). Recall that an elliptic curve E with a subgroup isomorphic to C,,, & C,
has to be defined over a field containing Q(&,).

Theorem 8. The following groups do not occur as subgroups of elliptic curves over
quartic fields:
CGdCn CGdCs CGDCy CGDCs3 C3DC3, Ca®Cra
Ca®Cisy Ca®Cog, Ca®Caa, Ci®DCsy, Ca®Ces, CgDCs .
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Proof. We consider each of the above cases separately.

The case C3 @ Ci2 The curve X = X;(3,12) has genus 3 and is non-hyperelliptic; see
[9]. We apply Corollary 3 with L = Q(¢3), po one of the primes of norm 7 in L, X’ = X
and 7 = id. We compute that the Jacobian of X has rank 0 over Q(¢3) (see [10], proof
of Lemma 4.4 for details). This shows that conditions i), ii) and iii) are satisfied. For all
elliptic curves over fields of 49 elements with 36 points, the group of points is isomorphic
to Ce @ Cg, proving iv). Condition v) clearly holds. Finally, condition vi) holds because pg
is inert in Q(Z12).

The case C3 @ C1g The curve X = X;(3,18) has genus 10, and its gonality over C is at
least 4 by the results of [1] and ([21], Appendix 2) (see also [13], Theorem 1.2). We use
Corollary 3, choosing L = Q(£3), po = (2), X’ = X and 7 = id. The JacobianJ = J;(3, 18)
over Q(¢3) decomposes up to isogeny as

where B; denotes an elliptic curve for 1 < i < 4 and an Abelian surface for 5 < i < 7.
A number of 2-descent and L-series computations in Magma shows that the rank of all
these B; is 0. This shows that condition ii) is satisfied. If q is one of the primes of norm 7
in L, then J(k(q)) has order 3!* . 73, This implies that the 2-torsion of J(L) is trivial, so
condition iii) holds. The Hasse bound implies condition iv). Condition v) clearly holds,
and condition vi) holds because 2 is totally inert in Q(¢18) = Q(¢9).

The case C3@® Cy; We use Corollary 3, taking L = Q,po = (2), X' = X1(27) and 7: X —
X’ the canonical map. Condition i) holds because X" has gonality 6 by [8]. A computation
using L-functions shows that rk J'(Q) = 0, which implies condition ii). Condition iii)
follows from #/'(IF7) = 3% .19 - 307 - 6337. Condition iv) and v) clearly hold. Condition vi)
holds since 2 is inert in Q(Z27).

The cases C3 @ C33 and C3 @ C39 These cases require a slightly different approach,
following the lines of [15]. Let K be a quadratic extension of Q(¢3), let o be the non-trivial
element of Gal(K/Q(¢3)), and let p be a prime of K above 7.

We first decribe the case C3 @ Cs3. We take the hyperelliptic curve X' = X((33) of genus
3, with hyperelliptic involution w1;. Suppose that y is a non-cuspidal point on X7 (3, 33).
By Lemma 2, y maps to the cusp at co mod p, and y° maps to oo mod p. The points y and
¥° on X1 (3, 33) map to x and x° on X', which likewise map to co mod p. Consider the map

f: X =7
t—=>[t+1° —200].
Then f(x) is Q(¢3)-rational, and f(x) mod p is 0. We compute that J'(Q(¢3)) is finite.
Since reduction modulo p is injective on the torsion, it follows that f(x) = 0 over Q(¢3),
so there is a function g whose divisor is x + x° — 200. Since g has degree 2, it is fixed by

the hyperelliptic involution. It follows that oo is fixed by the hyperelliptic involution. But

w1 acts freely on the cusps of X7, leading to a contradiction.
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We now deal with the case C3 @ C39. We take
X' = Xo(39)/wi3: y* = a® — 20x* — 6x% + 640® — 48x + 9.

The curve X’ is hyperelliptic of genus 2, and the hyperelliptic involution on X” is induced
by w3. We compute that J'(Q(¢3)) is finite. Using the same arguments as above, we con-
clude that ws fixes the cusp at co of X, but w3 acts by switching the two cusps 0 and oo,

which leads to a contradiction.

The case C4 & C15 We apply Corollary 3 with L = Q(i), po = 2+, X' = X = X1(4,12)
and 7 = id. The curve X has genus 5 and is non-hyperelliptic; see [9]. It is the base change
of the curve X/ (48) over Q, where A’ is the subgroup {£1, £13, +25, +37} of (Z/487Z)*.
By ([10], pages 464—465), the Jacobian Jas of XA/ decomposes over Q as

Jar ~ B2 @ By @ Bs,
where
Blzy2 =x% — %% —4x + 4,
Bg:y2 =x> +x% —dx — 4
and Bj3 is the Jacobian of the curve
Cs:y* = x° —10x° + 9x.

Note that By is a —1-twist of Bj, and hence B; and B are isomorphic over Q(i). A

computation in Magma shows that

rk B1(Q()) = rk B2(Q(i)) = rk B3(Q(i) =0,

so condition ii) is satisfied. Condition iii) holds trivially. The Hasse bound implies condi-

tion iv). Condition v) is clearly satisfied. Finally, condition vi) holds because py is totally
inert in Q(¢12).

The case Cy & C16. We take the genus 5 curve X' = X;(2,16) of gonality 4 (see [13],
Theorem 2.8.), L = Q(i) and pg = (2 + i)Z[i]. The Jacobian J’ of X’ factors over Q as

J ~ E1 @ 1(16)%,

where E; is the elliptic curve over Q with Cremona label 32al. A computation using 2-
descent shows that rk J/(Q(i)) = 0 and pg is inert in Q(¢16). As all the assumptions of
Corollary 3 are satisfied, the result follows.

The case Cy & Cag. We take X' = X7(28) of gonality 6 (see [8]), L = Q and po = (3). We
compute rk /'(Q) = 0, showing that condition ii) holds. Condition vi) is satisfied because
Sk,po = {1,2,4}, while 3 is inert in Q(i) and none of the fields Q(£7), Q(£12) ™ and Q(¢28) "
have any primes of degree 1, 2 or 4 above 3.

The case Cy ® Cyq We take X' = X;(44) of gonality at least 7 (see [1]), L = Q and
po = (3). Condition vi) is satisfied because Sk p, = {1,2,4}, while 3 is inert in Q(i) and
none of the fields Q(¢11), Q(£22) ™ and Q(&44) ™ have any primes of degree 1, 2 or 4 above 3.
After computing rk J'(Q) = 0, we are done.
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The case C4 & Csy We take X’ = X;(26) of gonality 6 (see [8]), L = Q and po = (3). We
check that 3 splits into 4 primes of degree 3 in Q(¢13), all of which remain inert in Q(¢s3).
As (3) is inert in Q(i), the primes of any quartic field containing QQ(i) above it are of degree
2 or 4, this proves vi). We compute rk /'(Q) = 0 and #/'(F5) = 325273192, proving that all
the assumptions are satisfied.

The case C4 & Cgs We use Corollary 3, taking X’ = X;(34) of gonality 10 (see [8]),
L = Qand pg = (3). Since 3 splits into 2 primes of degree 16 over Q(¢sg) and is inert in
Q(£17) and Q(i), it easily follows that condition vi) is satisfied. We compute rk J'(Q) = 0,
completing the proof.

The case Cg @ Cg The only field over which there could exist an elliptic curve with
full 8-torsion is Q(zg) = Q(i, +/2). To show that such curves do not exist, we will in
fact prove the stronger statement that there does not exist an elliptic curve over Q(¢g)
with a subgroup isomorphic to Cs @ Cg. To prove this, we note that the modular curve
X1 (4, 8) is isomorphic (over Q(i)) to the elliptic curve with Cremona label 32a2; see ([27],
Lemma 13). We compute

X1(4,8)(Q(¢8)) =~ Cu @ Cay,

and all the points are cusps, which proves our claim.
This finishes the proof of Theorem 8. O
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