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The integrin expression profile modulates orientation and
dynamics of force transmission at cell–matrix adhesions
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ABSTRACT

Integrin adhesion receptors connect the extracellular matrix (ECM)

to the cytoskeleton and serve as bidirectional mechanotransducers.

During development, angiogenesis, wound healing and cancer

progression, the relative abundance of fibronectin receptors,

including integrins a5b1 and avb3, changes, thus altering the

integrin composition of cell–matrix adhesions. Here, we show that

enhanced avb3 expression can fully compensate for loss of a5b1

and other b1 integrins to support outside-in and inside-out force

transmission. a5b1 and avb3 each mediate actin cytoskeletal

remodeling in response to stiffening or cyclic stretching of the

ECM. Likewise, a5b1 and avb3 support cellular traction forces of

comparable magnitudes and similarly increase these forces in

response to ECM stiffening. However, cells using avb3 respond to

lower stiffness ranges, reorganize their actin cytoskeleton more

substantially in response to stretch, and show more randomly

oriented traction forces. Centripetal traction force orientation

requires long stress fibers that are formed through the action of

Rho kinase (ROCK) and myosin II, and that are supported by a5b1.

Thus, altering the relative abundance of fibronectin-binding integrins

in cell–matrix adhesions affects the spatiotemporal organization of

force transmission.
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INTRODUCTION
Cells sense the mechanical properties of their surrounding
environment and activate intracellular signaling cascades
generating an elaborate response that plays a role in cell
survival, proliferation, differentiation and migration (Hoffman

et al., 2011). Cell–matrix adhesions are dynamic force-responsive
protein complexes that couple the extracellular matrix (ECM)
to the cytoskeleton (Schiller and Fässler, 2013). Within these

adhesions, integrin a–b heterodimeric transmembrane receptors
bind ECM proteins with their globular head domains and connect
to the cytoskeleton through multi-protein interactions at their

cytoplasmic tails (Hynes, 2002). Integrins transmit forces in a bi-
directional manner: extracellular forces applied to the head
domains enhance integrin activity and clustering, and trigger

cell–matrix adhesion growth and cytoskeletal reorganization.

Vice versa, actomyosin-mediated contractile forces cause

strengthening of integrin–ECM binding (Choquet et al., 1997;

Friedland et al., 2009; Guilluy et al., 2011; Roca-Cusachs et al.,

2012).

Cell–matrix adhesions formed on fibronectin contain a mixture

of different integrins, including a5b1 and avb3. When cells

are stimulated to move or proliferate during development,

angiogenesis or tissue regeneration, shifts in the relative

abundance of these fibronectin-binding integrins occur (Bouvard

et al., 2013; Wolfenson et al., 2013). Likewise, alterations in the

abundance of a5b1 or avb3 take place during cancer progression

(Desgrosellier and Cheresh, 2010). Such changes will alter the

integrin composition of cell–matrix adhesions, and we and others

have previously shown that this affects cytoskeletal organization,

activity of Rho GTPases and migratory behavior (Danen et al.,

2002; Danen et al., 2005; Miao et al., 2002).

Using mouse embryonic stem cell (ESC)-derived fibroblastic

cells (GD25) and mouse-embryo-derived neuroepithelial cells

(GE11) lacking the common b1 subunit, we have shown that re-

expression of b1 (but not increased expression of b3 supporting a

similar level of adhesion to fibronectin) stimulates contractility

mediated by RhoA and Rho kinase (ROCK, for which there are

two isoforms ROCK1 and ROCK2) and more-random migration

(Danen et al., 2002; Danen et al., 2005). Likewise, White et al.

have shown that prevention of avb3 recycling in NIH3T3 cells,

thereby causing enhanced surface abundance of a5b1, stimulates

ROCK-mediated contractility and random movement (White et al.,

2007). Conversely, Miao et al. have demonstrated that expression

of b3 integrins (but not increased expression of b1 integrins) in

CHO cells that lack b3 causes enhanced RhoA and ROCK activity

(Miao et al., 2002). This suggested that the total amount of

fibronectin-binding integrins is more relevant or that expression of

both b1 and b3 integrins is needed for effective Rho–ROCK-

mediated contractility. However, we have shown that b3-knockout

MEFs have no defect in RhoA–ROCK-mediated contractility and

ectopic expression of b3 integrins does not further stimulate this

pathway (whereas increased expression of b1 integrins does)

(Huveneers et al., 2008). Moreover, like expression of b1

integrins in b1-null cells; expression of a5 in a5-null mouse

ESC-derived fibroblastic cells also stimulates RhoA–ROCK-

mediated contractility (Huveneers et al., 2008).

It has subsequently become clear that different integrins can

mediate distinct signaling routes that support distinct aspects of

mechanotransduction. Experiments using MEFs in which ligand-

coated beads were used to pull on small integrin clusters have

shown that a5b1 mediates adhesion strength whereas avb3

mediates cytoskeletal stiffening (Roca-Cusachs et al., 2009). A

recent study using pan-integrin knockout kidney fibroblasts

reconstituted with av, b1 or both subunits, resulting in equimolar
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surface levels of a5b1 and/or avb3 and avb5 has provided further
insight: a5b1-mediated adhesion indeed stimulates RhoA–ROCK

signaling to activate myosin II but av integrins are required to
support RhoA-mDia-mediated actin polymerization and these
processes cooperate to regulate contractility (Schiller et al., 2013).
Thus, the expression levels of a5b1, avb3, as well as other av-

integrins participating in fibronectin-binding (e.g. avb1 and avb6)
in combination with the distinct signaling networks of integrin-
associated proteins present in embryonic or ESC-derived epithelial

or fibroblastic cells, kidney cells, or CHO cells used in the above-
mentioned studies ultimately determine the outcome of changes in
the fibronectin-receptor repertoire for RhoA-mediated signaling

and cytoarchitecture.
In this study, we asked to what extent a shift from a5b1 to

more avb3 expression, as often seen during angiogenesis, wound

healing or cancer progression, affects mechanotransduction. We
used two independent cell systems in which adhesion to
fibronectin is mediated mainly by a5b1 or by avb3 integrins
resulting in comparable adhesion efficiency and compared the

ability of such cells to (1) sense and respond to extracellular
forces (outside-in signaling), and (2) exert forces onto the ECM
(inside-out signaling).

RESULTS
Cells adhering through avb3 show a more substantial
cytoskeletal reorganization in response to cyclic stretch as
compared to cells using a5b1
To compare responses to extracellular forces we made use of GEb1

and GEb3 cells. These cells are derived from b1 integrin chimeric
mouse embryos lacking the common b1 subunit and were
engineered to express human b1 or b3 subunits. Fluorescence-
activated cell sorting (FACS) showed that ectopically expressed b1

and b3 led to high cell surface levels but these did not exceed
endogenous levels observed in MDA-MB-435s human breast
cancer cells (supplementary material Fig. S1C,D,G,I). GEb1 and

GEb3 cells have been previously shown to support adhesion to
fibronectin-coated glass substrates with the same efficiency
through either a5b1 or avb3, respectively (Danen et al., 2002).

The cells were transduced with mCherry–LifeAct for actin imaging
(supplementary material Fig. S1E,F,I,J) and plated on a
fibronectin-coated poly(dimethyl)siloxane (PDMS) membrane
and subjected to uniaxial cyclic stretch first at 10% 1 Hz for

2 hours, then at 20% 1 Hz for 1 hour (Fig. 1A). Incubation with
integrin blocking antibodies confirmed that, like fibronectin-coated
glass substrates, GEb1 and GEb3 adhered to fibronectin-coated

PDMS substrates mainly through a5b1 and avb3, respectively
(supplementary material Fig. S2H). Upon cyclic stretch, both
GEb1 and GEb3 cells showed a gradual decrease in cell-spreading

area with the two subsequent stretching regimes. The total actin
filament length showed the same trend for GEb1 cells, but for
GEb3 cells the total filament length already approached a

minimum value at 10% stretch and showed only a slight
additional decrease after a subsequent 20% stretching (Fig. 1B–E).

PDMS membranes coated with fluorescent beads or stamped
with patterned fluorescently labeled fibronectin were used to

characterize the strain field over the membrane, the dynamic
strain in the imaging field and to determine the angle of minimal
strain (Fig. 1A; supplementary material Fig. S2A–D). GEb1 cells

oriented their F-actin towards the minimal strain direction (,60˚
to the macroscopic strain) following the 10% stretch regime, but
this response was lost during the subsequent, second regime of

20% stretch (Fig. 1F,H). GEb3 cells subjected to the first stretch

regime showed a more prominent actin filament orientation
towards the minimal strain direction and this response was

maintained during the 20% stretch regime (Fig. 1G,H).
These findings indicate that cells adhering mainly through

a5b1 or avb3 integrins can both sense cyclic ECM strain and
trigger actin cytoskeleton remodeling. However, high expression

of avb3 allows cells to more effectively reorient their
cytoskeleton in the direction of minimal strain and maintain
this orientation at high strain rates.

Cells expressing a5b1 or avb3 each support cell spreading in
response to substrate stiffening
Next, we seeded GEb1 and GEb3 cells onto fibronectin-
crosslinked polyacrylamide (PAA) gels with shear moduli
varying between 760 Pa and 13.4 kPa (supplementary material

Fig. S2F,G). Incubation with integrin-blocking antibodies
confirmed that, like fibronectin-coated glass and PDMS
substrates, GEb1 and GEb3 adhered to fibronectin-crosslinked
PAA substrates mainly through a5b1 and avb3, respectively

(supplementary material Fig. S2I). Both cell types showed a
gradual increase in cell spreading area with increasing stiffness
(Fig. 2A,C). Similar findings were obtained using the GD25 cell

line derived from b1-null ESCs where expression of human b1 or
b3 subunits supports adhesion to fibronectin with the same
efficiency through a5b1 or avb3, respectively (Danen et al.,

2002) and had comparable surface expression levels of these
integrins to those in MDA-MB-435s cells (supplementary material
Fig. S1A,B,H,I). It should be noted that, for GD cells, lower

stiffness ranges were used as compared to those used for the GE
cell lines given that full cell spreading is already observed on softer
substrates for this cell type. Again, cell-spreading area increased
with increasing stiffness over the range of stiffnesses tested

for cells adhering through either of these integrins (Fig. 2B,D).
Non-linear fitting using a cumulative Gaussian distribution
(supplementary material Fig. S3A) showed that despite having

significantly different response curves (supplementary material
Fig. S3B–D) the estimated half response stiffness (EK) was not
integrin specific (Fig. 2A,B).

Cells adhering through avb3 form cell–matrix adhesions at
lower substrate stiffness compared to cells adhering through
a5b1
Similar to cellular area, the number of peripheral cell–matrix

adhesions increased with increasing stiffness for all cell lines. For
GEb3 and GDb3 cells the number of peripheral cell–matrix

adhesions reached its maximum at intermediate stiffness, with an
elastic modulus of 9.4 and 5.47 kPa, respectively (Fig. 3A,B,D;
supplementary material Fig. S3J). By contrast, the number of

cell–matrix adhesions in GEb1 and GDb1 cells showed a more
gradual increase over the entire range of stiffnesses tested
(Fig. 3A–C; supplementary material Fig. S3I). The half-response

stiffness (EK) was also significantly lower for cells using
avb3, as compared to that for cells using a5b1 (Fig. 3A,B;
supplementary material Fig. S3B,E,F). The average cell–matrix
adhesion size did not show the same gradual response to rigidity:

once adhesions were formed, they reached similar sizes
irrespective of the ECM stiffness (Fig. 3C,D; supplementary
material Fig. S3G–J).

Taken together, these findings demonstrate that cells
expressing a5b1 and avb3 can each sense – and respond to –
variations in substrate stiffness, but that avb3 supports cell–

matrix adhesion formation more readily at a lower stiffness.
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Cells adhering through a5b1 or avb3 each mediate traction
forces that are regulated in response to altered
substrate rigidity
Having examined the consequences of expression of either a5b1
or avb3 for outside-in cellular responses to extracellular forces,

we next investigated whether these integrins differed in their

ability to mediate inside-out cellular traction forces onto the
ECM. Therefore, mCherry–LifeAct-expressing GEb1 and GEb3

cells were seeded on fibronectin-stamped PDMS micropillars of
6.9 mm height (bending stiffness of 16 nN/mm). Cell spreading on
these micropillars, as well as the mean force per pillar, was

similar for both cell lines (Fig. 4A–C). This indicated that b1

Fig. 1. Cells expressing avb3 integrins more
effectively reorganize their cytoskeleton upon
cyclic stretch. (A) Stretch regimes used during the
experiment. Driving the piezo controllers with 10% or
20% displacement resulted in 8% or 14.5% stretch on
the PDMS membrane in the direction of the
displacement, and 3.5% or 5% shrink in the
perpendicular direction, respectively. This resulted in
a minimal strain angle of ,60 .̊ (B) mCherry–LifeAct-
transduced GEb1 and GEb3 cells respond to two-
step cyclic stretch. (C) Characterization of actin
organization for the cells shown in B.
(D,E) Quantification of cellular spread area (D) and
total actin filament length (E) for the cells indicated.
Mean695% clearance level of .75 cells from three
independent experiments. (F,G) Angular organization
of actin filaments averaged over all GEb1 (F) or GEb3
(G) cells measured. Measured angle of orientation of
actin filaments is relative to stretch direction. The gray
bar indicates region of minimal strain. (H) Average
actin filament orientation per cell. Mean695%
clearance level of .75 cells from three independent
experiments. NS, P.0.05; *P,0.05; **P,0.005;
***P,0.0005 according to Mann–Whitney test. Scale
bars: 10 mm.
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integrins were not required for the generation of traction forces in
cells where avb3 levels are sufficiently high to compensate for

adhesion, despite earlier reports pointing to a crucial role for b1
integrins (Roca-Cusachs et al., 2009; Schiller et al., 2013). To
address whether expression of b1 integrins might further increase

traction forces in GEb3 cells, we plated GEb1+b3 and GEb3+b1
cells on 6.9 mm fibronectin-stamped micropillars. However,
comparable cell spreading and forces were measured for these
cells as observed for GEb1 and GEb3 cells (Fig. 4A,B). Taken

together, these findings indicate that traction forces can be
generated irrespective of the type of fibronectin-binding integrin
expressed.

We next analyzed the ability of these cells to increase traction
forces in response to increased substrate stiffness. Plating cells on
shorter pillars (4.1 mm height; bending stiffness of 66 nN/mm) led

to increased cell spreading and to ,twofold increase in traction
forces, irrespective of the integrin used (Fig. 4D–F). The increase
in traction force was ,threefold for GEb1+b3 and GEb3+b1 cells

indicating that the total amount of fibronectin-binding integrins
might determine the magnitude of the response (Fig. 4E). The
twofold increase in response to substrate stiffening was maintained
for GEb1 and GEb3 cells in post-fixation samples and GDb1 and

GDb3 cells each showed a similar response although the
magnitude of the response to stiffening was lower for GDb3
cells (supplementary material Fig. S4A–C). In addition, a similar,

albeit somewhat stronger increase in traction forces upon seeding
on shorter pillars was observed for NIH3T3 cells that bind to
fibronectin through both a5b1 and avb3 (Woods et al., 2001)

(supplementary material Fig. S4A,B). Finally, having established
that the initial adhesion to fibronectin-coated PDMS involved
a5b1 for GEb1 cells and avb3 for GEb3 cells (supplementary
material Fig S2H), we analyzed the potential role of av integrins in

the traction forces exerted by these cells. As expected, av-integrin-
blocking antibodies decreased force application by GEb3 cells, but
they did not affect traction forces in GEb1 cells, indicating that

a5b1 is the major integrin responsible for force application on
fibronectin in GEb1 cells (supplementary material Fig. S4D–F).

These results indicate that cells are able to exert traction
forces and respond to increased ECM stiffness by enhanced force
application, irrespective of the type of fibronectin receptor

engaged. Notably, the approximated shear modulus of 3.87 and
15.7 kPa of these long and short pillars (see Materials and
Methods section), was within the outside-in-sensing regimes
tested using PAA substrates (Figs 2, 3).

Cells adhering through a5b1 preferentially support
centripetal force application and long actin filaments in an
actomyosin contractility-dependent manner
Cells expressing a5b1 or avb3 show distinct organizations of
the actin cytoskeleton and cell–matrix adhesions, with a5b1

supporting predominantly concave cortical actin structures
(Danen et al., 2002; Danen et al., 2005) (Fig. 2C,D). We
hypothesized that the morphology supported by a5b1 was related

to more centripetally oriented forces (i.e. forces directed towards
the cell center) exerted at cell–matrix adhesions. In order to
investigate this, we analyzed the centripetally oriented force
fraction compared to the total force. Live measurement of traction

forces on 6.9 mm and 4.1 mm pillars showed that the centripetal
force fraction in GEb1 cells was slightly, but significantly, higher
than that observed in GEb3 cells (Fig. 5A, left panel). The

centripetal force fraction in GEb1+b3 and GEb3+b1 cells was
comparable to that in GEb1 cells. The higher centripetal force
fraction in b1-expressing cells was also observed in post-fixation

samples of GDb1, GDb3, GEb1 and GEb3 cells on 4.1 mm pillars
(Fig. 5A, middle panel).

We measured cortical actin filament lengths in GEb1 and
GEb3 cells on 4.1 mm pillars and noticed that higher centripetal

force orientation in GEb1 cells correlated with longer average
cortical actin filament length (Fig. 5B,C). This suggests that the
longer actin filaments in a5b1-expressing cells, rather than

Fig. 2. Cells respond to increased substrate
stiffness by increased spreading irrespective
of the integrin engaged. (A,B) Quantification of
cellular spread area of GEb1 and GEb3 cells
(A) or GDb1 and GDb3 cells (B) over measured
rigidities and cumulative Gaussian distribution
model fitted. Mean695% clearance level is
shown. .100 cells were measured from three
independent experiments (except at 760 Pa for
GEb1 and GEb3 cells where more than 60 cells
were measured from a single experiment).
P-values were calculated by comparing the
halfway points of the cumulative Gaussian fits
with an F-test. (C,D) Representative images of
cells described in A and B. Scale bars: 20 mm.
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shorter actin cables in avb3-expressing cells, support the

centripetal orientation of forces. We and others have previously
observed that a5b1 supports ROCK-mediated actomyosin
contractility (Danen et al., 2002; Danen et al., 2005; Schiller

et al., 2013; White et al., 2007) and we tested whether ROCK
signaling was involved in the centripetal orientation of applied
forces. Indeed, inhibition of ROCK or withdrawal of serum
[containing lysophosphatidic acid, a known stimulator of Rho–

ROCK signaling (Mills and Moolenaar, 2003)] reduced the
centripetal orientation of force (Fig. 5A, right panel). These
treatments also, though less effectively, reduced the average

cortical actin filament length in GEb1 to the level observed for
GEb3 (Fig. 5B,D). Likewise, treatment of GEb1 cells with the
myosin II inhibitor blebbistatin or disruption of the actin

cytoskeleton with latrunculin B left only short actin cables
intact and abolished the centripetal force orientation (Fig. 5B,D).

Taken together, these data show that even though traction
forces mediated by a5b1 and avb3 (possibly supported by other

fibronectin-binding av integrins) are similar in magnitude;
orientation of these forces is differentially regulated. This
difference is related to long-range cortical actomyosin fibers

supported by ROCK and myosin II in the context of a5b1 versus

shorter actin cables in the context of avb3 (Fig. 6).

DISCUSSION
Cell–matrix adhesions couple the ECM to the F-actin network and
are regions for force transmission, allowing cells to adapt to the
mechanical properties of the environment and to exert forces
needed to remodel their environment. Our findings demonstrate

that cell matrix adhesions can function as bi-directional force
transducers irrespective of whether they contain a5b1 (and very
little avb3) or avb3 (in the absence of any b1 integrins). It should

be noted that a contribution of alternative av integrins, such as
avb5, avb6 or avb8, and, in the case of cells expressing b1
integrins, also avb1 cannot be fully ruled out in our study. Integrins

a5b1 and avb3 have been shown to play distinct roles in adhesion
strengthening and actin cytoskeletal stiffening in integrin clusters
under force (Roca-Cusachs et al., 2009). Our findings show that
this does not translate into reduced force application by cell–

matrix adhesions in the absence of a5b1 or ineffective F-actin
reorganization when avb3 expression is low provided there is
compensation through enhanced expression of avb3 or a5b1,

Fig. 3. The number of cell–matrix adhesions
increases with increasing stiffness in an integrin-
controlled manner. (A,B) Quantification of number of
peripheral cell–matrix adhesions of GEb1 and GEb3
cells (A) or GDb1 and GDb3 cells (B) over measured
rigidities and fitted cumulative Gaussian distribution
function. In all graphs, mean695% clearance level is
shown and at least 20 cells were measured over three
independent experiments (except for 760 Pa for GEb1
and GEb3 cells where results of one experimental
replica is shown). P-values were calculated by
comparing the halfway points of the cumulative
Gaussian fits (A,B) with an F-test.
(C,D) Representative images of paxillin (top), zoomed in
region of the boxed area (middle) and adhesions
detected by the automated analysis algorithm (bottom).
Scale bar: 20 mm (5 mm for magnified images).
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respectively. Cells expressing either a5b1 or avb3 each respond
to cyclic substrate stretching and each can sense variations in

substrate stiffness and accordingly trigger cell spreading and cell–
matrix adhesion formation. Likewise, both integrins allow cell
matrix adhesions to apply traction forces onto the ECM and to

respond to increased stiffness with enhanced force application.
Nevertheless, the manner in which force transduction is

dynamically organized in cells expressing either of these

integrins does differ. Our findings indicate that cells expressing

avb3 form cell matrix adhesions more effectively at lower
substrate stiffnesses and more robustly reorganize their actin

cytoskeleton to find the minimal strain in response to substrate
stretching. It has been reported that substrate stretching triggers
phosphoinositide 3-kinase (PI3K)-mediated avb3 activation,
which in turn stimulates cellular responses including JNK

activation (Katsumi et al., 2005). It will be of interest to
explore whether such a mechanism underlies the effective
cytoskeletal reorganization observed in cells expressing high

levels of avb3. The emergence of avb3, which is frequently
observed during active processes, such as angiogenesis or cancer
invasion (Desgrosellier and Cheresh, 2010), might provide

endothelial or tumor cells in these cases with enhanced
flexibility to adapt their cytoarchitecture to ECM properties and
activate cellular signaling in soft environments.

Our findings indicate that cells using a5b1 or avb3 respond to
substrate stiffening by cell spreading, cell matrix adhesion
formation, and by applying more force to the substrate. It has
been demonstrated that av-integrins support coupling of RhoA

activity to mDia, which drives actin polymerization (Schiller
et al., 2013). Unlike that study, our experiments do not test such a
role for fibronectin-binding av-integrins in mechanotransduction;

av-integrins are expressed in all cell variants tested in our study
(avb1 and others in GEb1 and GDb1; avb3 and others in GEb3
and GDb3). Unlike earlier reports (Roca-Cusachs et al., 2009;

Schiller et al., 2013), we do not observe a marked deficiency in
traction force induction by cells lacking b1 integrins when avb3
is expressed at sufficient levels to fully rescue the adhesion

defect. Notably, expression levels in our study are comparable to
endogenous levels of b1 or b3 found in cancer cells. The role of
fibronectin-binding integrins in traction force generation appears
to differ for different cell types. Besides variations in the profile

of av integrins for which the distinct roles in cytoskeletal
organization are poorly understood, the integrin-associated
signaling complex, including Rho GTPases and their upstream

regulators and downstream effectors, might differ considerably in
the variety of cell types used in different studies. This makes a
direct comparison of different studies exploring integrin-mediated

control of cytoskeletal organization and mechanotransduction
difficult.

It has been reported that extracellular stimuli leading to
activation of a5b1, but not those causing activation of avb3, can

trigger cell traction forces (Lin et al., 2013). In that study, the
authors measured total force per cell, a parameter that is sensitive
to effects on cell spreading area. Instead, here we determined

force per pillar, which is independent of cell spreading area, and
show that the induction of traction forces in response to
extracellular stiffening can occur through both a5b1 and avb3.

The report from Lin et al. and our current study differ in the
stimuli that are used (antibody-mediated integrin activation
versus substrate stiffening through pillar shortening) and in the

cell types that are tested, which might regulate force transmission
differently. Our findings show that both integrins can be used by
cells to sense alterations in the physical properties of the
environment and to respond to such changes by modulation of

traction forces exerted onto the ECM.
Rather than a role for a5b1 in force generation per se, which

we show can be compensated for by enhanced expression of avb3

in complete absence of b1 integrins, we demonstrate that the
orientation of forces is determined by the absence or presence of
a5b1. This integrin allows cells to maintain contractile forces

directed to the center of the cell and in its absence, forces become

Fig. 4. Cellular traction force generation is similar for cells using a5b1
or avb3 integrins. (A,B) Bar plots of cellular spread area and force per pillar
of the indicated cell lines seeded on 6.9 mm PDMS pillars. Background
indicates forces measured in areas not covered by cells. (C) Representative
images from A,B; white arrows indicate magnitude and direction of forces
measured. Scale bar: 20 nN and 10 mm. (D,E) Bar plots of cellular spread
area and force per pillar of the indicated cell lines seeded on 4.1 mm PDMS
pillars, relative to measurements on 6.9 mm pillars. In all graphs, the
mean695% clearance level is shown and at least 30 cells were measured
over 3 independent experiments. (F) Representative images from D,E. White
arrows and scale bars are as in C.
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Fig. 5. See next page for legend.
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more randomly oriented. The ability of a5b1 to induce ROCK-
and myosin-II-mediated signaling, as demonstrated by us and
others (Danen et al., 2002; Danen et al., 2005; Schiller et al.,

2013; White et al., 2007), is important in this respect. We show
that it allows cells to form long actin filaments that might support
long-range force organization.

In conclusion, our findings show that both a5b1 and avb3
integrins support force sensing and force generation, but a5b1
predominantly mediates centripetally oriented traction forces that

are supported by ROCK- and myosin-II-mediated long actin
filaments. By contrast, the shorter actin cables that are supported
by avb3 allow more random force application and might provide
cells with increased actin cytoskeletal flexibility, allowing them to

more dynamically respond to mechanical cues (Fig. 6). This might
be particularly relevant in processes in which tissues go through
extensive physical remodeling, such as embryonic development,

angiogenesis and cancer progression where emergence of avb3 has
been documented.

MATERIALS AND METHODS
FACS analysis
For FACS, cells were detached using trypsin/EDTA and integrin surface

expression levels were determined using primary antibodies (for human

integrin b1, AIIB2, Developmental Studies Hybridoma Bank, Iowa City,

IA and for human integrin b3, 23CA, Santa Cruz Biotechnology, Inc.,

Dallas, TX) and fluorescence-conjugated secondary antibodies (Alexa-

Fluor-488-conjugated anti-rat-IgG or anti-rabbit-IgG, both from

Invitrogen/Fisher Scientific, Breda, The Netherlands) and analyzing on

a FACSCanto (Becton Dickinson, Breda, The Netherlands).

Cell culture
GD25 and GE11 cell lines expressing either a5b1 or avb3 or both

integrins were as described previously (Danen et al., 2002; Danen et al.,

2005) and were selected for integrin expression using bulk FACS

(supplementary material Fig. S1). Cells were cultured in Dulbecco’s

modified Eagle’s medium (DMEM;, Invitrogen/Fisher Scientific)

supplemented with 10% fetal bovine serum (HyClone, Etten-Leur, The

Netherlands), 25 U/ml penicillin and 25 mg/ml streptomycin (Invitrogen/

Fisher Scientific cat. number 15070-063). For visualization of the actin

cytoskeleton, cells were transduced using a lentiviral mCherry–LifeAct

cDNA expression vector (provided by Olivier Pertz, University of Basel,

Basel, Switzerland), selected in medium containing 2 mg/ml puromycin

(Acros Organics/Fisher Scientific cat. number 227420500), and bulk

sorted for mCherry expression using FACS (supplementary material Fig.

S1C–F,J). MDA-MB-435s human breast cancer cells were cultured in

RPMI medium 1640 (Invitrogen/Fisher Scientific) supplemented with

10% fetal bovine serum, 25 U/ml penicillin and 25 mg/ml streptomycin.

NIH3T3 cells were cultured in DMEM supplemented with 10% newborn

calf serum, 25 U/ml penicillin and 25 mg/ml streptomycin.

Cyclic cell stretching
An in-house made, piezo-driven, uniaxial stretcher was used to apply cyclic

stretch with defined frequency, duration and displacement, on cells adhered

to a fibronectin-coated PDMS membrane. Membranes were generated by

pipetting well mixed PDMS (Sylgard 184, Dow Corning, Midland,

MI, USA) at a 1:10 (crosslinker:prepolymer) ratio inside a glass mold

passivated with trichloro(1H,1H,2H,2H-perfluorooctyl)silane (Sigma

Aldrich, Zwijndrecht, The Netherlands) and incubating for 20 hours at

110 C̊. This membrane was mounted on the stretcher, coated with 10 mg/ml

fibronectin (Sigma Aldrich cat. number F1141) in phosphate buffered saline

(PBS) and cells were seeded and incubated overnight in complete medium

at 37 C̊ and 5% CO2 to allow full spreading. The stretcher was then

mounted on a spinning-disk confocal microscope (see Materials and

Methods, microscopy section), and was kept at 37 C̊ by a stand-alone single

loop temperature controller (#3216, InvensysEuroterm, Alphen aan den

Rijn, The Netherlands) connected to heaters and a thermo-coupler.

LabVIEW (National Instruments, Austin, TX) scripts developed by Wim

Pomp (Physics of Life Processes, Kamerlingh Onnes-Huygens Laboratory,

Leiden University, Leiden, the Netherlands) and provided by the

manufacturer of the controller unit (MCS-3D, SmarAct, Oldenburg,

Germany) were used to drive two independent piezo motors (SLC2430s,

SmarAct) that allowed uniaxial stretching. Images were collected before

stretch application, after 2 hours of 10% 1 Hz stretching and after a

subsequent 1 hour of 20% 1 Hz stretching.

Characterization of stretcher strain field
The strain field was quantified with help from Donato Civita (Physics of

Life Processes, Kamerlingh Onnes-Huygens Laboratory, Leiden

University, Leiden, The Netherlands) by stretching a membrane with a

micro-contact printed hexagonal lattice of fluorescent dots (Alexa Fluor

647, Invitrogen). Two-dimensional image cross-correlation provided a

deformation field over the entire substrate (supplementary material Fig.

S2A). Differentiation using the Lagrangian strain tensor yielded the strain

on every position on the substrate. The strain was 0.43% in the x-

direction and 20.18% in the y-direction for every 0.5% externally

applied static strain. These results were homogeneous and reproducible

over the entire substrate within a strain measurement error of 0.01%.

Fig. 5. Higher centripetal force fraction in cells using a5b1 correlates
with longer cortical actin filaments that are dependent on ROCK- and
myosin II activity. (A) Bar plots showing percentage centripetal force for the
indicated cell lines on 6.9 mm and 4.1 mm PDMS pillars determined by live
microscopy (left graph) or post-fixation analysis (middle and right graphs).
Treatments in the right graph are 0.25 mM Y and 0.5 mM Y, Y27632
concentrations; bleb, 50 mM blebbistatin; LatB, 0.5 mM Latranculin B.
Background indicates forces measured in areas not covered by cells. (B) Bar
plots of average cortical actin filament length of the indicated cell lines on
4.1 mm PDMS pillars. Indicated treatments as in A, right graph. In all graphs,
the mean695% clearance level is shown and at least 15 cells were
measured over three different experiments. Indicated P-values are compared
to untreated b1 expressing cells (marked by dotted lines); NS, P.0.05;
*P,0.05; **P,0.005; ***P,0.0005 according to Mann–Whitney test.
(C,D) Representative images (top) and extracted actin cytoskeleton (bottom)
for control (C) and treatment conditions (D). White arrows indicate magnitude
and direction of forces measured. Scale bars: 20 nN and 10 mm.

Fig. 6. Model for integrin regulated mechanotransduction. Both a5b1
and avb3 integrins are able to support sensing and responding to mechanical
cues from the environment (outside-in signaling) and to mediate force
generation onto the ECM (inside-out signaling). ROCK- and myosin-
mediated long actin filaments are supported by a5b1 integrins and allow cells
to apply centripetally oriented forces. Shorter actin filaments in avb3-
expressing cells support more randomly oriented traction forces and might
provide flexibility to reorganize the actin cytoskeleton in response to
mechanical cues from the environment. Potential roles for alternative av
integrins (e.g. avb1 and avb6) have not been tested here but might modulate
the outcome of shifts in expression of a5b1 and avb3.
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For characterizing strain at cyclic stretch conditions, a PDMS

membrane with fluorescent beads dried on top was used and the piezo

motors were run at 10% or 20% displacement at 0.01 Hz and a stack of

images was obtained every 2 or 3 seconds, respectively to get the in-

focus image and calculate strain. A macroscopic strain of 10% and 20%

resulted in 8.0% and 14.5% strain, respectively, on the central area of the

membrane along the direction of global strain. The substrate showed

3.5% and 5.0% shrinkage, respectively, in the perpendicular direction

(Fig. 1A; supplementary material Fig. S2A–D). Based on these

measurements we calculated that the minimal strain was at 57˚ and

60 ,̊ respectively relative to direction of macroscopic strain.

PAA substrates
PAA gels on 12-mm coverslips were made according to specifications

adapted from Yeung et al. (Yeung et al., 2005). Briefly, autoclaved 12-

mm coverslips (Thermo Fisher cat. number 360302) were cleaned with

0.1 M NaOH, and then rendered hydrophilic by incubating with 0.5% 3-

aminopropyltrimethoxysilane (Sigma-Aldrich cat. number 281778). The

coverslips were then washed thoroughly with sterile distilled water and

incubated in 0.5% glutaraldehyde (Sigma-Aldrich cat. number G6257).

Upon removal of the glutaraldehyde, the coverslips were left overnight to

dry in a laminar flow cabinet. Coverslips of 10-mm diameter (Thermo

Fisher cat. number 360301) were rendered hydrophobic by incubating

with a solution of 10% hydrocarbon-soluble siliconizing fluid (Surfa Sil;

Thermo Fisher, cat. number TS-42800) in chloroform. Surfa Sil-treated

coverslips were washed in 100% chloroform and then washed twice with

methanol before being left overnight in a laminar flow cabinet to dry.

PAA solutions were made with compositions of 7.5% acrylamide

(Biorad cat. number 161-0141, Veenendaal, The Netherlands) and

varying concentrations (0.01%, 0.03%, 0.05, 0.1%, 0.15%, 0.2%, 0.3%

and 0.5%) of bis-acrylamide (Biorad cat. number 161-0200) to a final

volume of 1 ml. To this solution, 1.5 ml TEMED (Thermo Fisher cat.

number 17-1312-01) and 5 ml of 10% ammonium persulfate were added to

start polymerization. 10 ml of this final solution was applied to the middle of

each 12-mm coverslip. The 10-mm coverslips were then placed on top of

this solution to form a sandwich and left to polymerize for 30 minutes.

50 mM HEPES was added and after 15 minutes the top coverslips were

removed and the gels were washed once with 50 mM HEPES. PAA gels

were activated with an organic crosslinker by removing HEPES and

submerging gels in a solution of 0.5 mM sulfosyccinimidyl-6-(49azido-

29nitrophenylamino)hexanoate (Thermo Fisher, cat. number 22589) and

50 mM HEPES and placing under UV light (Philips HP3114, Eindhoven,

The Netherlands). This step was repeated a second time after a wash with

50 mM HEPES. The gels were then washed twice with 50 mM HEPES and

incubated overnight at 4 C̊ in 10 mg/ml fibronectin (Sigma Aldrich cat.

number F1141) in PBS. After washing with PBS, gels were allowed to

equilibrate for 1 hour in complete culture medium at 37 C̊ before seeding

with 25,000 cells/well in complete medium. Cells were allowed to adhere

and spread before fixation by incubating for two hours at 37 C̊ and 5% CO2.

Analysis of stiffness of PAA gels by rheology
Rheology experiments were performed with a stress-controlled rheometer

(Physica MCR 501; Anton Paar, Graz, Austria) with assistance from

Karin A. Jansen and Gijsje H. Koenderink (Biological Soft Matter Group,

FOM Institute AMOLF, Amsterdam, The Netherlands) as previously

described (Jansen et al., 2013). Briefly the PAA gel was polymerized at

21 C̊ between a steel cone and plate (40 mm diameter, 1 )̊ and shear

storage modulus was recorded in real time during the polymerization

(,1 hour) by applying a small-amplitude oscillatory strain with

amplitude 0.5% and frequency 3.14 rad/second. After polymerization,

PBS was added to the measuring chamber and the system was brought to

37 C̊ while monitoring the shear storage modulus. The measured shear

loss modulus was more than two orders of magnitude smaller than the

storage component, hence was ignored.

PAA and PDMS adhesion assay
GEb1 and GEb3 cells were first incubated on ice with blocking

antibodies targeting mouse integrin a5 (cat. number MAB1984,

Millipore, CA), mouse av (cat. number 552299 Becton Dickinson,

Breda, The Netherlands), human b1 (AIIB2) and human b3 (23CA) for

30 minutes and then seeded on PAA gels (stiffness of 12.2 kPa) for

1 hour or on PDMS blocks (a 1:10 crosslinker to prepolymer ratio) for

30 minutes at 37 C̊ and 5% CO2. They were then fixed with

formaldehyde and cells on 6–10 different fields of view per condition

were counted.

Assays using PDMS micropillars
Micropillars were used for cellular traction force measurements

according to methodology described previously (Trichet et al., 2012;

van Hoorn et al., 2014). A negative silicon wafer master was made using

a two-step deep reactive ion etching (DRIE) process. Two different

etching depths were obtained by subsequently applying two masks to the

same wafer. A mask with 10610 mm arrays with circles of 2 mm

diameter and 4 mm center-to-center distance in a hexagonal grid was used

as a negative for the micropillar arrays and a mask with two rectangular

spacers of 1062 mm was aligned on the sides of the arrays. The etching

depth was varied for the micropillar arrays to make short and long pillars,

calculated to have a bending stiffness of 66 nN/mm and 16 nN/mm,

respectively, using finite element modeling (van Hoorn et al., 2014).

Using a published elastic model (Ghibaudo et al., 2008), we calculated

that these bending stiffnesses corresponded to a Young’s modulus in

continuous (e.g. PAA) substrates of ,47.2 and 11.6 kPa; corresponding

to a shear modulus of 15.7 and 3.87 kPa, respectively. The etching depth

of the spacers was set to 50 mm, to enable high-resolution microscopy

with inverted micropillar arrays (see Materials and Methods, microscopy

section).

After passivation of the negative silicon master with trichloro silane

(Sigma Aldrich), well-mixed PDMS at a 1:10 (crosslinker:prepolymer)

ratio was poured over the wafer. After 20 hours at 110 C̊, the PDMS was

fully cured at a stiffness of 2.5 MPa (as determined by tensile testing).

The individual micropillar arrays were peeled off with two spacers on the

sides. ECM stamping was performed using a flat piece of PDMS (1:30

ratio, cured 16 hours at 65 C̊). Per stamp, a 40 ml mix of 50 mg/ml

unlabeled fibronectin (Sigma Aldrich) and 10 mg/ml fibronectin

conjugated to Alexa Fluor 405 or Alexa Fluor 647 (both from

Invitrogen) was used. After stamping, the micropillars were blocked

with 0.2% Pluronic (F-127, Sigma Aldrich) in PBS for 1 hour at room

temperature and washed with PBS.

Cells were seeded in complete medium, serum-free medium or

medium containing blocking antibodies targeting mouse integrin av

subunit, and imaging of F-actin and labeled fibronectin was performed

after cell spreading. For some analyses, after cell spreading, the medium

was exchanged for medium containing 0.25 or 0.5 mM Y27632 ROCK

inhibitor (Tocris cat. number 1254, Bristol, UK); 50 mM blebbistatin

myosin II inhibitor (Calbiochem cat. number 203389, Merck KGaA,

Darmstadt, Germany), or 0.5 mM Latranculin B F-actin polymerization

inhibitor (Calbiochem cat. number 428020), and further incubated for

1 hour followed by 4% formaldehyde fixation and immunostaining.

Immunostaining
Cells were fixed in 4% formaldehyde and then permeabilized with 0.1%

Triton-X and 0.5% BSA in PBS. Immunostaining was performed for

phosphorylated (pY188) paxillin (Biosource/Invitrogen cat. number 44-

722G; Becton Dickinson cat. number 610052) followed by secondary

antibodies conjugated with Alexa488 (Invitrogen/Fisher Scientific cat.

number A11008) or Alexa Fluor 647 (Jackson ImmunoResearch cat.

number 115-605-006). Rhodamine–phalloidin (Sigma-Aldrich cat. #

77418-1EA) or Alexa-Fluor-568–phalloidin (Fisher Emergo B.V. cat.

number A12380, Thermo Fisher) was used to stain F-actin. Hoechst

33258 was used to visualize nuclei.

Microscopy
High-resolution imaging was performed on an in-house constructed setup

based on an Axiovert200 microscope body (Zeiss, Sliedrecht, The

Netherlands). Confocal imaging was achieved by means of a spinning

disk unit (CSU-X1, Yokogawa, Amersfoort, The Netherlands). The
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confocal image was connected to an emCCD camera (iXon 897, Andor,

Belfast, UK). IQ-software (Andor) was used for basic setup-control and

data acquisition. Three laser lines were coupled through a polarization-

maintaining single-mode fiber, controlled using an Acousto-Optical

Tunable Filter (AA Optoelectronics, Orsay, France): 405 nm

(Crystalaser, Reno, NV), 488 nm (Coherent, Santa Clara, CA, USA)

and 561 nm (Cobolt, Stockholm, Sweden). Incorporated 50 mm spacers

next to the micropillar arrays combined with a 100-mm thick coverslip

enabled the use of a high numerical aperture (1.4) objective with 1006
magnification. For live-cell imaging and imaging of 3T3 cells, a Nikon

Eclipse Ti microscope in scanning confocal mode was used together

with a 206 magnification 0.75 NA dry air lens with internal 1.56
magnification and 4.184 scanner zoom to obtain a pixel size of 0.2 mm.

Image analysis
All image analysis was performed using specifically designed Matlab

scripts (Mathworks, Natick, MA, USA). For cell area analysis, scripts

generated by Hans de Bont (Division of Toxicology, Leiden Academic

Center for Drug Research, Leiden, the Netherlands) were adapted to

apply a rolling ball filter to the image followed by a median filter and

subsequently cell detection and image segmentation was performed

manually per image to best obtain area per single cell.

For cell–matrix adhesion analysis a cell mask was generated by

passing the image of the actin channel through a Gaussian low pass filter.

Subsequently, the background intensity was subtracted and the image

was run through a sobel and a log-edge detection algorithm followed by

image dilation and hole filling each time. The outputs were checked and

new masks were generated manually as described above when the mask

did not correctly correspond to the cell. Subsequently, for cell–matrix

adhesion detection, the pY188 paxillin signal that was assigned to a cell

within 20 mm from the cell border was first passed through a Gaussian

low pass filter, and signal that was four standard deviations larger than

the average of the signal was assigned to cell–matrix adhesions. The

binary adhesion images were then subjected to a hole-filling algorithm

followed by watershed segmentation. The results were manually checked

and images showing incorrect adhesion recognition due to low signal-to-

noise ratio were excluded from analysis.

For the actin filament analysis, a rolling ball filter was applied to the

actin signal inside the cell mask area. Then the signal one standard

deviation above the mean was taken as foreground signal. To remove

noise from the signal, the signal was shrunk, then singular pixels were

removed and finally the image was dilated once. From this image,

objects smaller than 0.2 mm2 were removed and then the image was

skeletonized, followed by connecting diagonals to connect neighboring

filaments and then removing all branching points to analyze filaments

separately. When analyzing cortical actin, only filaments within 2 mm of

the cell border were taken into account. For orientation analysis, all

filaments were averaged over all cells and the output was convolved

with a unit Gaussian to improve the visualization. This was then

corrected for the square imaging window by calculating the maximum

measurable fiber length in a given angle and weighing this correction

per stretch condition by the percentage of a cell of measured average

size falling outside of the imaging window if it were a circle

(supplementary material Fig. S2E).

Pillar deflection analysis
Pillar deflections were determined with ,30 nm precision using a

specifically designed Matlab script (van Hoorn et al., 2014). Briefly, the

exact pillar locations were determined from the labeled fibronectin

fluorescence image using a fit to the cross-correlation function between a

perfect binary circle and the local fluorescence of one pillar. The

undeflected hexagonal grid was determined and used as reference to the

determined pillar locations. The precision of the forces was dependent on

the pillar bending stiffness, where the high- and low-stiffness pillars had

a precision of 2 nN and 0.5 nN, respectively.

Cell masks were generated using the same algorithm as for the cell–

matrix adhesion analysis that was then dilated. The pillars under this

dilated image that had a deflection larger than 0.06 mm in the fixed and

integrin blocking assay and larger than 0.2 mm for all other live assays

were taken for analysis. Total force was calculated by adding all the

absolute deflections and multiplying it by the bending stiffness. The

centripetal force percentage was obtained by dividing the radial

components of the forces (the forces that point towards the center of

the generated cell mask) by the total cellular force.

Statistical analysis
To calculate significance between two conditions, the Mann–Whitney U

test was used. To quantify the PAA substrate responses, a cumulative

Gaussian distribution was fitted to the data and the half response point

(the mean of the distribution) was compared between the conditions using

the F-test in the GraphPad Prism 6 program (GraphPad Software, La

Jolla, CA).
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(2013). b1- and av-class integrins cooperate to regulate myosin II during rigidity
sensing of fibronectin-based microenvironments. Nat. Cell Biol. 15, 625-
636.

Trichet, L., Le Digabel, J., Hawkins, R. J., Vedula, S. R. K., Gupta, M., Ribrault,
C., Hersen, P., Voituriez, R. and Ladoux, B. (2012). Evidence of a large-scale
mechanosensing mechanism for cellular adaptation to substrate stiffness. Proc.
Natl. Acad. Sci. 109, 6933-6938.

van Hoorn, H., Harkes, R., Spiesz, E. M., Storm, C., van Noort, D., Ladoux, B.
and Schmidt, T. (2014). The nanoscale architecture of force-bearing focal
adhesions. Nano Lett. 14, 4257-4262.

White, D. P., Caswell, P. T. and Norman, J. C. (2007). a v b3 and a5b1 integrin
recycling pathways dictate downstream Rho kinase signaling to regulate
persistent cell migration. J. Cell Biol. 177, 515-525.

Wolfenson, H., Lavelin, I. and Geiger, B. (2013). Dynamic regulation of the
structure and functions of integrin adhesions. Dev. Cell 24, 447-458.

Woods, D., Cherwinski, H., Venetsanakos, E., Bhat, A., Gysin, S., Humbert, M.,
Bray, P. F., Saylor, V. L. and McMahon, M. (2001). Induction of b3-integrin gene
expression by sustained activation of the Ras-regulated Raf-MEK-extracellular
signal-regulated kinase signaling pathway. Mol. Cell. Biol. 21, 3192-3205.

Yeung, T., Georges, P. C., Flanagan, L. A., Marg, B., Ortiz, M., Funaki, M.,
Zahir, N., Ming, W., Weaver, V. and Janmey, P. A. (2005). Effects of substrate
stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil.
Cytoskeleton 60, 24-34.

RESEARCH ARTICLE Journal of Cell Science (2015) 128, 1316–1326 doi:10.1242/jcs.156950

1326

http://dx.doi.org/10.1038/nrc1143
http://dx.doi.org/10.1038/nrc1143
http://dx.doi.org/10.1073/pnas.0902818106
http://dx.doi.org/10.1073/pnas.0902818106
http://dx.doi.org/10.1073/pnas.0902818106
http://dx.doi.org/10.1073/pnas.0902818106
http://dx.doi.org/10.1242/jcs.095794
http://dx.doi.org/10.1242/jcs.095794
http://dx.doi.org/10.1242/jcs.095794
http://dx.doi.org/10.1038/embor.2013.49
http://dx.doi.org/10.1038/embor.2013.49
http://dx.doi.org/10.1038/ncb2747
http://dx.doi.org/10.1038/ncb2747
http://dx.doi.org/10.1038/ncb2747
http://dx.doi.org/10.1038/ncb2747
http://dx.doi.org/10.1038/ncb2747
http://dx.doi.org/10.1073/pnas.1117810109
http://dx.doi.org/10.1073/pnas.1117810109
http://dx.doi.org/10.1073/pnas.1117810109
http://dx.doi.org/10.1073/pnas.1117810109
http://dx.doi.org/10.1021/nl5008773
http://dx.doi.org/10.1021/nl5008773
http://dx.doi.org/10.1021/nl5008773
http://dx.doi.org/10.1083/jcb.200609004
http://dx.doi.org/10.1083/jcb.200609004
http://dx.doi.org/10.1083/jcb.200609004
http://dx.doi.org/10.1016/j.devcel.2013.02.012
http://dx.doi.org/10.1016/j.devcel.2013.02.012
http://dx.doi.org/10.1128/MCB.21.9.3192-3205.2001
http://dx.doi.org/10.1128/MCB.21.9.3192-3205.2001
http://dx.doi.org/10.1128/MCB.21.9.3192-3205.2001
http://dx.doi.org/10.1128/MCB.21.9.3192-3205.2001
http://dx.doi.org/10.1002/cm.20041
http://dx.doi.org/10.1002/cm.20041
http://dx.doi.org/10.1002/cm.20041
http://dx.doi.org/10.1002/cm.20041

	Fig 1
	Fig 2
	Fig 3
	Fig 4
	Fig 5
	Fig 6
	Ref 1
	Ref 2
	Ref 3
	Ref 4
	Ref 5
	Ref 6
	Ref 7
	Ref 8
	Ref 9
	Ref 10
	Ref 11
	Ref 12
	Ref 13
	Ref 14
	Ref 15
	Ref 16
	Ref 17
	Ref 18
	Ref 19
	Ref 20
	Ref 21
	Ref 22
	Ref 23
	Ref 24
	Ref 25
	Ref 26


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 30%)
  /CalRGBProfile (None)
  /CalCMYKProfile (U.S. Sheetfed Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed false
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 200
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 200
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly true
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Euroscale Coated v2)
  /PDFXOutputConditionIdentifier (FOGRA1)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d002000650069006e0065006e00200042006500720069006300680074002000fc00620065007200200064006900650020005000440046002f0058002d0033002d004b006f006d007000610074006900620069006c0069007400e4007400200065007200680061006c00740065006e00200075006e00640020005000440046002d0044006f006b0075006d0065006e007400650020006e00750072002000640061006e006e0020007a0075002000650072007300740065006c006c0065006e002c002000770065006e006e0020007300690065002000fc0062006500720020006400690065007300650020004b006f006d007000610074006900620069006c0069007400e400740020007600650072006600fc00670065006e002e0020005000440046002f00580020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020007a0075006d002000410075007300740061007500730063006800200076006f006e0020006400690067006900740061006c0065006e00200044007200750063006b0076006f0072006c006100670065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d0033002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200034002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064002700e900760061006c0075006500720020006c006100200063006f006e0066006f0072006d0069007400e9002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d003300200065007400200064006500200063006f006e0064006900740069006f006e006e006500720020006c0061002000700072006f00640075006300740069006f006e00200064006500200064006f00630075006d0065006e007400730020005000440046002000e000200063006500740074006500200063006f006e0066006f0072006d0069007400e9002e0020005000440046002f0058002000650073007400200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200065006e0020007300610076006f0069007200200070006c0075007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020005000440046002f0058002d0033002c00200063006f006e00730075006c00740065007a0020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e00200034002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /JPN <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Settings for the Rampage workflow.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


