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Quench dynamics of fermion-parity switches in a Josephson junction
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A Josephson junction may be driven through a transition where the superconducting condensate favors an odd
over an even number of electrons. At this switch in the ground-state fermion parity, an Andreev bound state
crosses through the Fermi level, producing a zero mode that can be probed by a point contact to a grounded metal.
We calculate the time-dependent charge transfer between superconductor and metal for a linear sweep through
the transition. One single quasiparticle is exchanged with charge Q depending on the coupling energies γ1,γ2 of
the metal to the Majorana operators of the zero mode. For a single-channel point contact, Q equals the electron
charge e in the adiabatic limit of slow driving, while in the opposite quenched limit Q = 2e

√
γ1γ2/(γ1 + γ2)

varies between 0 and e. This provides a method to produce single charge-neutral quasiparticles on demand.
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I. INTRODUCTION

Superconductors connected by a Josephson junction can
freely exchange pairs of electrons, but single-electron transfer
is suppressed by the superconducting gap [1]. The tunneling
of an unpaired electron into the junction is an incoherent,
stochastic source of charge noise in a Cooper pair transistor
[2]. In contrast to this undesirable “quasiparticle poisoning,”
a controlled phase-coherent way to exchange single quasipar-
ticles with a superconductor would be a desirable tool, that
would complement existing single-electron sources in normal
metals and semiconductors [3–8].

Here we propose to exploit the phenomenon of a fermion-
parity switch to transfer, phase coherently and on demand, a
single quasiparticle of adjustable charge Q from a Josephson
junction to a metal probe [see Fig. 1(a)]. A fermion-parity
switch is a topological phase transition (zero-dimensional
class D in the “tenfold way” classification [9,10]) where
the superconducting condensate can lower its ground-state
energy by incorporating an unpaired electron and changing
the number of electrons in the ground state from νF even to
νF odd [11], leaving behind as “defects” an odd number of
quasiparticle excitations above the ground state.

In the quasiparticle excitation spectrum, the switch in the
ground-state fermion parity is signaled by the crossing of a pair
of bound states (Andreev levels) at E = 0 (the Fermi level).
There may be an even number of switches when the phase
difference φ across the Josephson junction is incremented by
2π—if there is an odd number of switches [as in Fig. 1(b)]
the superconductor is topologically nontrivial. The two lowest
Andreev levels ±E0(φ) of a nontrivial Josephson junction have
a cos(φ/2) phase dependence [12],

E0(φ) = �0

√
T0 cos(φ/2). (1)

The superconducting gap is �0 and T0 ∈ (0,1) is the trans-
mission probability through the junction. For small T0 this
describes a pair of bound states at nearly zero energy,
consisting of an equal-weight superposition of electron and
hole excitations. Such a charge-neutral quasiparticle is called
a “Majorana fermion” (or Majorana zero mode) because of the
identity of particle and antiparticle. These objects have unusual
non-Abelian statistics (see Refs. [13–16] for recent reviews),
but here it is only their charge neutrality that matters.

Fermion-parity switches are actively studied, theoretically
[17–22] and experimentally [23–25], for the connection
to topological superconductivity and Majorana fermions
[26–29]. The dynamics of the transition is what concerns us
here, in particular the quench dynamics, where φ(t) is driven
rapidly through the switch from even to odd ground-state
fermion parity.

The geometry of Fig. 1 that we consider is modeled
after existing experiments (e.g., Ref. [24]), where a meso-
scopic Josephson junction is formed by a semiconductor
nanowire connecting two arms of a superconducting ring.
A time-dependent flux �(t) enclosed by the ring imposes a
time dependence on the phase difference φ(t) = �(t) × 2e/�

across the junction. When the Josephson junction is quenched
through a fermion-parity switch there will appear a current
pulse I (t) from the superconductor (S) into the metal (N).
We seek the quasiparticle content of that pulse. How many
quasiparticles are transferred? What is the transferred charge?
In particular, we wish to establish the conditions under which
a single quasiparticle is transferred with vanishing charge
expectation value.

We find that the quench dynamics transfers one single
quasiparticle from the superconductor to the metal, as a wave
packet that is a coherent superposition of electron and hole
states near the Fermi level. A nearly charge-neutral equal-
weight superposition is produced in a topologically nontrivial
superconductor, if the metal probe couples predominantly to
one of the two spatially separated Majorana zero modes. More
generally, for two arbitrary coupling constants γ1,γ2 we derive
that the quantum quench injects a charge

Qquench = 2e
√

γ1γ2/(γ1 + γ2) (2)

into a single-channel point contact. For a multichannel point
contact the injected charge is reduced further by a factor R
determined by the peak height Gpeak = (4e2/h)(1 − R2) of
the point contact conductance at resonance.

II. MICROSCOPIC MODEL

Before proceeding to the mathematical analysis of the
quench dynamics, we explore the relevant physical param-
eters in a microscopic model [30] for an InSb nanowire
(length L = 2.5 μm, width W = 0.25 μm, and Fermi energy
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FIG. 1. (Color online) (a) Josephson junction formed by a super-
conducting ring interrupted by a nanowire. The junction contains
two Majorana zero modes, separated by a tunnel barrier (height
V0). A time-dependent flux �(t) through the ring drives the phase
φ(t) = �(t) × 2e/� through a fermion-parity switch, at which a
quasiparticle is injected as a current I (t) into the grounded metal
probe. (b) Pair of phase-dependent Andreev levels ±E0(φ) in the
closed Josephson junction (uncoupled from the metal). The switch in
the ground-state fermion parity νF is signaled by a level crossing.

EF = 1.52 meV, corresponding to four occupied electron
subbands), coupled at both ends to a Nb superconductor
(induced gap �0 = 0.4 meV). Spin-rotation symmetry is
broken by Rashba spin-orbit coupling (characteristic length
lso = �

2/meffαso = 0.25 μm), and time-reversal symmetry is
broken by a magnetic field parallel to the wire (Zeeman
energy VZ = 1

2geffμBB = 0.6 meV). For these parameters, the
Josephson junction is in the nontrivial regime, with a pair
of Majorana zero modes at the two ends [31,32]. We tune
the coupling strength of the Majoranas by means of a tunnel
barrier of width 25 nm and adjustable height V0 (which might
be experimentally realized by means of a gate voltage). The
data shown in Fig. 2 is for V0 = 15 meV. (See Appendix A
for details of the calculation.)

The Josephson junction is coupled by a point contact to
a normal-metal probe, which plays the role of a fermion
bath that can exchange quasiparticles with the superconductor.
We assume that the charging energy of the junction is much
smaller than the Josephson energy, to ensure that the Coulomb
blockade of charge transfer is not effective. The Josephson

FIG. 2. (Color online) Phase dependence of the complex energies
En − i	n of a pair of quasibound states of the open Josephson junction
(solid curves), when the energies ±E0 of the closed junction (dashed
curves) vary through the level crossing of Fig. 1(b). At the fermion
parity switch, the inverse lifetimes 	n reach opposite extremal points
πγn, n = 1,2.

junction is now an open system, with quasibound Andreev
states En − i	n that acquire a finite lifetime �/2	n. The
evolution of a pair of these states through the fermion-parity
switch is shown in Fig. 2 [33]. The coupling constants γn that
determine the transferred charge can be read off from

πγn = lim
φ→π

	n(φ). (3)

Particle-hole symmetry requires that the complex energies
come in pairs ±E − i	, symmetrically arranged around the
imaginary axis. This constraint produces a bifurcation point
(pole transition [34] or exceptional point [35]) at which the
real part is pinned to E = 0 and the decay rates 	1, 	2 become
distinct—resulting in widely different γ1, γ2. The unusual
extension of the level crossing over a finite interval seen in
Fig. 2 is the key distinguishing feature of level crossings in
superconducting and nonsuperconducting systems, and makes
the dynamical problem considered here qualitatively different
from the familiar Landau-Zener dynamics [36].

III. SCATTERING FORMULATION

The exchange of quasiparticles across the NS interface is
described by the scattering matrix

S(t,t ′) = δ(t − t ′) − 2πiW †G(t,t ′)W. (4)

The coupling matrix W to the fermion bath is assumed to
be time independent. The retarded Green’s function G(t,t ′)
satisfies the differential equation [37]

(i∂/∂t − H [φ(t)] + iπWW †)G(t,t ′) = δ(t − t ′), (5)

where H (φ) is the Bogoliubov–de Gennes Hamiltonian of the
Josephson junction at a fixed value φ of the superconducting
phase difference. (We have set � ≡ 1 for ease of notation.)
Fourier transform to the energy domain is defined by

S(E,E′) =
∫ ∞

−∞
dt

∫ ∞

−∞
dt ′eiEt−iE′t ′S(t,t ′). (6)

In a stationary situation, with a time-independent Hamil-
tonian H , the scattering matrix is diagonal in energy,
S(E,E′) = 2πδ(E − E′)S0(E), with S0 given by the Mahaux-
Weidenmüller formula [38],

S0(E) = 1 − 2πiW †(E − Heff)
−1W,

Heff = H − iπWW †. (7)

The formulation of this dynamical problem in an open system
in terms of an effective non-Hermitian Hamiltonian Heff goes
back to the early days of nuclear scattering theory [39,40].

For a minimal description, we take a pair of Andreev levels
in the Josephson junction coupled to a pair of electron-hole
modes in a single-channel metal probe. (The multichannel
case is addressed in Sec. V B.) Both H and W are now 2 × 2
matrices. Particle-hole symmetry requires that

H = −σxH
∗σx, W = σxW

∗σx. (8)

(The Pauli matrix σx interchanges electron and hole indices.)
Particle-hole symmetry is the only symmetry constraint we
impose on the system (symmetry class D), assuming that time-
reversal symmetry and spin-rotation symmetry are both broken
by magnetic field and spin-orbit coupling in the nanowire.
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Using also that H = H †, we have the general form

H = E0σz, W = eiα′σz eiασz ,  =
(

λ+ λ−
λ− λ+

)
, (9)

with real coefficients α,α′, λ±. The eigenvalues γ1,γ2 � 0 of
the coupling matrix product WW † are given by

γ1 = (λ+ + λ−)2, γ2 = (λ+ − λ−)2. (10)

The eigenvalues of Heff (representing the poles of S0 in the
complex energy plane) are given by

E± = −iπγ̄ ± E0

√
1 + (πγ̃ /E0)2 − (πγ̄ /E0)2, (11)

in terms of the arithmetic and geometric mean

γ̄ = 1
2 (γ1 + γ2), γ̃ = √

γ1γ2. (12)

The evolution of E± through the fermion-parity switch is
shown in Fig. 3. The relation E+ = −E∗

− required by particle-
hole symmetry produces a bifurcation point at which the two
quasibound states acquire distinct decay rates [34,35]; see also
Fig. 2.

The time dependent phase difference φ(t) across the
Josephson junction shakes up the fermion bath in the normal
metal. We assume zero temperature, so that the unperturbed
Fermi sea is the vacuum state |0〉 for excitations: a(E)|0〉 = 0
for E > 0, with a = (a1,a2) the two-component Nambu spinor
of annihilation operators for Bogoliubov quasiparticles. The
fermion-parity switch produces a superposition

|�〉 = ζ0|0〉 +
∞∑

p=1

|�p〉 (13)

of the vacuum state with p-particle excited states

|�p〉 =
[∑

E>0

∑
E′<0

a†(E)S(E,E′)a(E′)

]p

|0〉. (14)

FIG. 3. (Color online) Evolution of the complex eigenvalues E±
of the effective Hamiltonian (7) of the open Josephson junction
(coupled to a metal probe), when the real eigenvalues ±E0 of
the closed junction vary through a level crossing. At the fermion
parity switch, E0 = 0 and E± reach opposite extremal points on the
imaginary axis.

[The sum
∑

E is evaluated as (2π )−1
∫

dE.] The weight ζ0

of the unperturbed Fermi sea follows from the normalization
〈�|�〉 = 1.

IV. LINEAR SWEEP THROUGH THE
FERMION-PARITY SWITCH

We now proceed to a complete solution of the dynamics of
the fermion-parity switch, to derive the result (2) for the charge
of the transferred quasiparticle. The nonsuperconducting
counterpart to this problem was studied by Keeling, Shytov,
and Levitov [41]. Their analysis provided much guidance and
inspiration for what follows.

We calculate the scattering matrix for a linear sweep
through the fermion parity switch: E0[φ(t)] = γ 2

0 t . Referring
to Eq. (1), this linear approximation of the spectrum is justified
for rapidities γ 2

0 � √
T0�0γ̄ . In the energy domain, Eqs. (4)

and (5) then take the form

S(E,E′) = 2πδ(E − E′) − 2πi e−iασzG(E,E′)eiασz ,(
iγ 2

0 σz∂/∂E + E + iπ2
)
G(E,E′)

= 2πδ(E − E′). (15)

The solution for the Green’s function factorizes,

G(E,E′) = 2π

iγ 2
0

X(E)�(E − E′)σzX
−1(E′)σz, (16)

�(E − E′) =
(

θ (E − E′) 0
0 θ (E′ − E)

)
. (17)

Here θ (E) is the unit step function and the matrix X(E) solves
the homogeneous equation [42](

iγ 2
0 σz∂

/
∂E + E + iπ2

)
X(E) = 0. (18)

Because of particle-hole symmetry, X has two rather than four
independent elements,

X(E) =
(

u(E) v∗(−E)
v(E) u∗(−E)

)
, (19)

determined by

γ 2
0 u′′ + (ε2 + δ2 − i)u = 0, δv = iεu − γ0u

′, (20)

ε = (E + iπγ̄ )/γ0, δ = 1
2π (γ1 − γ2)/γ0. (21)

The retarded Green’s function is specified by G → 0 in
the limits E → +∞ or E → −∞. The factor � in Eq. (16)
ensures that this two-sided decay follows from the one-sided
decay u,v → 0 for E → +∞. With this condition the solution
of Eq. (20) reads [43]

u(E) = eiε2/2U
(− 1

4 iδ2, 1
2 ; −iε2),

v(E) = − 1
2δ eiπ/4eiε2/2U

(
1
2 − 1

4 iδ2, 1
2 ; −iε2), (22)

where U is the confluent hypergeometric function of the
second kind [44,45]. The determinant of X is particularly
simple (see Appendix B)

DetX = exp(−πδ2/4), (23)

independent of energy.
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The scattering matrix (15) results as the dyadic product of
two vectors,

Snm(E,E′)|E>E′ = −ψn(E)ψ∗
m(−E′), (24)

ψ(E) = (2π/γ0)eπδ2/8e−iασz

(
u(E)
v(E)

)
. (25)

Substitution into Eq. (14) gives |�p〉 = 0 for p � 2 because
of the anticommutation of the creation operators, so that only
a single-particle excitation remains [46],

|�1〉 = −
∑
E>0

∑
E′<0

[ψ(E)a†(E)][ψ∗(−E′)a(E′)]|0〉. (26)

This absence of multiparticle excitations is a generic feature
of rank-one scattering matrices [41,47].

The normalization
∑

E>0 |ψ(E)|2 = 1 can be derived
directly from Eq. (18). (See Appendix B.) This implies
that 〈�1|�1〉 = 1; hence there is no contribution from the
vacuum state [ζ0 = 0 in Eq. (13)]. Corrections of order
|eiε2 | = exp(−2πEγ̄ /γ 2

0 ) to the normalization appear because
of the finite bandwidth E �

√
T0�0. Since we have assumed

γ 2
0 � √

T0�0γ̄ we can ascertain that the sweep through the
fermion-parity switch will fail to produce a quasiparticle with
exponentially small probability.

The Josephson junction thus injects a single Bogoliubov
quasiparticle into the metal probe, in a pure state with wave
function ψ given by Eq. (25). The transfer of this quasiparticle
is observable as an electrical current pulse, with expectation
value

I (t) = e

∫ ∞

0

dE

2π

∫ ∞

0

dE′

2π
ei(E′−E)tψ∗(E′)σzψ(E). (27)

The expectation value of the total transferred charge Q =∫ ∞
−∞ I (t)dt is given by

Q = 2πe

γ 2
0

(λ2
+ − λ2

−)eπδ2/4
∫ ∞

0
dE(|u(E)|2 − |v(E)|2).

(28)
For definiteness we take λ2

+ � λ2
− in what follows (otherwise

the sign of currents and charges should be inverted).

V. TRANSFERRED CHARGE

A. Single-channel probe

A single quasiparticle passes through the NS interface
irrespective of the rapidity γ0, but the transferred charge
differs. Figure 4 shows results from a numerical evaluation
of Eq. (28). Analytical results can be obtained in the quenched
limit γ0 � γ1,γ2 of a fast fermion-parity switch and in the
opposite adiabatic limit γ0 � γ1,γ2 of a slow switch.

In the quenched limit we set δ → 0 and since
U (0, 1

2 ; −iε2) = 1 we have u → exp(iε2/2), v → 0. The
current and transferred charge evaluate to

Iquench(t) = 2πeγ̃ exp(−2πγ̄ t)θ (t), Qquench = eγ̃ /γ̄ .

(29)
This is the result (2) announced in the Introduction.

The adiabatic limit may be obtained, with some effort, from
the Fourier transform (27) in saddle-point approximation, or

FIG. 4. (Color online) Expectation value of the charge of the
quasiparticle transferred between the superconductor and a single-
channel metal probe, following a fermion-parity switch with rapidity
γ0. The charge Q is given as a function of the ratio γ̃ /γ̄ of the
geometric and arithmetic mean of the coupling energies to the
two Majorana operators involved in the transition. The curves are
calculated numerically from Eq. (28). The quenched and adiabatic
limits are given by Eqs. (29) and (32).

more easily by starting directly from the general scattering
formula [48–51]

Iadiabatic(t) = ie

4π
TrS†

F(0,t)σz

∂

∂t
SF(0,t). (30)

(A self-contained derivation of this formula is given in
Appendix C.) The adiabatic charge transfer is described by
the “frozen” scattering matrix

SF(E,t) = S0(E)|φ≡φ(t), (31)

with S0 from Eq. (7) evaluated for a fixed value φ(t) of the
phase across the Josephson junction. The result is

Iadiabatic(t) = e
√

γ1γ2

π2γ1γ2/γ
2
0 + γ 2

0 t2
, Qadiabatic = e. (32)

The exponential versus Lorentzian current profiles (29) and
(32) have the same form as in the nonsuperconducting problem
of Ref. [41], but there the transferred quasiparticle was an
electron of charge e. Here what is transferred is a Bogoliubov
quasiparticle, which is not in an eigenstate of charge. In the
quenched limit Q can vary between 0 and e, depending on the
ratio of the geometric and arithmetic mean of the two coupling
energies γ1, γ2 of the metal probe to the Majorana operators of
the zero mode. A nearly charge-neutral quasiparticle is trans-
ferred if γ1 � γ2, when Q = 2e

√
γ1/γ2 in the quenched limit.

B. Multichannel probe

So far we have assumed that the metal probe supports a
single electron-hole channel. More generally, the coupling
between the superconductor and the metal would involve N

electron-hole channels, where N would include both orbital
and spin degrees of freedom. This multichannel generalization
is worked out in Appendix D. A single quasiparticle is
injected, as before, with a reduced charge QN = RQ1. The
reduction factor R ∈ [0,1] is independent of the rapidity γ0. It
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is determined entirely by the point contact conductance, which
at the fermion parity switch has a resonant peak of height

Gpeak = 4e2

h
(1 − R2). (33)

VI. CONCLUSION

In conclusion, we have investigated the phase-coherent,
deterministic counterpart of incoherent, stochastic quasiparti-
cle poisoning: a fermion-parity switch in a Josephson junction
transfers a single quasiparticle into a metal contact, on demand
and in a pure state. The quasiparticle is a coherent superpo-
sition of electron and hole, with a charge expectation value
that can be adjusted between 0 and e. A nearly charge-neutral
quasiparticle is produced in the quenched limit of a fast parity
switch, if the metal couples predominantly to a single Majorana
operator in the Josephson junction. This device could be used
for superconducting analogs of single-electron collision ex-
periments [3–8], such as the Hanbury-Brown–Twiss or Hong-
Ou-Mandel interferometer for Majorana fermions [52,53].

Experimentally, one can determine the value of Q by
sweeping up and down through the fermion-parity switch
and measuring the shot noise power Pshot. In each period τ

a charge {0, + e, − e} is transferred with probability {1 −
2p(1 − p),p(1 − p),p(1 − p)}, where Q/e = |1 − 2p| is the
average charge transferred during a sweep up or down. The
full distribution of the transferred charge is trinomial. The first
moment vanishes and the second moment is given by

Pshot = 2p(1 − p)(e2/τ ) = 1
2τ−1(e2 − Q2). (34)

Referring to the model calculation of Fig. 2, a bandwidth of√
T 0�0  10 GHz at a driving frequency of 1/τ  0.1 GHz

would imply a rapidity γ0  1 GHz (so that γ 2
0 τ  √

T 0�0).
The escape rate γ̄ could then vary between, say, 0.2 GHz and
2 GHz to vary between the adiabatic and the quenched regime.
These frequencies should all lie above the decoherence rate of
the Bogoliubov quasiparticle due to charge noise, which could
be below 1 MHz [54].

An alternative way to measure the transferred charge is
to apply a voltage V between the two superconductors. The
phase will then advance with constant rate dφ/dt = 2eV/�,
producing a current I = Q × 2eV/h (assuming a single level
crossing in a 2π phase interval).
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APPENDIX A: MODEL HAMILTONIAN

The model Hamiltonian for the nanowire Josephson junc-
tion of Fig. 5 has the Bogoliubov–de Gennes form

H =
(

H0(p) �

�∗ −σyH
∗
0 (−p)σy

)
, (A1a)

FIG. 5. (Color online) Nanowire Josephson junction modeled by
the Hamiltonian (A1), discretized on a square lattice (lattice constant
a = 25 nm). The InSb nanowire is gray, with a tunnel barrier (width
25 nm) in black, the superconducting contacts are yellow, and the
normal-metal probe (width 100 nm) is blue. There are four electron
subbands in the nanowire and eight in the probe, counting spin. The
peak conductance at the fermion-parity switch is indicated.

H0 = p2

2meff
− EF + αso

�
(σxpy − σypx) + 1

2
geffμBBσx

+V0[�(x − WB/2) − �(x − WB/2)]. (A1b)

Electrons and holes are coupled by the induced s-wave pair
potential � at the superconducting contacts, with a phase
difference φ. The single-particle Hamiltonian H0 contains
Rashba spin-orbit coupling and the Zeeman energy of a
magnetic field parallel to the nanowire. A potential barrier
of strength V0 and width WB is located at the center of the
junction.

The Hamiltonian H is discretized on a square lattice, to
obtain a tight-binding model [33]. For the parameters indicated
in the figure, the Josephson junction is in the nontrivial
regime [31,32], with a pair of Majorana zero modes at
the normal-superconducting (NS) interface, weakly coupled
via the potential barrier. A normal-metal lead is attached
perpendicular to the nanowire, coupling predominantly to one
of the two zero modes.

To obtain the complex energies of the quasibound states,
the imaginary part of the lead self-energy is added to the tight-
binding Hamiltonian of the junction. Diagonalization of this
non-Hermitian Hamiltonian yields the complex eigenvalues
En(φ) − i	n(φ) plotted in Fig. 2.

APPENDIX B: DETAILS OF THE CALCULATION OF
THE GREEN’S FUNCTION

1. Evaluation of the determinant

Since the expression (16) for the Green’s function contains
both the matrix X(E) and its inverse, we need to evaluate the
determinant of this 2 × 2 matrix. As a first step we will show
that DetX is energy independent. This can be done directly
from the differential equation (18) for X.

We write the determinant in the form

DetX(E) =
(

u∗(−E)
v∗(−E)

)T

σz

(
u(E)
v(E)

)
, (B1)

and take the derivative with respect to E. The functions u,v

solve

(
iγ 2

0 σzd/dE + E + iπ2
)(u

v

)
= 0. (B2)
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This allows us to express the derivatives

d

dE

(
u(E)
v(E)

)
= i

γ 2
0

σz(E + iπ2)

(
u(E)
v(E)

)
, (B3)

d

dE

(
u∗(−E)
v∗(−E)

)
= − i

γ 2
0

σz(E + iπ∗2)

(
u∗(−E)
v∗(−E)

)
. (B4)

Since  is a real and symmetric matrix, it follows that

d

dE
DetX = i

γ 2
0

(
u∗(−E)
v∗(−E)

)T

[(E + iπ2)

− (E + iπ∗2)T]

(
u(E)
v(E)

)
= 0, (B5)

so DetX is independent of E.
From Eq. (22) we have an explicit expression for the

determinant of X:

DetX =U
( − 1

4 iδ2, 1
2 ; −iε2

)
U

(
1
4 iδ2, 1

2 ; iε2
)

− 1
4δ2U

(
1
2 − 1

4 iδ2, 1
2 ; −iε2)U(

1
2 + 1

4 iδ2, 1
2 ; iε2).

(B6)

This is an analytic function of ε = (E + iπγ̄ )/γ0, which is
independent of E and hence independent of ε. At ε = 0 we
may evaluate it by means of the identities [44]

U (a, 1
2 ,0) =

√
π

	
(

1
2 + a

) , (B7)

	
(

1
2 + ia

)
	( 1

2 − ia) = π

cosh πa
,

	(1 + ia)	(1 − ia) = πa

sinh πa
. (B8)

Substitution into Eq. (B6) at ε = 0 gives

DetX = exp(−πδ2/4), (B9)

as in Eq. (23).

2. Normalization of the excited state

We wish to demonstrate that the wave function (25) of the
single-particle excited state is normalized to unity. For that
purpose we need to evaluate the integral

N ≡ 〈ψ |ψ〉 =
∫ ∞

0

2πdE

γ 2
0 DetX

(
u∗(E)
v∗(E)

)T

2

(
u(E)
v(E)

)
. (B10)

We again use the fact that u,v solve Eq. (B2). Substitution
into Eq. (B10) gives (denoting u′ = du/dE)

N = −2

DetX

∫ ∞

0
dE[u∗u′ − v∗v′ − iEγ −2

0 (uu∗ + vv∗)]

= 2

DetX
(|u(0)|2 − |v(0)|2)

+ 2

DetX

∫ ∞

0
dE

[
uu∗′ − vv∗′ + iEγ −2

0 (uu∗ + vv∗)
]

= 2 − N ∗, (B11)

and because N is real, we indeed have N = 1. Notice that
〈ψ |ψ〉 = 1 also implies 〈�1|�1〉 = 1 in Eq. (26).

APPENDIX C: SCATTERING FORMULA FOR THE
CHARGE TRANSFER IN THE ADIABATIC REGIME

The current passing through the NS interface in the
adiabatic regime γ0 � γ1,γ2 of a slow fermion-parity switch
can be evaluated most easily from the scattering formula
(30), which is the analog for Bogoliubov quasiparticles of
a well-known formula for normal electrons [48–51]. For
completeness we give a derivation of Eq. (30).

One subtlety in this derivation is that Fourier transforms of
quasiparticle annihilation operators a(E) to the time domain
need to include both positive and negative energies in order
to produce a complete basis set. This results in a double
counting of the quasiparticle excitations, because of the
relation a(−E) = σxa

†(E). To correct for the double counting
we include a factor 1/2 in the definition of the current operator
[52],

I(t) =1

2
ea

†
out(t)σzaout(t),

aout(t) =
∫ ∞

−∞

dE

2π
e−iEtaout(E). (C1)

The outgoing and incoming operators are related by the
scattering matrix,

aout(E) =
∫ ∞

−∞

dE′

2π
S(E,E′)ain(E′), (C2)

which satisfies the unitarity condition∫ ∞

−∞

dE′

2π

∑
n′

Snn′ (E1,E
′)S∗

mn′ (E2,E
′)

= 2πδnmδ(E1 − E2). (C3)

The incoming operators have the equilibrium expectation
value

〈a†
n(E)am(E′)〉 = 2πδ(E − E′)δnmf (E), (C4)

with f (E) = (1 + eE/kT )−1 the Fermi function at temperature
T . We seek the current expectation value I (t) ≡ 〈I(t)〉, given
by

I (t) =1

2
e

∫ ∞

−∞

dE

2π

∫ ∞

−∞

dE′

2π

∫ ∞

−∞

dω

2π
eiωt

× f (E′)TrS†(E + ω,E′)σzS(E,E′). (C5)

Because of the unitarity condition (C3), the integral over
E′ without the factor f (E′) vanishes,∫ ∞

−∞

dE′

2π
TrS†(E + ω,E′)σzS(E,E′) = 2πδ(ω)Trσz

= 0. (C6)

We may therefore equivalently write

I (t) =1

2
e

∫ ∞

−∞

dE

2π

∫ ∞

−∞

dE′

2π

∫ ∞

−∞

dω

2π
eiωt

× [f (E′) − f (E)]TrS†(E + ω,E′)σzS(E,E′). (C7)

It is convenient to introduce the Wigner transform

SW(E,t) =
∫ ∞

−∞

dE′

2π
e−iE′t S

(
E + 1

2
E′,E − 1

2
E′

)
, (C8)
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because it becomes the frozen scattering matrix SF(E,t) from
Eq. (31) in the adiabatic limit [37]. More precisely,

SW(E + δE,t) = SF(E,t) + O(γ0/Ec) + O(δE/Ec), (C9)

with Ec = min(γ1,γ2) the width of the quasibound state.
Fourier transformation of the time variable gives

SW(E,ω) =
∫ ∞

−∞
dt eiωtSW(E,t) = S

(
E + 1

2
ω,E − 1

2
ω

)
.

(C10)
In terms of SW(E,ω) the expression (C7) for the current reads

I (t) = 1
2e

∫ ∞

−∞

dĒ

2π

∫ ∞

−∞

dω′

2π

∫ ∞

−∞

dω

2π
eiωt

×
[
f

(
Ē − 1

2
ω′

)
− f

(
Ē + 1

2
ω′

)]

× TrS†
W

(
Ē + 1

2
ω,ω + ω′

)
σzSW(Ē,ω′), (C11)

with the definitions Ē = 1
2 (E + E′), ω′ = E − E′.

The integrals over ω and ω′ contribute over the range −γ0 �
ω,ω′ � γ0. To leading order in γ0 we therefore have

TrS†
W(Ē + 1

2ω,ω + ω′)σzSW(Ē,ω′)

= TrS†
F(Ē,ω + ω′)σzSF(Ē,ω′) + O(γ0/Ec), (C12)

in view of Eq. (C9). Substitution into Eq. (C11), with a change
of variables ω′′ = ω + ω′, results in

I (t) = 1

2
e

∫ ∞

−∞

dĒ

2π

∫ ∞

−∞

dω′

2π

∫ ∞

−∞

dω′′

2π
ei(ω′′−ω′)t

×
[
f

(
Ē − 1

2
ω′

)
− f

(
Ē + 1

2
ω′

)]

× TrS†
F(Ē,ω′′)σzSF(Ē,ω′)[1 + O(γ0/Ec)]

=1

2
e

∫ ∞

−∞

dĒ

2π

∫ ∞

−∞

dω

2π
e−iωt

×
[
f

(
Ē − 1

2
ω

)
− f

(
Ē + 1

2
ω

)]

× TrS†
F(Ē,t)σzSF(Ē,ω)[1 + O(γ0/Ec)]. (C13)

Since we do not wish to assume that γ0 is small compared
to kT , we expand the difference of Fermi functions in square
brackets to all order in ω,[

f

(
Ē − 1

2
ω

)
− f

(
Ē + 1

2
ω

)]
e−iωt

= −2
∞∑

p=0

(ω/2)2p+1

(2p + 1)!

∂2p

∂Ē2p
f ′(Ē)e−iωt

= −
⎛
⎝ ∞∑

p=0

(i/2)2p

(2p + 1)!

∂2p

∂Ē2p

∂2p

∂t2p

⎞
⎠f ′(Ē)ω e−iωt . (C14)

Upon partial integration, the sum over p contributes to the
integral (C13) terms of order

∂2p

∂Ē2p

∂2p

∂t2p
SF(Ē,t) = O(γ0/Ec)2p, (C15)

so only the p = 0 term needs to be retained to leading order.

We thus arrive at

I (t) = − 1

2
e

∫ ∞

−∞

dĒ

2π

∫ ∞

−∞

dω

2π
f ′(Ē)ω e−iωt

× TrS†
F(Ē,t)σzSF(Ē,ω)[1 + O(γ0/Ec)]

= − 1

2
i e

∫ ∞

−∞

dĒ

2π
f ′(Ē)

× TrS†
F(Ē,t)σz

∂

∂t
SF(Ē,t)[1 + O(γ0/Ec)]. (C16)

At zero temperature, when −f ′(E) → δ(E), we recover
Eq. (30),

Iadiabatic(t) = i e

4π
TrS†

F(0,t)σz

∂

∂t
SF(0,t). (C17)

APPENDIX D: MULTICHANNEL PROBE

1. Coupling matrix

In the main text we assumed that the pair of Andreev
levels near the level crossing is coupled to a single pair of
electron-hole modes in the normal-metal probe. This coupling
is described by the 2 × 2 coupling matrix W defined in Eq. (9).
More generally, a multichannel probe has a 2 × 2N coupling
matrix of the form

W = (W1,W2, . . . ,WN ), Wn =
(

αn β∗
n

βn α∗
n

)
, (D1)

constrained by particle-hole symmetry: W = σxW
∗σx . We

collect the complex coefficients αn,βn in a pair of vectors,

α = (α1,α2, . . . ,αN ), β = (β1,β2, . . . ,βN ), (D2)

and define the inner products

〈α|α〉 =
N∑

n=1

|αn|2, 〈β|β〉 =
N∑

n=1

|βn|2,

〈α|β〉 =
N∑

n=1

α∗
nβn. (D3)

The decay rates γ1, γ2 of the pair of quasibound Andreev
levels are the eigenvalues of the 2 × 2 matrix

WW † =
N∑

n=1

WnW
†
n

=
(〈α|α〉 + 〈β|β〉 2〈α|β〉∗

2〈α|β〉 〈α|α〉 + 〈β|β〉
)

(D4)

⇒
{
γ1 = 〈α|α〉 + 〈β|β〉 + 2|〈α|β〉|,
γ2 = 〈α|α〉 + 〈β|β〉 − 2|〈α|β〉|. (D5)

As before, we define the arithmetic and geometric averages,

γ̄ = 1
2 (γ1 + γ2), γ̃ = √

γ1γ2. (D6)

For later use, we also note that

WσzW
† =

N∑
n=1

WnσzW
†
n = (〈α|α〉 − 〈β|β〉)σz. (D7)
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2. Scattering matrix

Carrying through the same steps as in the single-channel
case, we have the following expression for the 2N × 2N

scattering matrix S in terms of the 2 × 2 Green’s function G:

S(E,E′) = 2πδ(E − E′) − 2πiW †G(E,E′)W,(
iγ 2

0 σz

∂

∂E
+ E + iπWW †

)
G(E,E′) = 2πδ(E − E′).

(D8)

The solution for G has the factorized form (16), in terms of
the 2 × 2 matrix

X(E) =
(

u(E) v∗(−E)
v(E) u∗(−E)

)
(D9)

that solves the homogeneous equation(
iγ 2

0 σz

∂

∂E
+ E + iπWW †

)
X(E) = 0. (D10)

The functions u and v are determined by

γ 2
0 u′′ + (ε2 + δ2 − i)u = 0, ζv = iεu − γ0u

′, (D11)

ε = (E + iπγ̄ )/γ0, ζ = (2π/γ0)〈α|β〉∗, (D12)

δ = |ζ | = 1
2 (π/γ0)(γ1 − γ2). (D13)

The solution is

u(E) =eiε2/2U
( − 1

4 iδ2, 1
2 ; −iε2

)
,

ζv(E) = − 1
2δ2eiπ/4eiε2/2U

(
1
2 − 1

4 iδ2, 1
2 ; −iε2

)
. (D14)

Finally, the scattering matrix has the dyadic form

Snm(E,E′)|E>E′ = −ψn(E)ψ∗
m(−E′), (D15)

ψ(E) = (2π/γ0)eπδ2/8W †
(

u(E)
v(E)

)
. (D16)

3. Transferred charge

Because the scattering matrix is still of rank-one, a single
quasiparticle is transferred as a result of the fermion-parity
switch, irrespective of the number of channels N in the metal
probe. The charge expectation value of this quasiparticle is
given by

Q =e

∫ ∞

0

dE

2π
ψ∗(E)σzψ(E)

=2πe

γ 2
0

eπδ2/4
∫ ∞

0
dE

(
u∗(E)

v∗(E)

)
WσzW

†
(

u(E)

v(E)

)

=2πe

γ 2
0

eπδ2/4(〈α|α〉 − 〈β|β〉)

×
∫ ∞

0
dE(|u(E)|2 − |v(E)|2). (D17)

Comparison with Eq. (28) shows that the transferred charge
for a multichannel contact differs from that in the single-
channel case by a reduction factor

R = 〈α|α〉 − 〈β|β〉
γ̃

= 〈α|α〉 − 〈β|β〉√
(〈α|α〉 + 〈β|β〉)2 − 4|〈α|β〉|2

∈ [0,1], (D18)

independent of the rapidity γ0 of the fermion-parity switch.
As a check, we can directly compute the transferred charge

in the adiabatic limit from Eq. (30). Substitution of the frozen
scattering matrix at the Fermi level,

S0 = 1 + 2πiW †(E0σz − iπWW †)−1W, (D19)

gives the charge

Qadiabatic = ie

4π

∫ ∞

−∞
dE0TrS†

0σz

∂S0

∂E0

= e

2

∫ ∞

−∞
dE0Tr(E0σz + iπWW †)−1WσzW

†

× (E0σz − iπWW †)−1σz

= e(〈α|α〉 − 〈β|β〉)
∫ ∞

−∞
dE0

(
E2

0 + π2γ̃ 2
)−1

= eR. (D20)

4. Relation of the reduction factor to the Andreev conductance

The charge reduction factor R from Eq. (D18) is a
property of the coupling matrix of the normal-metal probe
to the Josephson junction. It can be expressed in terms of an
independently measurable quantity, the Andreev conductance.

When the normal-metal probe is biased at a voltage V ,
a current I is driven into the grounded superconductor by
the process of Andreev reflection. The Andreev conductance
GA = limV →0 dI/dV is related to the scattering matrix S0 at
the Fermi level by

GA = e2

2h
Tr(1 − S0σzS

†
0σz). (D21)

Near the level crossing a resonant peak appears in GA as a
function of E0, with the Lorentzian line shape

GA = 4e2

h

π2γ̃ 2

E2
0 + π2γ̃ 2

(1 − R2). (D22)

The resonant peak height of (4e2/h)(1 − R2) directly deter-
mines the charge reduction factor.
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