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Abstract
Weextend the single-particle topological classification of insulators and superconductors to include
systems inwhich disorder preserves average reflection symmetry.We show that the topological group
structure of bulkHamiltonians and topological defects is exponentially extendedwhen this additional
condition ismet and examine some of its physical consequences. Those include localization–
delocalization transitions between topological phases with the same boundary conductance as well as
gapless topological defects stabilized by average reflection symmetry.

1. Introduction

Topological insulators (TI) are states ofmatter inwhich the bulk is gapped but which host protected gapless edge
states [1, 2]. This behavior wasfirst studied in connection to the quantumHall effect [3, 4], a two-dimensional
(2d) system, and later generalized to include arbitrary dimensions aswell as boundary states protected by the
fundamental symmetries of the system: time-reversal  , particle-hole  , and chiral symmetry  [5, 6]. In each
case, the gapless nature of boundary states is a consequence of the system’s bulk properties. This enables
obtaining of topological invariants, quantities determined from the bulk that count the number of protected
states at a termination of the system. For single-particle systems, the group structure of topological invariants (
or 2) is listed in the so-called periodic table of topological insulators, which shows that in any dimension, five
out of the 10Altland–Zirnbauer (AZ) [7] symmetry classes can be topologically non-trivial. As long as the
protecting symmetries are not broken, the invariant cannot changewithout closing the bulk gap, explaining the
robustness of the boundary states to perturbations such as disorder.

Topologically non-trivial behavior can occur also due to symmetries of the underlying lattice. This enables
weak and crystalline topological insulators in the presence of translational symmetry or point group symmetries
(rotation, reflection, etc) [8–12].Many generalizations of the periodic table have been considered by examining
the interplay between  ,  ,  , and different lattice symmetries [13–21].

Disorder breaks all symmetries of the lattice, leading to a distinction between strong andweak topological
insulators (WTI) and their associated invariants. Despite owing their protection to lattice symmetries, the
boundary states of someWTIsmay still survive disorder. This wasfirst shown for a stack of quantum spin-Hall
layers [22–24], a three-dimensional (3d)WTI belonging to symmetry class AII in the AZ classification, and later
generalized to systems of different dimensionalities and symmetry classes, dubbed statistical topological
insulators [25].Here, protection is not given by an exact symmetry but by onewhich only holds on average.
Whereas the original invariants belong to  or 2, those stabilized by average symmetries only have a 2 group
structure.

Motivated by the robustness of boundary states in statistical topological insulators, we study how the
classification of TIs and topological defects are extended by average symmetries. For concreteness, wewill focus
on disordered systemswhich preserve average reflection symmetry (ARS), a situationwhich occurs inmany
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condensedmatter systems [26–28]. Each element of the disordered ensemble ofHamiltoniansH appears with
equal probability as its reflected counterpart,  − Hj j

1 , with j a unitary reflection operator about the j-
direction.Oblique reflection gives the same physics as the ordinary one; thus in the examples wewill consider
only the ordinary one. For us the relevant cases arewhen the reflection plane passes through a lattice site of the
system, such that the symmetry can be broken by staggering the strength of consecutive hopping amplitudes.

Wefind that the group structure of topological invariants is exponentially enlarged byARS, sinceweak
invariants of all dimensions >d 0 contribute simultaneously and independently to the classification presented
in table 1. Some of the physical consequences of this extension include the possibility of disordered topological
phase transitions governed only by a change in theweak invariant.Wefind a particularly interesting situation
when the systempossesses a nonzero strong index on both sides of such a transition. Then the conductance of
the boundary is non-trivial and identical in both phases, while at the transition the bulk gapmust close in the
presence of ARS. Additionally, we show that the extended classification applies also to topological defects [29]. It
allows us to define a new class of gapless statistical topological defects, which are robust to disorder but can only
exist in the presence of average symmetries.

In the following, we begin our discussion bymotivating the need for an extended topological classification
with some concrete examples. In section 2we introduce amodel for a 2d topological superconductor in
symmetry class D, exhibiting disordered phase transitions across which the strong invariant remains constant,
and only a weak index changes. To showhow this behavior escalates in higher dimensions, we consider a 3d
topological superconductor (class DIII) in section 3. Its disordered phases are distinguished by a second-
generationweak index, i.e., onewhich is two dimensions lower than the systemdimension, even if the strong
and 2dweak invariants don’t change.We generalize these results to an arbitrary dimension and symmetry class
in section 4, showing that ARS enlarges the topological classification of both bulkHamiltonians and topological
defects alike.We conclude in section 5.

2. Topological superconductor in classD

Two-dimensional superconductors with broken time-reversal as well as spin-rotation symmetry belong to
symmetry class D in the AZ classification. Theminimal topologicalmodel is a 2 × 2Bogoliubov–DeGennes
Hamiltonian describing spinless fermions in the presence of a p-wave order parameter, Δ ∼k k( ) . The only
constraint is provided by the particle-hole symmetry and reads:

τ τ = − −H Hk k( ) *( ), (1)x x

in terms of the Paulimatrices τi acting on the particle-hole degree of freedom.
Weuse a tight bindingHamiltonian of the form

ε τ Δ τ Δ τ= + +( ) ( )H k kk k( ) ( ) sin sin , (2)z x x x y y y

Table 1.Group structure of single-particle topological
invariants in the tenAZ symmetry classes, with average
reflection symmetry preserved along all directions. The
strong invariants of the original TI table are shown in blue
and those protected byARS in black.

Symmetry class
Dimension

1 2 3

A  2
3

AIII  2
2  × 2

3

AI

BDI  2
2 2

3

D 2  × 2
2 2

6

DIII 2 2 × 2
2  × 2

6

AII 2 2 × 2
3

CII  2
2 2 × 2

3

C  2
3

CI 

2
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with

ε μ= − − −

− + − −

( ) ( )
( ) ( )

t k t k

t k k t k k

k( ) 2 cos 2 cos

2 cos 2 cos . (3)

x x y y

d x y d x y

Here, Δx y, is the strength of the p-wave pair potential, tx y, are the anisotropic hopping amplitudes in the x- and
y-directions, and μ is the chemical potential. TheHamiltonian (2) is discretized on a square lattice of

× = ×L L 50 50x y sites (lattice constant a= 1), with the last two terms of equation (3) leading to next nearest
neighbor hoppings, parametrized by the diagonal hopping amplitude td. Disorder ismodeled by random
variations of the chemical potential, drawn independently for each site from the uniformdistribution
μ μ− +U U[ , ]. In the followingwe set tx= 1 and express all otherHamiltonian parameters relative to this
energy scale. All tight binding simulations are performed using theKwant code [30].

We attach disorder free leads at =x L0, x connecting the system to reservoirs at temperaturesT0 and
δ+T T0 . The Fermi level (E=0) scatteringmatrix,

= ′ ′( )S
r t
t r

, (4)

enables us to compute the thermal conductance =G G t tTr0
† , π=G k T h60

2
B
2

0 , in the low-temperature,
linear response regime, as well as the topological invariants of the system. TheChern number, the strong
topological invariant of the system, reads [31, 32]

∫ν
π

ϕ
ϕ

ϕ=
π

i
r

1

2
d

d

d
ln det ( ), (5)

0

2

while theweak 2 invariants are given by

ϕ− = =ν r( 1) sign det ( 0). (6)y

In equations (5) and (6) ϕr ( ) is the reflection block of the scatteringmatrix in the presence of twisted
boundary conditions applied to the states in the y-direction: ψ ψ= ϕx x L( , 0) e ( , )y

i . Theweak invariant in the
x-direction is evaluated in a similar fashion, by attaching leads in the y-direction and using periodic boundary
conditions (ϕ = 0) along x. Both the strong and theweak invariant are defined such that ν ν =, 0y is trivial,
while phases with non-zero invariants are non-trivial, either in the strong orweak sense.

As a function of μ and td, the system shows a variety of topological phases separated by phase transitions at
which the bulk gap closes (seefigure 1, left panel). The phases are strong topological insulators whenever the
Chern number is nonzero, with chiralMajorana zeromodes on all edges.When ν = 0, we alsofindweak
topological insulators, where two out of four edges avoid localization in the presence of disorder, hosting
counter-propagatingMajorana edgemodes—so-calledKitaev edges [33].

While typically the Chern number changes across a phase transition, in themodel (2) there are also
transitions across which the strong invariant remains constant, and only theweak invariants change. They are
the crossings infigure 1, occurring at μ =t( , ) (1, 1 2)d and (2, 1 4). At =t 1 4d , varying the chemical potential
causes a change of theweak invariant νy , while the otherweak invariant, νx , is responsible for the phase transition
at =t 1 2d . The bulk gap is closed at μ =t( , ) (2, 1 4),d even though there are the same number of chiral
Majorana edgemodes with the same chirality both for μ < 2 and μ > 2.

Figure 1.Bulk thermal conductance of a disordered systemwithHamiltonian (2) as a function of μ and td. Parameters are tx=1,
=t 1 2y , Δ = 2x , Δ = 1y , and disorder strengthU=1. Each phase is labeled according to its strong andweak topological invariants:

ν ν ν, ,x y .With average reflection symmetry (left panel) the crossings are protected by theweak invariants. BreakingARS in either the
x- or the y-directions destroys the corresponding invariant (markedwith ×) and leads to an anticrossing, as shown in themiddle and
right panels. In themiddle panel the staggering strength in the x-direction is sx=0.2, while in the right panel the y-direction hoppings
are staggeredwith sy=0.4.

3
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In the clean case (U=0) these anomalous topological phase transitions are protected by the exact reflection
symmetry of the system.Wefind in our simulations that they persist when disorder is added, up to values ofU
comparable to the bulk gap, when a thermalmetal phase develops [34–36].Note that infigure 1we plot the bulk
thermal conductance of a single system at strong disorder, showing that at large enough system sizes ARS can
protect not only the properties of the disordered ensemble as awhole, but its individual elements as well. The
presence of crossings in the disordered phase diagramofHamiltonian (2) shows that the Chern number, a 
index, is insufficient to describe classD 2d disordered superconductors withARS. The full topological
classification is in fact × 2

2.
We verify this group structure by selectively removing average symmetries from the system. This is done by

staggering the x- and/or y-direction hoppings as → + −t t s(1 ( 1) )x y x y
x y

x y, ,
,

, . For ≠s 0, consecutive hoppings
in the same direction have alternating strength, such that ARS no longer holds. Breaking either of the average
symmetries removes the protection of the associatedweak invariant and therefore splits the corresponding
crossing, as shown in themiddle and right panels offigure 1. This signals that the two average symmetries act
independently, justifying the extended × 2

2 group structure.

3. Topological superconductor in classDIII

Todemonstrate the protection of an insulating phase by a second-generationweak invariant, i.e., an invariant
two dimensions lower than the systemdimension, we choose amodel in symmetry class DIII, withHamiltonian

ε σ τ σ τ Δ σ τ

Δ σ τ Δ σ τ

= ⨂ + ⨂ + ⨂

+ ⨂ + ⨂

( )
( ) ( )

k kH K k

k k

( ) ( ) sin

sin sin , (7)

z y y x x z x

y y o y z z x x

0

where

ε = − − −

− + − −

( ) ( ) ( )
( ) ( )

k t k t k t k

t k k t k k

( ) 2 cos 2 cos 2 cos

2 cos 2 cos . (8)

x x y y z z

d x y d x y

The Paulimatrices τi and σi act on the particle-hole and spin degree of freedom, respectively. Here, tx y z, , and
Δx y z, , are the anisotropic hopping amplitudes and the p-wave pairing amplitudes in the x-, y-, and z-directions
(as before, we set tx=1). The chemical potential is μ, whileKmodels an s-wave order parameter coupling the two
spin blocks. Themodel is constrained by particle-hole and time-reversal symmetry:

τ τ = − −k kH H( ) *( ), (9)x x

σ σ = −k kH H( ) *( ). (10)y y

As in the previousmodel, we introduce disorder by random spatial variations of the chemical potential, with
disorder strengthU.We discretize theHamiltonian (7) on a cubic lattice of linear size =L 16x y z, , . Ideal leads are
attached along one direction, and twisted boundary conditions are imposed in the other two, as
ψ ψ= ϕy z L y z(0, , ) e ( , , )x

i x , ψ ψ= ϕx z x L z( , 0, ) e ( , , )y
i y , or ψ ψ= ϕx y x y L( , , 0) e ( , , )z

i z . In each case the
reflectionmatrix is a function of two out of the three twist angles ϕx y z, , . Owing to time-reversal symmetry, the

reflection block can be brought to an anti-symmetric formwhenever the twist angles are 0 or π (periodic or anti-
periodic boundary conditions),making its Pfaffian, rPf , well defined. As in the classDmodel, the system shows
different disordered topological phases as a function of μ and td, protected by 1d or 2dweak invariants (see
figure 2). The relevant 2dweak index reads [31, 32]

ϕ ϕ ϕ π ϕ− = = = = =( ) ( )r r( 1) sign Pf 0, 0 Pf , 0 , (11)Q
y z y z

z
2

⎡⎣ ⎤⎦
and is responsible for gaplessmodes on all side surfaces, i.e., surfaces parallel to the z-direction. Non-trivial 1d
weak invariants appearing infigure 2 are

ϕ ϕ− = = =( )ir( 1) sign Pf 0, 0 , (12)Q
x z

x
1 ⎡⎣ ⎤⎦

and

ϕ ϕ− = = =( )ir( 1) sign Pf 0, 0 , (13)Q
y z

y
1

⎡⎣ ⎤⎦
leading to protected gaplessmodes on side surfaces parallel to the x- and y-directions, respectively. Three-
dimensional class DIII systems also allow for a strong invariant, but this one remains zero throughout the phase
diagramoffigure 2, since the top and bottom surfaces are insulatingwhenever the bulk is gapped.

4
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Unlike the 2dmodel of section 2, inwhich topologically different phases were separated by insulator-to-
insulator phase transitions, the 3dHamiltonian (7) hasfinite-extentmetallic regions [37]. Nevertheless,
insulating phases are not connected in the presence of ARS.Wefind that theweak 1d and 2d invariants are
robust, leading to surfaces which do not localize once disorder is added. Breaking average reflection symmetry
by staggering consecutive hoppings in the x- or y-directions destroys the corresponding invariants, connecting
the phases ,as shown in themiddle and right panels offigure 2.Note that staggering in the z-direction destroys all
of the invariants of equations (11)–(13), turning the entire phase diagram into a topologically trivial insulator.

4. Extended topological classification

In the previous sections we have presentedmodels showing topological phase transitions protected by average
reflection symmetry, whichwe dub statistical topological phase transitions, following the nomenclature of [25].
Since the strong index remains constant across these transitions, we need to extend the topological group
structure of the periodic TI table in order to properly label the protected phases. In this section, we discuss this
extension in the context of themodels presented above, and showhow it applies to systems of any
dimensionality and symmetry class.

The phase diagramof the 2d system, figure 1, has two statistical topological phase transitions. The lower one,
μ = 2 and =t 1 4d , happens at a vanishingChern number, ν = 0. The corresponding phases are a trivial
system (ν ν= = 0y ), μ > 2, and aWTI (ν = 1y ) for μ < 2. As such, its robustness to disorder can be
understood in the language of [25], namely in terms of the different edge localization properties of the two
phases. In the trivial phase the edge is localized: its thermal conductance ξ∼ −G Lexp( )decays exponentially as
a function of system size L, with the localization length ξ. TheWTI on the other hand has edge states which avoid
localization even in the presence of disorder. They form so-calledKitaev edges [33], characterized by a super-
Ohmic conductance ∼G l L (with l themean free path), which scales in away typical for disordered 1d
systems at a critical point [38–41]. Due to bulk-boundary correspondence, the difference in edge localization
properties implies that the two phases are topologically distinct, explaining the phase transition’s robustness to
disorder.

The situation is different for the upper crossing infigure 1, at μ = 1and =t 1 2d . On both sides the strong
topological invariant is ν = −1, and as such all edge states avoid localization in both phases. In fact, the thermal
conductance of the edge is identical in both systems, ν= ∣ ∣ =G G G0 0, so the above argument cannot be applied.

Instead, we look at the localization properties of an interface formed between them. Consider a 1d domain
wall formed between systems in the two phases ( =t 1 2d , μ < 1, and μ > 1). The key observation is that if one
of theweak indices differs, the corresponding interface between two strong TIs will behave like the edge of aWTI
—in this case aKitaev edge, or rather, aKitaev domainwall. Since the index νx changes, the interface parallel to
the x-direction avoids localization as long as average reflection symmetry is preserved (see figure 3). The
mobility gapmust close along this interface, showing that the two phases are topologically distinct. Therefore,
ARS protects weak invariants alsowhen the strong index is nonzero, leading to a × 2

2 classification for
disordered class D systems in twodimensions.

The situation is similar for the 3dmodel in class DIII, whose phase diagram is shown infigure 2. At =t 1 4d ,
the systems goes from aWTIwith =Q 1y

1 to a trivial insulator as a function of μ, so the different surface
localization properties of the two disordered phases imply they are topologically distinct. At =t 1 2,d on the
other hand, the effect of 1d invariants is obscured by the 2d non-trivial invariantQ2

z , whichmakes all side

Figure 2.Bulk thermal conductance of a single disordered systemwithHamiltonian (7) as a function of μ and td. Parameters are tx=1,
=t 1 2y , tz=0.05, Δ = 3x , Δ = 1.5y , Δ = 0.15z ,K=0.2, and disorder strengthU=1. Phases are labeled by their topological

invariants Q2
z , Q1

x, andQ1
y, with ×marking an invariant destroyed by breaking ARS. In the absence of staggering, phases are

distinguished by bothfirst- and second-generationweak invariants (left panel). Staggering in the x- and y-directions is set to sx=0.25
in themiddle panel and sy=0.5 in the right panel, respectively.

5
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surfaces delocalized. As before, robustness of the topological phases on either side of the crossing can be
determined by considering an interface between them.Our simulations indicate that in this case the interface
avoids localization, such that the two phases cannot be continuously connectedwithout closing the
mobility gap.

In general, strong andmultiple generations of weak invariantsmay affect the localization properties of states
at the same boundary. However, contributions of different indices can always be isolated by forming an interface
between two phases with only one index changed. This is, in fact, analogous to studying the boundaries of a
systemwhich is only non-trivial with respect to that particular invariant (see figure 4).

For a d-dimensionalHamiltonianH, the robustness of one of its topological indices can be determined by
studying an auxiliaryHamiltonian in the same symmetry class [29, 42]:

Λ
Λ

= ⊕ ′ ≡ ′H͠ H H
H

H
, (14)R †

R

⎛
⎝⎜

⎞
⎠⎟

withΛ a symmetry-preserving couplingmatrix.We choose ′HR such that only the nonzero index of interest ofH
is also nonzero in H͠ and all other indices of H͠ trivial. This allows us to use the results of [25] to show that the
boundaries of the auxiliaryHamiltonian (14) avoid localization in the presence of average symmetries.
Therefore, the nonzero index common to bothH and H͠ is robust.

For example, ifH is given by equation (2)with ν = −1, ν = 1x , as happens for μ = 0 and =t 1 2d , one can
choose ′HR to have ν = 1, ν = 0x , making the combined system [29, 42, 43] aWTI onlywith respect to νx . The
connection between theKitaev domainwall formed at the interface between two strong TIs and the auxiliary
Hamiltonian introduced in equation (14) is summarized infigure 4. The combinedHamiltonian can be

Figure 3.Conductance through aKitaev domainwall as a function of its length, with andwithout average reflection symmetry (blue
solid and red dashed lines, respectively). The inset shows themeasurement setup, inwhich conductance flows both through the
domainwall and the chiralMajorana edgemodes. The quantized edgemode contribution has been subtracted from the plot (vertical
axis label). Both the top and bottomhalves are described by equation (2), using μ = 1.5top and μ = 0.5bottom , and keeping all other
parameters the same as infigure 1.

Figure 4.Weconsider two systemswith the same strong indices ν but different weak indices νx and ν′,x corresponding to the
HamiltoniansH andH′.We combine them in one of twoways: on the left we invert the invariants of the second system to ′HR with
indices ν− and ν− ′x and combine it with thefirst systemusing equation (14).Wemake the couplingmatrixΛ local and having
support throughout the bulk of both systems. The combined systemhas indices 0 and ν ν− ′,x x making it non-trivial only in theweak
sense. On the right we put the two systems together with a coupling only over their common edge. Then aweak domainwall is formed
with gapless states protected by the non-zero difference ν ν− ′x x . This is the generalization of the Kitaev domainwall introduced
earlier.

6
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visualized as the system in the inset offigure 3, where the two halves touching at the domainwall have been
folded on top of each other. TheMajorana edgemodes become counter-propagating after folding, such that
ν = 0, and the domainwall in the original setup becomes the boundary of the folded system. As such, in the
followingwewill restrict ourselves to boundary localization properties, with the understanding that the same
results will be reachedwhenmultiple non-trivial invariants coexist, either by considering interface properties, or
auxiliaryHamiltonians of the form (14).

Before proceeding to extend the table of topological insulators to the case where average reflection symmetry
is preserved, we shortly review the results of [25].We give here only a brief summary, expressed in the language
of a concrete physical example, and refer the reader to that paper for the full, detailed derrivation. This
discussion is necessary in order to distinguish between  and 2 weak invariants.

In the absence of disorder,WTIs have gapless boundary states. They can be thought of as systems formed of
weakly coupled layers, where each one caries a strong lower-dimensional invariant. Depending onwhether the
layer index is  or 2, we consider two constructions: adjacent layers can either have the same value of a 2

index, or opposite  invariants,Q and −Q. A 3d example of the former is a stack of weakly coupled quantum
spinHall systems [22], while the latter is an anti-ferromagnetic stack of quantumHall systems [44, 45]. In each
case, dimerization of the layers can gap out the boundary states, but this is forbidden by exact reflection
symmetry.

Note that one can also consider stacked systems inwhich each layer has the same value of a  invariant. In
this construction, however, the boundary cannot be gapped irrespective of lattice symmetries, sowewill not
discuss it in the following.

When disorder is added, reflection symmetry is explicitly broken, becoming instead an average symmetry of
the disordered ensemble. Let us use the stack of coupled quantum spinHall systems as an example and assume
that the gapless surfaces protected by exact reflection symmetry do indeed become gapped once disorder is
introduced. In the presence of a surface gap, we can define surface topological invariants for all elements of the
disordered ensemble. Since in 2d (and in general in all dimensions ⩾d 1) the topological invariant is a self-
averaging quantity, it should have the same value for any surface as it does for its reflected counterpart. However,
there are two distinct ways of breaking reflection symmetry on the surfaces of a stack of quantum spinHall
layers, with surface invariants that differ by an odd amount, as shown infigure 5. Disorder which respects ARS is
equally likely to break reflection symmetry in either of the twoways, seemingly contradicting the self-averaging
nature of the topological index. The only resolution to this apparent paradox is to invalidate the original
assumption, that of a gapped surface.

Reference [25] showed that boundary states avoid localizationwhenever the average symmetry changes
surface invariants by an odd amount, resulting in a new class of topological phases: statistical topological
insulators.With average reflection symmetry, this happens for layered systems inwhich each layer has a strong

2 index, since a change of a 2 number can only be odd. Additionally, it was shown this happens for layers with
an alternating  index ±Q, wheneverQ itself is odd. As such, both cases lead to aweak invariant of the
disordered bulk system,which is 2.

Theweak invariants found to survive disorder according to the above arguments can then be used iteratively
to extend the classification to higher dimensional systems. This is done by studying a system in the same
symmetry class, but one dimension higher, and considering odd changes in theweak surface invariants. Then,
the same procedure leads to second-generation statistical topological insulators, such as the phase appearing at

μ = =t 0d in theDIIImodel (figure 2). The simultaneous presence of two independent average reflection
symmetries is required in this case: one guarantees the existence of aweak surface invariant, while the second
one changes the value of this weak invariant by an odd amount. Therefore, each strong index,  or 2, gives rise

Figure 5. Surface of a stack of quantum spinHall layers. Horizontal arrows denote the helical edgemodes of each layer, and solid/
dotted lines indicate strong/weak inter-layer coupling. Reflection symmetry about one layer can be broken in two different ways (left/
right panels), leading to different surface invariants ν. On the left the surface is gapped and trivial, whereas on the right the reflected
configuration of inter-layer coupling leaves helical edgemodes on the surface boundaries (dark color), signaling a non-trivial surface
invariant ν = 1.
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to infinitelymany higher-dimensional 2 statistical topological insulators in the same symmetry class, which
require a larger number of average symmetries for larger dimensionality of the system.

Somuch for the summary of [25].We extend its conclusions to the present case, whenmultiple invariants
coexist. For a d-dimensional system in any symmetry class, the classification due to the strong invariant, if any, is
extended by each non-trivial invariant of lower-dimension, ′ = −d d k, as

α =α ( )N
k

, , (15)2

where α is a binomial coefficient and ⩽N d is the total number of average reflection symmetries. The binomial
coefficient in equation (15) is reminiscent of that found for systems in the absence of disorder [5, 42], with some
important differences. First, it does not go up to the full dimension of the system, but rather to the number of
average reflection symmetries which protect the invariants. Second, only 2 groups appear, irrespective of
whether the lower dimensional index is  or 2. Lastly, the extension only involves invariants in dimensions

> ′ >d d 0, since in zero dimensions the topological invariant is not a self-averaging quantity,making the
results of [25] inapplicable.

We assemble the resulting classification into a new table of topological insulators, which is nowno longer
periodic, but shows an exponential enlargement of groupswith the number of spatial dimensions (see table 1).
In two dimensions we recover the result of section 2 for classD, with a group structure × 2

2. In 3d class DIII

(section 3), the group is × 2
6 withARS along all directions: there is one integer-valued strong index, three

2dweak indices, and three second-generation, 1d invariants. If ARS is broken along one direction, by staggering
the system, for instance, the group becomes × 2

3 instead. In that case, only two 2d invariants and one 1d
weak index survive.

The extended classification of table 1 applies not only to bulkHamiltonians but also to Teo andKane’s
classification of topological defects [29], enabling us to distinguish between strong and statistical topological
defects. An example of the latter is in fact shown infigure 3. It is theKitaev domainwall, a 1d topological defect
protected from localization byARS.

Since topological defects are classified in terms of the topological properties ofHamiltonians surrounding
the defect, they share the same extended group structure as bulkHamiltonians. Therefore, statistical topological
phase transitions inwhich the strong defect invariant does not change are possible. By using the same interface
construction as before,figure 3, one can understand these transitions in terms of the properties of the
Hamiltonians surrounding them.We show an example infigure 6, where theHamiltonians surrounding two
defects with the same strong invariant cannot be adiabatically deformed into each other, since they differ in one
of their weak invariants.

5. Conclusion

Wehave shown how the topological structure of single-particle systems is enhanced by the presence of average
symmetries. For concreteness, we have focused on protection due to average reflection symmetry in the presence
of disorder, a situationwhich occurs naturally inmany condensedmatter systems.We have found that all weak
invariants of lower dimensions ⩾d 1 contribute to the classification at the same time, leading to a group
structure which grows exponentially with the number of dimensions.

In general, whenmultiple invariants affect the localization properties of the same boundaries, the effect of
average symmetries can be treatedwith the construction of equation (14) or by forming interfaces between
systems. This enables the robustness of each invariant to be studied independently of the others.

Figure 6.One-dimensional topological defect embedded in a three-dimensional bulk, such as theHamiltonian (7) or stacked copies
of (2). At some point along the defect one of its weak invariants changes, leading to the formation of aKitaev domainwall. The defect
HamiltoniansHD and H͠D have the same strong invariant but cannot be deformed into each otherwithout closing a gap, due to the
presence of ARS.
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Sincewe focus on the effects of disorder, our classification scheme is different from, and applies also to,
existingworks, which generalize the periodic TI table. The same arguments can be applied to any symmetry
compatible with the criterion of [25]. In particular, onemay consider instead rotational symmetry, which has
also been shown to lead to topologically non-trivial phases and defects [14, 17, 19].Here too the inclusion of
disorder would result in an average rotational symmetry, extending the topological group structure in a similar
fashion. This opens possibilities for numerous theoretical studies andwidens the possibilities for the
experimental observation of the suggested effects.

We have also discussed some of the physical consequences of the extended classification. It can lead to
statistical topological phase transitions, governed only by a change in one of theweak invariants. In the presence
of average symmetries, the bulk gapmust close at the transition, even if the topological insulators on either side
have the same boundary conductance. Additionally, the extended classification can lead to statistical topological
defects, which host gaplessmodes that are robust to disorder butwhich could not exist in the absence of average
symmetries.
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