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Abstract

We extend the single-particle topological classification of insulators and superconductors to include
systems in which disorder preserves average reflection symmetry. We show that the topological group
structure of bulk Hamiltonians and topological defects is exponentially extended when this additional
condition is met and examine some of its physical consequences. Those include localization—
delocalization transitions between topological phases with the same boundary conductance as well as
gapless topological defects stabilized by average reflection symmetry.

1. Introduction

Topological insulators (TT) are states of matter in which the bulk is gapped but which host protected gapless edge
states [1, 2]. This behavior was first studied in connection to the quantum Hall effect [3, 4], a two-dimensional
(2d) system, and later generalized to include arbitrary dimensions as well as boundary states protected by the
fundamental symmetries of the system: time-reversal 7, particle-hole P, and chiral symmetry C [5, 6]. In each
case, the gapless nature of boundary states is a consequence of the system’s bulk properties. This enables
obtaining of topological invariants, quantities determined from the bulk that count the number of protected
states at a termination of the system. For single-particle systems, the group structure of topological invariants (Z
or Z,) is listed in the so-called periodic table of topological insulators, which shows that in any dimension, five
out of the 10 Altland-Zirnbauer (AZ) [7] symmetry classes can be topologically non-trivial. As long as the
protecting symmetries are not broken, the invariant cannot change without closing the bulk gap, explaining the
robustness of the boundary states to perturbations such as disorder.

Topologically non-trivial behavior can occur also due to symmetries of the underlying lattice. This enables
weak and crystalline topological insulators in the presence of translational symmetry or point group symmetries
(rotation, reflection, etc) [8—12]. Many generalizations of the periodic table have been considered by examining
the interplay between 7', P, C, and different lattice symmetries [ 13-21].

Disorder breaks all symmetries of the lattice, leading to a distinction between strong and weak topological
insulators (WTI) and their associated invariants. Despite owing their protection to lattice symmetries, the
boundary states of some WTIs may still survive disorder. This was first shown for a stack of quantum spin-Hall
layers [22-24], a three-dimensional (3d) WTI belonging to symmetry class All in the AZ classification, and later
generalized to systems of different dimensionalities and symmetry classes, dubbed statistical topological
insulators [25]. Here, protection is not given by an exact symmetry but by one which only holds on average.
Whereas the original invariants belong to Z or Z,, those stabilized by average symmetries only have a Z, group
structure.

Motivated by the robustness of boundary states in statistical topological insulators, we study how the
classification of TIs and topological defects are extended by average symmetries. For concreteness, we will focus
on disordered systems which preserve average reflection symmetry (ARS), a situation which occurs in many

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Table 1. Group structure of single-particle topological
invariants in the ten AZ symmetry classes, with average
reflection symmetry preserved along all directions. The
strong invariants of the original T table are shown in blue
and those protected by ARS in black.

Dimension

Symmetry class

1 2 3
A z Z,?
Al z z,? 7 x7,}
Al
BDI z 7, Z,?
D z, 7 x2,° z,°
DIII 7, 7, X 7, Z X Z,°
All zZ, 7, X Z5®
I z z,? 7, X7y’
C z zy’
CI VA

condensed matter systems [26—28]. Each element of the disordered ensemble of Hamiltonians H appears with
equal probability as its reflected counterpart, R;lH R;,with R; a unitary reflection operator about the j-
direction. Oblique reflection gives the same physics as the ordinary one; thus in the examples we will consider
only the ordinary one. For us the relevant cases are when the reflection plane passes through a lattice site of the
system, such that the symmetry can be broken by staggering the strength of consecutive hopping amplitudes.

We find that the group structure of topological invariants is exponentially enlarged by ARS, since weak
invariants of all dimensions d > 0 contribute simultaneously and independently to the classification presented
in table 1. Some of the physical consequences of this extension include the possibility of disordered topological
phase transitions governed only by a change in the weak invariant. We find a particularly interesting situation
when the system possesses a nonzero strong index on both sides of such a transition. Then the conductance of
the boundary is non-trivial and identical in both phases, while at the transition the bulk gap must close in the
presence of ARS. Additionally, we show that the extended classification applies also to topological defects [29]. It
allows us to define a new class of gapless statistical topological defects, which are robust to disorder but can only
exist in the presence of average symmetries.

In the following, we begin our discussion by motivating the need for an extended topological classification
with some concrete examples. In section 2 we introduce a model for a 2d topological superconductor in
symmetry class D, exhibiting disordered phase transitions across which the strong invariant remains constant,
and only a weak index changes. To show how this behavior escalates in higher dimensions, we consider a 3d
topological superconductor (class DIII) in section 3. Its disordered phases are distinguished by a second-
generation weak index, i.e., one which is two dimensions lower than the system dimension, even if the strong
and 2d weak invariants don’t change. We generalize these results to an arbitrary dimension and symmetry class
in section 4, showing that ARS enlarges the topological classification of both bulk Hamiltonians and topological
defects alike. We conclude in section 5.

2. Topological superconductor in class D

Two-dimensional superconductors with broken time-reversal as well as spin-rotation symmetry belong to
symmetry class D in the AZ classification. The minimal topological model is a 2 X 2 Bogoliubov—De Gennes
Hamiltonian describing spinless fermions in the presence of a p-wave order parameter, A (k) ~ k. The only
constraint is provided by the particle-hole symmetry and reads:

o H (K7 = -H*(-k), (1)

in terms of the Pauli matrices 7 acting on the particle-hole degree of freedom.
We use a tight binding Hamiltonian of the form

H(k) = e(K)z, + A7, sin(k, ) + 4,7, sin(k, ), 2)
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Figure 1. Bulk thermal conductance of a disordered system with Hamiltonian (2) as a function of 4 and t,,. Parameters are t, = 1,

t, =1/2, A, =2, A, = 1,anddisorder strength U= 1. Each phase is labeled according to its strong and weak topological invariants:
v, i, 1. With average reflection symmetry (left panel) the crossings are protected by the weak invariants. Breaking ARS in either the
x- or the y-directions destroys the corresponding invariant (marked with x) and leads to an anticrossing, as shown in the middle and
right panels. In the middle panel the staggering strength in the x-direction is s, = 0.2, while in the right panel the y-direction hoppings
are staggered with s, = 0.4.

with
e(k)=-2t, cos(kx) -2, cos(ky> —u

-2t cos.(kJC +ky) -2l cos(kx —ky). (3)

Here, 4, , is the strength of the p-wave pair potential, £, are the anisotropic hopping amplitudes in the x- and
y-directions, and y is the chemical potential. The Hamiltonian (2) is discretized on a square lattice of
L, X L, = 50 x 50 sites (lattice constant a = 1), with the last two terms of equation (3) leading to next nearest
neighbor hoppings, parametrized by the diagonal hopping amplitude #,. Disorder is modeled by random
variations of the chemical potential, drawn independently for each site from the uniform distribution
[ — U, u + Ul.Inthe following we set t, = 1 and express all other Hamiltonian parameters relative to this
energy scale. All tight binding simulations are performed using the Kwant code [30].

We attach disorder freeleads at x = 0, L, connecting the system to reservoirs at temperatures T and
Ty + 6T. The Fermilevel (E = 0) scattering matrix,

(7 1)

enables us to compute the thermal conductance G = Gy Tr t't, Gy = ﬂ2k§ Ty/6 h,in the low-temperature,
linear response regime, as well as the topological invariants of the system. The Chern number, the strong
topological invariant of the system, reads [31, 32]

u:i_fz’[ dp L 1n detr(g), 5)
271 Jo d¢
while the weak Z, invariants are given by

(=1)% =signdetr(¢ =0). (6)

In equations (5) and (6) r (¢) is the reflection block of the scattering matrix in the presence of twisted
boundary conditions applied to the states in the y-direction: y (x, 0) = €%y (x, L, ). The weak invariant in the
x-direction is evaluated in a similar fashion, by attaching leads in the y-direction and using periodic boundary
conditions (¢ = 0) along x. Both the strong and the weak invariant are defined such that v, 1, = 0is trivial,
while phases with non-zero invariants are non-trivial, either in the strong or weak sense.

As afunction of s and t,, the system shows a variety of topological phases separated by phase transitions at
which the bulk gap closes (see figure 1, left panel). The phases are strong topological insulators whenever the
Chern number is nonzero, with chiral Majorana zero modes on all edges. When v = 0, we also find weak
topological insulators, where two out of four edges avoid localization in the presence of disorder, hosting
counter-propagating Majorana edge modes—so-called Kitaev edges [33].

While typically the Chern number changes across a phase transition, in the model (2) there are also
transitions across which the strong invariant remains constant, and only the weak invariants change. They are
the crossings in figure 1, occurringat (i, t;) = (1, 1/2) and (2, 1/4). Att; = 1/4, varying the chemical potential
causes a change of the weak invariant y,, while the other weak invariant, i, is responsible for the phase transition
atty = 1/2. Thebulk gapisclosed at (i, t; ) = (2, 1/4), even though there are the same number of chiral
Majorana edge modes with the same chirality both for 4 < 2and y > 2.

3
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In the clean case (U= 0) these anomalous topological phase transitions are protected by the exact reflection
symmetry of the system. We find in our simulations that they persist when disorder is added, up to values of U
comparable to the bulk gap, when a thermal metal phase develops [34-36]. Note that in figure 1 we plot the bulk
thermal conductance of a single system at strong disorder, showing that at large enough system sizes ARS can
protect not only the properties of the disordered ensemble as a whole, but its individual elements as well. The
presence of crossings in the disordered phase diagram of Hamiltonian (2) shows that the Chern number, a Z
index, is insufficient to describe class D 2d disordered superconductors with ARS. The full topological
classificationisin fact Z x Z,>.

We verify this group structure by selectively removing average symmetries from the system. This is done by
staggering the x- and/or y-direction hoppingsas t, , — t., (1 + (=1)*’s, ). For s # 0, consecutive hoppings
in the same direction have alternating strength, such that ARS no longer holds. Breaking either of the average
symmetries removes the protection of the associated weak invariant and therefore splits the corresponding
crossing, as shown in the middle and right panels of figure 1. This signals that the two average symmetries act
independently, justifying the extended Z x Z,? group structure.

3. Topological superconductor in class DIII

To demonstrate the protection of an insulating phase by a second-generation weak invariant, i.e., an invariant
two dimensions lower than the system dimension, we choose a model in symmetry class DIIL, with Hamiltonian

H(k)=¢(koy @ . + Koy @ 7, + A, sin(k )o: @ 7
+4, sin(k, ), @ 7, + 4. sin(k. ) @ ., (7)
where
e (k)= —2t, cos(k, ) = 2t, cos(k, ) — 2t, cos(k.)
— 24y cos (ke + k) — 2t cos (ke — k). (8)

The Pauli matrices 7 and ¢; act on the particle-hole and spin degree of freedom, respectively. Here, ¢, ,, , and
Ay, are the anisotropic hopping amplitudes and the p-wave pairing amplitudes in the x-, y-, and z-directions
(as before, we set t, = 1). The chemical potential is 4, while K models an s-wave order parameter coupling the two
spin blocks. The model is constrained by particle-hole and time-reversal symmetry:

nH (k)7 = —H*(=k), )
o, H (k) o, = H* (—k). (10)

As in the previous model, we introduce disorder by random spatial variations of the chemical potential, with
disorder strength U. We discretize the Hamiltonian (7) on a cubic lattice of linear size L, , = 16.Ideal leads are
attached along one direction, and twisted boundary conditions are imposed in the other two, as

w (0, y, 2) = %y (L, y, 2), (%, 0, 2) = by (x, L, z),ory(x, y,0) = ey (x, y, L, ). In each case the
reflection matrix is a function of two out of the three twist angles ¢} , . . Owing to time-reversal symmetry, the
reflection block can be brought to an anti-symmetric form whenever the twist angles are 0 or 7 (periodic or anti-
periodic boundary conditions), making its Pfaffian, Pf r, well defined. As in the class D model, the system shows
different disordered topological phases as a function of u and t,, protected by 1d or 2d weak invariants (see
figure 2). The relevant 2d weak index reads [31, 32]

(-1 = sign[Pfr(qSy =0, ¢, =0)Pfr(f =m ¢, = o)] (11)

and is responsible for gapless modes on all side surfaces, i.e., surfaces parallel to the z-direction. Non-trivial 1d
weak invariants appearing in figure 2 are

(1)@ = sign[Pfir(q&x =0, ¢, = o)] (12)
and
(-1 = sign[Pfir((ﬁy =0, ¢ = o)], (13)

leading to protected gapless modes on side surfaces parallel to the x- and y-directions, respectively. Three-
dimensional class DIII systems also allow for a strong invariant, but this one remains zero throughout the phase
diagram of figure 2, since the top and bottom surfaces are insulating whenever the bulk is gapped.

4
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Figure 2. Bulk thermal conductance of a single disordered system with Hamiltonian (7) as a function of  and t,. Parameters are t, = 1,
t, =1/2,£,=0.05 A, =3, A, =15, 4, =0.15,K=0.2,and disorder strength U= 1. Phases are labeled by their topological
invariants Q3, Q}, and Q}, with X marking an invariant destroyed by breaking ARS. In the absence of staggering, phases are
distinguished by both first- and second-generation weak invariants (left panel). Staggering in the x- and y-directions is set to s, = 0.25
in the middle panel and s, = 0.5 in the right panel, respectively.

Unlike the 2d model of section 2, in which topologically different phases were separated by insulator-to-
insulator phase transitions, the 3d Hamiltonian (7) has finite-extent metallic regions [37]. Nevertheless,
insulating phases are not connected in the presence of ARS. We find that the weak 1d and 2d invariants are
robust, leading to surfaces which do not localize once disorder is added. Breaking average reflection symmetry
by staggering consecutive hoppings in the x- or y-directions destroys the corresponding invariants, connecting
the phases ,as shown in the middle and right panels of figure 2. Note that staggering in the z-direction destroys all
of the invariants of equations (11)—(13), turning the entire phase diagram into a topologically trivial insulator.

4. Extended topological classification

In the previous sections we have presented models showing topological phase transitions protected by average
reflection symmetry, which we dub statistical topological phase transitions, following the nomenclature of [25].
Since the strong index remains constant across these transitions, we need to extend the topological group
structure of the periodic TI table in order to properly label the protected phases. In this section, we discuss this
extension in the context of the models presented above, and show how it applies to systems of any
dimensionality and symmetry class.

The phase diagram of the 2d system, figure 1, has two statistical topological phase transitions. The lower one,
u = 2and t; = 1/4, happens ata vanishing Chern number, v = 0. The corresponding phases are a trivial
system (v =y, = 0), g > 2,andaWTI (y, = 1) for u < 2. Assuch, its robustness to disorder can be
understood in the language of [25], namely in terms of the different edge localization properties of the two
phases. In the trivial phase the edge is localized: its thermal conductance G ~ exp (—L/&) decays exponentially as
afunction of system size L, with the localization length £. The WTT on the other hand has edge states which avoid
localization even in the presence of disorder. They form so-called Kitaev edges [33], characterized by a super-
Ohmic conductance G ~ /I/L (with I the mean free path), which scales in a way typical for disordered 1d
systems at a critical point [38—41]. Due to bulk-boundary correspondence, the difference in edge localization
properties implies that the two phases are topologically distinct, explaining the phase transition’s robustness to

disorder.
The situation is different for the upper crossingin figure 1, at 4 = land t; = 1/2. Onboth sides the strong
topological invariantis v = —1, and as such all edge states avoid localization in both phases. In fact, the thermal

conductance of the edge is identical in both systems, G = |v|Gy = Gy, so the above argument cannot be applied.

Instead, we look at the localization properties of an interface formed between them. Consider a 1d domain
wall formed between systems in the two phases (t; = 1/2, 4 < 1,and p > 1). The key observation is that if one
of the weak indices differs, the corresponding interface between two strong TIs will behave like the edge of a WTI
—in this case a Kitaev edge, or rather, a Kitaev domain wall. Since the index . changes, the interface parallel to
the x-direction avoids localization as long as average reflection symmetry is preserved (see figure 3). The
mobility gap must close along this interface, showing that the two phases are topologically distinct. Therefore,
ARS protects weak invariants also when the strong index is nonzero, leadingtoa Z X Z,? classification for
disordered class D systems in two dimensions.

The situation is similar for the 3d model in class DIII, whose phase diagram is shown in figure 2. At ty = 1/4,
the systems goes from a WTI with Q/ = 1to a trivial insulator as a function of ¢, so the different surface
localization properties of the two disordered phases imply they are topologically distinct. At f; = 1/2, on the
other hand, the effect of 1d invariants is obscured by the 2d non-trivial invariant Q5, which makes all side
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Figure 3. Conductance through a Kitaev domain wall as a function of its length, with and without average reflection symmetry (blue
solid and red dashed lines, respectively). The inset shows the measurement setup, in which conductance flows both through the
domain wall and the chiral Majorana edge modes. The quantized edge mode contribution has been subtracted from the plot (vertical
axis label). Both the top and bottom halves are described by equation (2), using pi,,, = 1.5and g4y, = 0.5,and keepingall other
parameters the same as in figure 1.

A H .,
domain wall
H —“ i
0, vy — 1, R
H

Figure 4. We consider two systems with the same strong indices v but different weak indices y and v, corresponding to the
Hamiltonians Hand H'. We combine them in one of two ways: on the left we invert the invariants of the second system to Hy, with
indices —v and —v; and combine it with the first system using equation (14). We make the coupling matrix A local and having
support throughout the bulk of both systems. The combined system has indices 0 and i — v}, making it non-trivial only in the weak
sense. On the right we put the two systems together with a coupling only over their common edge. Then a weak domain wall is formed
with gapless states protected by the non-zero difference y — v;. This is the generalization of the Kitaev domain wall introduced
earlier.

surfaces delocalized. As before, robustness of the topological phases on either side of the crossing can be
determined by considering an interface between them. Our simulations indicate that in this case the interface
avoids localization, such that the two phases cannot be continuously connected without closing the

mobility gap.

In general, strong and multiple generations of weak invariants may affect the localization properties of states
at the same boundary. However, contributions of different indices can always be isolated by forming an interface
between two phases with only one index changed. This is, in fact, analogous to studying the boundaries of a
system which is only non-trivial with respect to that particular invariant (see figure 4).

For a d-dimensional Hamiltonian H, the robustness of one of its topological indices can be determined by
studying an auxiliary Hamiltonian in the same symmetry class [29, 42]:

_ . (H A
H=He|9HRE(AT H}g)’ (14)

with A a symmetry-preserving coupling matrix. We choose Hy, such that only the nonzero index of interest of H
isalso nonzeroin H and all other indices of H trivial. This allows us to use the results of [25] to show that the
boundaries of the auxiliary Hamiltonian (14) avoid localization in the presence of average symmetries.
Therefore, the nonzero index common to both Hand H isrobust.

For example, if H is given by equation (2) with v = —1, i = 1,ashappens for 4 = 0and #; = 1/2, 0one can
choose Hy tohave v = 1, 4 = 0, making the combined system [29, 42, 43] a WTI only with respect to i . The
connection between the Kitaev domain wall formed at the interface between two strong TIs and the auxiliary
Hamiltonian introduced in equation (14) is summarized in figure 4. The combined Hamiltonian can be

6
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Figure 5. Surface of a stack of quantum spin Hall layers. Horizontal arrows denote the helical edge modes of each layer, and solid/
dotted lines indicate strong/weak inter-layer coupling. Reflection symmetry about one layer can be broken in two different ways (left/
right panels), leading to different surface invariants v. On the left the surface is gapped and trivial, whereas on the right the reflected
configuration of inter-layer coupling leaves helical edge modes on the surface boundaries (dark color), signaling a non-trivial surface
invariant v = 1.

visualized as the system in the inset of figure 3, where the two halves touching at the domain wall have been
folded on top of each other. The Majorana edge modes become counter-propagating after folding, such that

v = 0, and the domain wall in the original setup becomes the boundary of the folded system. As such, in the
following we will restrict ourselves to boundary localization properties, with the understanding that the same
results will be reached when multiple non-trivial invariants coexist, either by considering interface properties, or
auxiliary Hamiltonians of the form (14).

Before proceeding to extend the table of topological insulators to the case where average reflection symmetry
is preserved, we shortly review the results of [25]. We give here only a brief summary, expressed in the language
of a concrete physical example, and refer the reader to that paper for the full, detailed derrivation. This
discussion is necessary in order to distinguish between Z and Z, weak invariants.

In the absence of disorder, WTTIs have gapless boundary states. They can be thought of as systems formed of
weakly coupled layers, where each one caries a strong lower-dimensional invariant. Depending on whether the
layer index is Z or Z,, we consider two constructions: adjacent layers can either have the same value ofa Z,
index, or opposite Z invariants, Q and —Q. A 3d example of the former is a stack of weakly coupled quantum
spin Hall systems [22], while the latter is an anti-ferromagnetic stack of quantum Hall systems [44, 45]. In each
case, dimerization of the layers can gap out the boundary states, but this is forbidden by exact reflection
symmetry.

Note that one can also consider stacked systems in which each layer has the same value of a Z invariant. In
this construction, however, the boundary cannot be gapped irrespective of lattice symmetries, so we will not
discuss it in the following.

When disorder is added, reflection symmetry is explicitly broken, becoming instead an average symmetry of
the disordered ensemble. Let us use the stack of coupled quantum spin Hall systems as an example and assume
that the gapless surfaces protected by exact reflection symmetry do indeed become gapped once disorder is
introduced. In the presence of a surface gap, we can define surface topological invariants for all elements of the
disordered ensemble. Since in 2d (and in general in all dimensions d > 1) the topological invariant is a self-
averaging quantity, it should have the same value for any surface as it does for its reflected counterpart. However,
there are two distinct ways of breaking reflection symmetry on the surfaces of a stack of quantum spin Hall
layers, with surface invariants that differ by an odd amount, as shown in figure 5. Disorder which respects ARS is
equally likely to break reflection symmetry in either of the two ways, seemingly contradicting the self-averaging
nature of the topological index. The only resolution to this apparent paradox is to invalidate the original
assumption, that of a gapped surface.

Reference [25] showed that boundary states avoid localization whenever the average symmetry changes
surface invariants by an odd amount, resulting in a new class of topological phases: statistical topological
insulators. With average reflection symmetry, this happens for layered systems in which each layer has a strong
Z, index, since a change of a Z, number can only be odd. Additionally, it was shown this happens for layers with
an alternating Z index +Q, whenever Qitselfis odd. As such, both cases lead to a weak invariant of the
disordered bulk system, which is Z,.

The weak invariants found to survive disorder according to the above arguments can then be used iteratively
to extend the classification to higher dimensional systems. This is done by studying a system in the same
symmetry class, but one dimension higher, and considering odd changes in the weak surface invariants. Then,
the same procedure leads to second-generation statistical topological insulators, such as the phase appearing at
u = t; = 0inthe DIII model (figure 2). The simultaneous presence of two independent average reflection
symmetries is required in this case: one guarantees the existence of a weak surface invariant, while the second
one changes the value of this weak invariant by an odd amount. Therefore, each strong index, Z or Z,, givesrise
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Figure 6. One-dimensional topological defect embedded in a three-dimensional bulk, such as the Hamiltonian (7) or stacked copies
of (2). Atsome point along the defect one of its weak invariants changes, leading to the formation of a Kitaev domain wall. The defect
Hamiltonians Hp, and Hy, have the same strong invariant but cannot be deformed into each other without closing a gap, due to the
presence of ARS.

to infinitely many higher-dimensional Z, statistical topological insulators in the same symmetry class, which
require a larger number of average symmetries for larger dimensionality of the system.

So much for the summary of [25]. We extend its conclusions to the present case, when multiple invariants
coexist. For a d-dimensional system in any symmetry class, the classification due to the strong invariant, if any, is
extended by each non-trivial invariant of lower-dimension, d’ = d — k, as

7%, a= (II\{’) (15)

where a is abinomial coefficientand N < d is the total number of average reflection symmetries. The binomial
coefficient in equation (15) is reminiscent of that found for systems in the absence of disorder [5, 42], with some
important differences. First, it does not go up to the full dimension of the system, but rather to the number of
average reflection symmetries which protect the invariants. Second, only Z, groups appear, irrespective of
whether the lower dimensional index is Z or Z,. Lastly, the extension only involves invariants in dimensions

d > d’' > 0,since in zero dimensions the topological invariant is not a self-averaging quantity, making the
results of [25] inapplicable.

We assemble the resulting classification into a new table of topological insulators, which is now no longer
periodic, but shows an exponential enlargement of groups with the number of spatial dimensions (see table 1).
In two dimensions we recover the result of section 2 for class D, with a group structure Z X Z, 2 In 3d class DIII
(section 3), the groupis Z X Z,° with ARS along all directions: there is one integer-valued strong index, three
2d weak indices, and three second-generation, 1d invariants. If ARS is broken along one direction, by staggering
the system, for instance, the group becomes Z x Z,° instead. In that case, only two 2d invariants and one 1d
weak index survive.

The extended classification of table 1 applies not only to bulk Hamiltonians but also to Teo and Kane’s
classification of topological defects [29], enabling us to distinguish between strong and statistical topological
defects. An example of the latter is in fact shown in figure 3. It is the Kitaev domain wall, a 1d topological defect
protected from localization by ARS.

Since topological defects are classified in terms of the topological properties of Hamiltonians surrounding
the defect, they share the same extended group structure as bulk Hamiltonians. Therefore, statistical topological
phase transitions in which the strong defect invariant does not change are possible. By using the same interface
construction as before, figure 3, one can understand these transitions in terms of the properties of the
Hamiltonians surrounding them. We show an example in figure 6, where the Hamiltonians surrounding two
defects with the same strong invariant cannot be adiabatically deformed into each other, since they differ in one
of their weak invariants.

5. Conclusion

We have shown how the topological structure of single-particle systems is enhanced by the presence of average
symmetries. For concreteness, we have focused on protection due to average reflection symmetry in the presence
of disorder, a situation which occurs naturally in many condensed matter systems. We have found that all weak
invariants of lower dimensions d > 1 contribute to the classification at the same time, leading to a group
structure which grows exponentially with the number of dimensions.

In general, when multiple invariants affect the localization properties of the same boundaries, the effect of
average symmetries can be treated with the construction of equation (14) or by forming interfaces between
systems. This enables the robustness of each invariant to be studied independently of the others.

8
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Since we focus on the effects of disorder, our classification scheme is different from, and applies also to,
existing works, which generalize the periodic T table. The same arguments can be applied to any symmetry
compatible with the criterion of [25]. In particular, one may consider instead rotational symmetry, which has
also been shown to lead to topologically non-trivial phases and defects [ 14, 17, 19]. Here too the inclusion of
disorder would result in an average rotational symmetry, extending the topological group structure in a similar
fashion. This opens possibilities for numerous theoretical studies and widens the possibilities for the
experimental observation of the suggested effects.

We have also discussed some of the physical consequences of the extended classification. It can lead to
statistical topological phase transitions, governed only by a change in one of the weak invariants. In the presence
of average symmetries, the bulk gap must close at the transition, even if the topological insulators on either side
have the same boundary conductance. Additionally, the extended classification can lead to statistical topological
defects, which host gapless modes that are robust to disorder but which could not exist in the absence of average
symmetries.
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