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In our recent paper [O. Gamayun, O. Lychkovskiy, and V. Cheianov, Phys. Rev. E 90, 032132 (2014)] we
studied the dynamics of a mobile impurity particle weakly interacting with the Tonks-Girardeau gas and pulled
by a small external force F . Working in the regime when the thermodynamic limit is taken prior to the small
force limit, we found that the Bloch oscillations of the impurity velocity are absent in the case of a light impurity.
Further, we argued that for a light impurity the steady-state drift velocity VD remains finite in the limit F → 0.
These results are in contradiction with earlier works by Gangardt and co-workers [D. M. Gangardt and A.
Kamenev, Phys. Rev. Lett. 102, 070402 (2009); M. Schecter, D. M. Gangardt, and A. Kamenev, Ann. Phys. (NY)
327, 639 (2012)]. One of us has conjectured [O. Lychkovskiy, Phys. Rev. A 91, 040101 (2015)] that the central
assumption of these works, the adiabaticity of the dynamics, can break down in the thermodynamic limit. In the
preceding Comment [M. Schecter, D. M. Gangardt, and A. Kamenev, Phys. Rev. E 92, 016101 (2015)], Schecter
et al. have argued against this conjecture and in support of the existence of Bloch oscillations and the linearity of
VD(F ). They have suggested that the ground state of the impurity-fluid system is a quasibound state and that this
is sufficient to ensure adiabaticity in the thermodynamic limit. Their analytical argument is based on a certain
truncation of the Hilbert space of the system. We argue that extending the results and intuition based on their
truncated model on the original many-body problem lacks justification.
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The preceding Comment [1] discusses the discrepancy
between the results of Refs. [2–4] and the results of Ref. [5]
concerning the dynamics of a mobile impurity particle pulled
through a one-dimensional (1D) fluid by a small constant
force. The results in question are as follows: It was predicted
in [2–4] that the impurity experiences Bloch oscillations (in
the absence of any external periodic potential) superimposed
on the drift and that the drift velocity VD is linear in force
F . This behavior was predicted to be fairly general, the only
validity condition being the smoothness of the lower edge of
the impurity-fluid spectrum [4]. In contrast, it has been argued
in Ref. [5] that the oscillations do not occur for the impurity
in the Tonks-Girardeau gas and VD(F → 0) remains finite,
provided the impurity is lighter than a gas particle.

First we would like to stress that there is no fundamental
contradiction between the results obtained with the Boltzmann
equation and the hypothetical possibility of observing Bloch
oscillations. The reason for this is as follows. The Boltzmann
equation is robust and applicable to a generic initial state,
whether pure or thermal, while the Bloch oscillations were
predicted in Refs. [2,3] for a very special choice of the initial
state, namely, the ground state. Considering the absence of
the gap in the spectrum, the preparation of the system in the
ground state might be quite difficult experimentally. However,
with this caveat in mind, the question remains if the Bloch
oscillations could be observed even if such a preparation is
done. In this Reply we present our arguments as to why we
think this has not been convincingly demonstrated.

The Bloch oscillations were derived in [2–4] by a
straightforward application of the adiabatic theorem to the
impurity-fluid system. In one dimension the spectral edge
of the latter is always periodic in momentum, which readily

leads to oscillations. Undoubtedly, this reasoning holds for a
finite system provided the driving force is sufficiently small.
However, a key ambiguity is the exact meaning of “sufficiently
small” in view of the fact that the many-body system under
consideration is gapless [6]. To be more specific, the question
is how the critical force at which the adiabaticity breaks down
scales in the thermodynamic limit. The reasoning of [2–4] is
justified only if the critical force does not vanish in this limit.

The aforementioned crucial question, which was not ad-
dressed in Refs. [2–4] or in Ref. [5], is the focus of the
Comment. The authors of the Comment argue that the critical
force is finite in the thermodynamic limit.

This principle claim of the Comment contradicts a common
intuition about gapless many-body systems (see, e.g., Ref. [7]).
Further still, the critical force has been found to vanish in
several specific gapless many-body systems [8–10], while we
are not aware of any specific system in which the opposite
would be explicitly demonstrated.

The authors of the Comment consider a toy model with
a truncated Hilbert space (in fermionic language, only one
particle-hole excitation is allowed in this model) in order
to justify their claim. In contrast to the original many-body
system, the ground state of this truncated model is separated
from the continuum of excited states by a finite gap. As
a consequence, the critical force in the truncated model is
finite.

The finite gap in the truncated model can be associated
with a bound state. The authors of the Comment admit that the
gap is absent in the original many-body system. Nevertheless,
they point to the power-law correlation function in the original
system and argue that a quasibound ground state with binding
energy equal to the gap persists and ensures adiabaticity as
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well as linearity of VD(F ). We do not see, however, a direct
logical relation between the power-law behavior of correlation
function on the one hand and adiabaticity of quantum evolution
and linearity of the response on the other.

The authors of the Comment state that “the one-hole
bound-state solution is in quantitative agreement with the
available exact results.” As a substantiation of this statement,
they compare the bound-state energy in the truncated model
and in the integrable many-body model (fluid in the Tonks-
Girardeau limit, mass of the impurity m equal to the mass of
the fluid particle) in the limit γ � 1, γ being a dimensionless
impurity-fluid coupling, and in the vicinity of the total
momentum P = kF. Indeed, at this specific total momentum

the truncated model gives the correct ground-state energy k2
F

2m
.

We emphasize, however, that this concordance is destroyed for
momenta away from P = kF. For example, for P = 0,

Eg = k2
F

π2m
γ − k2

F

8π2m
γ 2 + O(γ 3) (1)

(see [11]), while

Etr
g = k2

F

π2m
γ − � + O(�2) with � = 2k2

F

m
e−2π2/γ . (2)

The discrepancy |Eg − Etr
g | is on the order of γ 2 and thus is

much larger than the exponentially small binding energy �.
This observation is also valid in the nonintegrable case where
the ground-state energy can be calculated perturbatively [12].
Thus, the truncated model introduces a nonperturbative expo-
nentially small correction to the ground-state energy of the
system but misses much larger perturbative contributions. For

this reason it cannot be regarded as being in “quantitative
agreement with the available exact results.”

The above estimate elucidates a physical reason to doubt
the existence of the quasibound state: The fluctuation of the
kinetic energy of the impurity-fluid system is O(γ 2) and hence
is likely to completely destroy the alleged quasibound state
with an exponentially small binding energy.

Finally, we comment on the drift velocity of the impurity
as a function of the driving force. The authors of the Comment
focus their attention on the heavy impurity case when it comes
to the drift velocity, but do not mention the light impurity case.
In fact, in the former case our results can be reconciled, as
discussed both in Ref. [5] and in the Comment. On the other
hand, in the latter case the discrepancy is dramatic: According
to Refs. [3,4], the drift velocity always vanishes at F → 0,
while according to Ref. [5] it remains finite in this limit.
The root cause of this discrepancy is closely related to the
presumed reason for the absence of Bloch oscillations in the
light impurity case [5].

To conclude, we believe that the conclusions and intuition
obtained on the basis of the truncated model suggested in
the Comment cannot be justifiably extended to the original
impurity-fluid system. Thus an important question whether the
adiabatic driving in the considered many-body system exists
in the thermodynamic limit remains open. Answering this
question is necessary for understanding the driven dynamics
of a mobile impurity in a 1D quantum fluid and in particular
in resolving the controversy between Refs. [2–4] and Ref. [5].
This problem is left to future research.

The work was supported by ERC Grant No. 279738-
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