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A problem typically encountered when studying complex systems is the limitedness of the information
available on their topology, which hinders our understanding of their structure and of the dynamical processes
taking place on them. A paramount example is provided by financial networks, whose data are privacy protected:
Banks publicly disclose only their aggregate exposure towards other banks, keeping individual exposures towards
each single bank secret. Yet, the estimation of systemic risk strongly depends on the detailed structure of the
interbank network. The resulting challenge is that of using aggregate information to statistically reconstruct a
network and correctly predict its higher-order properties. Standard approaches either generate unrealistically
dense networks, or fail to reproduce the observed topology by assigning homogeneous link weights. Here, we
develop a reconstruction method, based on statistical mechanics concepts, that makes use of the empirical link
density in a highly nontrivial way. Technically, our approach consists in the preliminary estimation of node degrees
from empirical node strengths and link density, followed by a maximum-entropy inference based on a combination
of empirical strengths and estimated degrees. Our method is successfully tested on the international trade network
and the interbank money market, and represents a valuable tool for gaining insights on privacy-protected or
partially accessible systems.
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Reconstructing the statistical properties of a network when
only partial information is available represents a key open
problem in the field of statistical physics of complex systems
[1,2]. Yet, addressing this issue can lead to many concrete
applications. A paramount example is provided by financial
networks, where nodes represent financial institutions and
links stand for the various types of financial ties, such as
loans or derivative contracts. These ties result in dependencies
among institutions and constitute the ground for the propaga-
tion of financial distress across the network. However, due to
confidentiality issues, the information that regulators are able
to collect on mutual exposures is very limited [3], hindering the
analysis of the system resilience to the spreading of financial
distress—which depends on the structure of the whole network
[4,5]. Typically, the analysis of systemic risk has been pursued
by trying to estimate the unknown link weights of the network
via a maximum homogeneity principle [6–8], looking for the
adjacency matrix with minimal distance from the uniform ma-
trix that also satisfies the imposed constraints (e.g., the budget
of individual banks). These approaches are also known as
dense reconstruction methods, as they assume that the network
is fully connected, a hypothesis that represents their strongest
limitation. In fact, not only empirical networks do show a
very heterogeneous distribution of the connectivity, but such
a dense reconstruction leads to systemic risk underestimation
[2,8]. More refined methods such as sparse reconstruction
algorithms [2] allow one to obtain a matrix with an arbitrary
level of heterogeneity, however, without prescribing how to
identify its proper value; moreover, even when the link density
is correctly recovered, systemic risk is again underestimated
because of the homogeneity principle used to obtain the link
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weights. A more recent approach [9,10] instead uses the
limited topological information available on the network to
generate an ensemble of graphs according to the configuration
model (CM) [11], where the Lagrange multipliers that define
it are replaced by fitnesses [12], i.e., node-specific properties
assumed to be known—in a way similar to fitness-dependent
network models [13]. The estimation of network properties
is then carried out within such an ensemble. This method
overcomes the limitations of its predecessors, but suffers from
another drawback of being usable to reconstruct only binary
topologies, whereas systemic risk analysis requires a weighted
representation of the network [5].

Here, we aim at overcoming the limitations of these meth-
ods and build a procedure to reconstruct weighted networks,
resorting on a minimal amount of available information: the
total number of connections, and the values of the fitness
for each node, whose role will be played by the empirical
node strengths. Briefly, our method consists in estimating the
number of connections for each node via the standard CM
calibrated on the fitnesses, and then in using these values
as well as node strengths to assess individual link weights
through an enhanced configuration model (ECM) [14]. To
validate our method, we use two real instances of economic
and financial systems for which we have full information
(we will be able to assess unambiguously the accuracy of
our method in estimating their topological properties). The
first one is the World Trade Web (WTW) [15], where nodes
represent countries and links stand for trade volumes: The
weight wij of the link between nodes i and j is the total
monetary flux (resulting from the import and export) between
these countries [16]. The second one is the Electronic Market
for Interbank Deposits (E-mid) [17], where nodes represent
banks and links stand for loan contracts: wij is the total amount
of liquidity exchanged between banks i and j [18]. In both
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cases, the strength of node i is defined as s∗
i = ∑

j wij , while
its degree or number of connections is k∗

i = ∑
j aij (where

aij := 1 − δ[wij ,0]).
We now give a detailed explanation of our network recon-

struction method, focusing on the main statistical assumptions.
Our goal is to find the optimal estimate for X(G0), the value
of a topological property X for a real network G0, on the
basis of the limited available information on G0 itself: the
total number of nodes N and links L, and the whole strength
sequence {s∗

i }Ni=1. Such quantities will act as constraints in the
estimation procedure: The idea is to consider G0 as drawn from
the appropriate maximally random ensemble � of weighted
graphs compatible with such constraints, so that X(G0) can
be estimated as 〈X〉� (the average of X over the ensemble).
In other words, we map the problem of evaluating X(G0) into
that of choosing the optimal ensemble � compatible with the
known constraints. The method proceeds in two main steps,
each based on a key assumption.

(I) We first reconstruct the binary topology of G0. To this
end, if we knew the degree k∗ for each node of the network, we
could use the standard approach of the CM [11,19,20], which
consists in generating an ensemble �CM of networks which
is maximally random, except for the ensemble average of the
node degrees {〈ki〉�CM}Ni=1 that are constrained to the empirical
values {k∗

i }Ni=1 observed for G0. This leads to a probability
distribution over �CM of all possible binary graphs, which is
defined via a set of Lagrange multipliers {xi}Ni=1 (one for each
node) associated to the constraints 〈ki〉�CM ≡ k∗

i ∀i [21]. Once
all {xi} are found, the CM reduces to having a link between
nodes i and j with probability [21]

pij = xixj

1 + xixj

, (1)

independently of all other links. Here, however, we are
studying the case where individual node degrees are unknown,
yet we know the total number L of links. Thus we cannot
directly use the CM; to overcome this drawback, we resort to
the fitness model [12], which assumes the network topology to
be determined by an intrinsic node property called fitness.
This approach has been successfully used in the past to
model several economic and financial networks, by assuming
a connection between fitnesses and Lagrange multipliers
[13,17,22]. We thus make the following ansatz: The strengths
{s∗

i }Ni=1 (for which we have full information) are interpreted as
node-specific fitnesses, induced by node degrees. In particular,
we assume strengths to be linearly proportional to the degree-
induced Lagrange multipliers {xi}Ni=1 of the CM, with an
unknown proportionality constant z: xi ≡ √

zs∗
i ∀i (see Fig. 1

and the discussion below). Once z is determined, we can
estimate the unknown node degrees as their average values
in such strength-induced �CM. The first step of our method
is thus the estimation of the constant z, which is achieved by
equating the average number of links of a graph belonging
to �CM, computed through Eq. (1) with xi = √

zs∗
i , to the

(known) total number L of links in G0:

〈L〉�CM ≡ 1

2

∑

i

∑

j (�=i)

zs∗
i s

∗
j

1 + zs∗
i s

∗
j

= L. (2)
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FIG. 1. (Color online) Relation between node strengths {s∗} and
their degree-induced Lagrange multipliers {x} from CM (obtained by
knowing the whole degree sequence). The linearity of such a relation
is at the basis of the ansatz of our method that xi ∝ s∗

i ∀i. The left
panel refers to WTW, and the right panel to E-mid.

Since {s∗
i }Ni=1 are known, Eq. (2) is an algebraic equation in z

with a single solution for z > 0, which is then used to estimate
the unknown degrees of G0:

〈ki〉�CM =
∑

j (�=i)

pij =
∑

j (�=i)

zs∗
i s

∗
j

1 + zs∗
i s

∗
j

∀i. (3)

We have thus obtained, for our network G0, an estimate
for node degrees—through Eq. (3)—and for the single link
probability pij —through Eq. (1) with xi ≡ √

zs∗
i ∀i.

(II) We then reconstruct the weighted topology of G0.
Again, if we had full information on the node degrees, we could
use the ECM [14], a more sophisticated version of the CM ob-
tained by constraining the ensemble averages of node degrees
{〈ki〉�ECM}Ni=1 to {k∗

i }Ni=1 and node strengths {〈si〉�ECM}Ni=1 to
{s∗

i }Ni=1 [19], and building a maximally random ensemble of
weighted graphs compatible with these constraints. The ECM
prescribes that two Lagrange multipliers {ai,bi} are associated
to each node i, so that the ensemble probability qij that any
two nodes i and j are connected and the ensemble average
weight w̃ij for such a link become [23]

qij = aiajbibj

1 + aiajbibj − bibi

, w̃ij = qij

1 − bibj

. (4)

The problem of missing information on the degree sequence
can, however, be overcome owing to the CM-based estimation
of step I of our method: We can use the degrees estimated via
Eq. (3), together with the empirical node strengths {si}Ni=1, to
build �ECM by solving the system of 2N nonlinear equations
that define it:

〈ki〉�CM =
∑

j (�=i)

qij =
∑

j (�=i)

aiajbibj

1 + aiajbibj − bibi

s∗
i =

∑

j (�=i)

w̃ij =
∑

j (�=i)

qij

1 − bibj

∀i. (5)

The solution is the set of Lagrange multipliers {ai,bi}Ni=1
that allow one to obtain the single linking probabilities
{qij }Ni,j=1 and the average weights {w̃ij }Ni,j=1 as of Eq. (4).
X(G0) = 〈X〉�ECM can then be computed either analytically, or
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FIG. 2. (Color online) Relation between k∗ and 〈k〉�ECM for
WTW (left panel) and E-mid (right panel).

numerically (on a representative set of networks drawn from
�ECM).

We now move to validation of the method. First, in order
to check whether �ECM defined above is a proper ensemble
from which to draw the real network G0, we compare ∀i

the empirical degree k∗
i with 〈ki〉�ECM = ∑

j (�=i) qij estimated
through our method. As Fig. 2 shows, this results in a
scattered cloud around the identity, whose behavior reflects
the noisy yet very high correlation between these values. We
then focus on the topological properties that are commonly
regarded as the most significant for describing a weighted
network and its binary structure: the average nearest-neighbor
strength snn and the weighted clustering coefficient cw, and the
average nearest-neighbor degree knn and the binary clustering
coefficient ck [19]. Figure 3 shows a remarkable agreement
between these quantities computed on G0 and their ECM
ensemble averages, which can therefore be used as good
estimates for the real quantities X(G0). Such a test reveals
the accuracy of our method in reconstructing the topological
properties of the real network.

We remark that the applicability of our method strongly
depends on the accuracy of the ansatz of whether the CM
induced by node strengths is able to provide good estimates
for the unknown degrees. The validity of such an ansatz can,
however, be assessed through a scatter plot of node strengths
versus their degree-induced Lagrange multipliers computed
via CM (as shown in Fig. 1), or simply of node strengths versus
node degrees (as for small degree values it is k∗

i ∝ xi [19]).
In any event, our assumption xi ∝ si ∀i derives from a
simple argument, corroborated by similar evidence found
in the analysis of several economic and financial networks
[13,17,22]: The more important a node, the bigger we expect
its degree to be. This means that any measure of importance
of a node is likely to be a monotonic function of the Lagrange
multiplier that controls the degree of that node. If such a
measure is strictly positive, then its simplest dependency on
x is linear. Here, we are expecting the strengths to directly
reflect the nodes’ importance, with the advantage that, for any
network, they always provide a unique proxy—hence we do
not need to look for case-specific external quantities.

Another important remark is that our method is based
on a combination of CM and ECM rather than directly on
the weighted configuration model (WCM) [21], because the
latter not only fails to reproduce the network topological
properties (as shown by Fig. 3), but it also predicts a far denser

network than observed. This happens not because strengths
carry a “lower level” information than that of degrees. Rather,
they can be used to infer the degrees themselves, and this
is what we point out: The information on strength values
should not be used to directly reconstruct the network, but
to estimate the degree first, and only then to compute the
quantities of interest. In this respect, note that using directly
the knowledge of the strength sequence and number of links as
fixed constraints to build a maximum-entropy ensemble would
result in different mathematical expressions. In particular, we
would arrive at a variant of Eq. (4) where ai = a ∀i and,
just as the WCM, this model gives a bad prediction of the
network, leading to the conclusion that inferring the links’
presence first is a crucial step of our approach, indispensable
to achieve a faithful network reconstruction. The fundamental
reason behind this is that, in the absence of topological
constraints (i.e., when only the strengths are enforced), the
method would assign equal probability to all the configurations
that have the same strength sequence. The number of such
configurations is extremely large, resulting in an enormous
entropy of the network ensemble and in a consequent lack of
an accurate reconstruction. By contrast, the specification of
degrees constrains the system much more strongly, and results
in a definitely smaller entropy [19].

Further work is needed to address several issues that
remain open, including testing our method on higher-order
topological properties. In this respect, the fact that in our
method the probability of generating a graph factorizes into
the probabilities of connecting the different pairs of nodes
(which in the context of the fitness model is known as the
independence of dyads) could be seen as making the method
inherently inadequate to reproduce, e.g., community structures
or spatial dependencies. This inadequacy is probably the cause
of the residual deviations between the real networks and our
reconstructed ensembles that appear in Fig. 3. We should,
however, emphasize that the independence of dyads is not
postulated by us at any stage; rather, it emerges naturally from
the enforcement of purely local constraints (defined as sums
of degrees and/or strengths over neighbors). In fact, when
reconstructing a network from such constraints, the maximum-
entropy method automatically generates independent dyads as
the unbiased solution to the inference problem. Paradoxically,
introducing (more realistic) dependencies among dyads would
result in a biased inference.

Finally, we remark that in its present version our method
exploits very limited information, which is indeed minimal
but is also what is often (and only) available for economic
and financial systems: Besides global statistics (N and L),
the strengths (that can be the operating revenue of firms,
or the tier-1 capital of banks) are or should be accessible
public data. In conclusion, our method is particularly useful
to overcome the lack of topological information that often
hampers systemic risk estimation in financial networks. More
generally, our method can be applied to any complex system
for which the information on the dependencies among its
components is limited (because of observational limitations
and difficulties in collecting data). Yet, one should always keep
in mind the limitations of maximum-entropy approaches based
on local constraints in reconstructing high-order properties of
inherently nonrandom systems (such as some biological and
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FIG. 3. (Color online) Scatter plots of (a), (e) s vs snn, (b), (f) k vs knn, (c), (g) s vs cw , and (d), (h) k vs ck for the real quantities [X(G0)],
those estimated by our method (〈X〉�ECM ), and those computed by WCM-based reconstruction (〈X〉�WCM ). Insets: Relations X(G0) vs 〈X〉�ECM

and X(G0) vs 〈X〉�WCM for the same quantities. Upper plots (a)–(d) refer to WTW, and lower plots (e)–(h) to E-mid.

technological networks), but still can provide useful insights
on local features [19].
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