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Multidisciplinary analysis including paleomagnetic, sedimentologic, sea-level change, luminescence
dating and palynologic research was performed on a 25 m long orientated core taken at Rutten, close to
Eemian key localities in the Netherlands. The main goal of our research was to test a possible delayed
onset of temperate conditions in this region compared to Southern Europe, occurring within the Last
Interglacial. The sediments revealed the presence of the paleomagnetic Blake Event in ca. 10 m of lower-
deltaic floodbasin sediments that contain a pollen record covering the Eemian. The position of the Blake
Event in relation to the pollen stratigraphy concurs with the earlier studied Neumark Nord 2 site.
Paleomagnetic correlation to core MD95-2042 off SW Iberia indicates ca. 5 kyr diachroneity between the
pollen-based onset of temperate interglacial conditions between northern and southern Europe. The
onset of the Eemian in north-western and central Europe (ca. 121.0 ka) post-dates the Marine Isotope
Stage 6/5e transition by ca. 10 kyr. In addition, the Rutten data provide evidence for a relatively long
duration of the Blake Event of at least 8 kyr. The late onset of the temperate conditions that define the
base of the Eemian, imply that NW Europe with the Eemian type area is not the most suited region to
define the beginning of the Last Interglacial and Late Pleistocene for global chronostratigraphic use.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The stratigraphic term »Eemian« is in use as a local bio-
stratigraphical zone in the type area in the central Netherlands and
as a regional biostratigraphical zone across Europe. It is also in use
as a formal regional chronostratigraphical unit more or less
equivalent to the Last Interglacial in Europe and the North Atlantic,
and as an informal (i.e. not ratified) global chronostratigraphical
unit (Turner, 2002a). There is a notion that what is recognised as
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the Eemian, has a different timing and duration in various places
across northern and southern Europe (Kukla et al.,, 2002; Turner,
2002a; Tzedakis et al., 2003). Strictly speaking, if the Eemian is
used as a chronostratigraphical unit, by definition it cannot be
diachronic, while when used as a biostratigraphical zone it can be.
In this sense the title of this paper is somewhat provocative. As long
as the term Eemian is only used in and near its type area, a dual use
for bio- and chronostratigraphical purpose is not that problematic.
When biostratigraphy-independent dating and correlation results
identify acclaimed chronostratigraphic correlations over larger
distances to be diachronic (e.g. as suggested in Sier et al. (2011)) on
the basis of paleomagnetic investigations on the Blake event),
however, this is a problematic outcome. Any notion of serious
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diachroneity (i.e. in the order of a few thousands of years) con-
cerning the onset of the Eemian requires rigorous testing at last-
interglacial locations across Europe, and preferably in the type
area. Repeated tests then can either identify that assumptions un-
derlying earlier chronostratigraphic correlations were wrong in
hindsight, or that the independent dating methods are off. This
paper performs such a test, for which opportunity arose with work
on a new site in the Eemian type region in the central Netherlands.

This paper addresses the dating of the Eemian in the type area in
the central Netherlands and the correlation and dating of the
Eemian in adjacent regions (e.g. north-western and central Ger-
many). Next, the implications for the correlation and dating of the
“Eemian” and the Last Interglacial in areas further out in Europe are
being discussed. Throughout the paper, »Eemian« is used where the
term relates to biostratigraphic and chronostratigraphic use within
the type area and adjacent areas in NW Europe (sites in Fig. 1), and
»“Eemian”« is used where it considers biostratigraphical and
chronostratigraphical correlative use in wider Europe and beyond
(regardless of whether this past use has been informal or formal,
and stratigraphically correct or not). The Eemian in its type area
was first informally introduced by Harting (1874) to describe a
Lusitanian mollusc-rich shallow-marine unit encountered near
Amersfoort (The Netherlands; Fig. 1). After pioneering work by
Jessen and Milthers (1928), the boundaries to define the Eemian are
taken from pollen assemblage zones (Zagwijn, 1961). With regional
modifications, this became in general use across NW Europe, both
biostratigraphically and chronostratigraphically (Turner, 2000).
The term “Eemian” became also in use to group temperate pollen
assemblage zones in last-interglacial records in southern Europe.
The European “Eemian” was often assumed to be fully equivalent to
Marine Isotope Stage (MIS) 5e, implying a synchronous start and
having the same duration. However, studies of washed-in pollen in
core MD95-2042 off the Iberian coast have demonstrated a ca. 5 kyr
delay of the onset of the “Eemian” relative to the onset of MIS 5e,
based on paired 3'80 and pollen data; (Sanchez Goii et al., 1999;
Shackleton et al., 2002, 2003). A recent study at the Neumark-
Nord 2 (NN2) archaeological site in central Germany (Fig. 1),
based on land—sea correlation making use of the paleomagnetic
Blake Event, suggested a further delay of another 4—5 kyr to the
onset of Eemian temperate conditions at higher latitudes (Sier et al.,

2011). If correct, such large time lags have significant consequences
for views on the environmental development in the Last Intergla-
cial across southwest, northwest and central Europe — besides
suggesting chronostratigraphical mismatch between SW European
“Eemian” and NW European Eemian. Furthermore, being able to
position the Blake Event within Eemian pollen successions holds
potential for the correlation of last-interglacial archaeological sites
on a very high resolution absolute time scale (Sier et al., 2011).

Here, results are described that were obtained from an orien-
tated, undisturbed core with Eemian sediments from the
Netherlands. This research core (B15F1501) provides important new
evidence to constrain the position of the Blake Event with respect to
the north-western European Eemian pollen zonation. The core is
located in the central Netherlands (Fig. 1, Rutten lies in the Noor-
doostpolder), where the lower Rhine delta was located during the
Eemian interglacial (Peeters et al., 2015). The cored sediments are
part of the fill of a ca. 70-km wide last-interglacial shallow-marine
embayment, where the Eemian (para)type localities of Amersfoort
(Zagwijn, 1961; Cleveringa et al., 2000) and Amsterdam Terminal
(Van Leeuwen et al., 2000; Beets and Beets, 2003; Beets et al., 2006)
are also located in (Fig. 1). Some years ago, the latter site has been
proposed as a location to host the Global Chronostratigraphical
Section and Point for the Late Pleistocene (Gibbard, 2003; Gibbard
and Cohen, 2008; Litt and Gibbard, 2008). The current status is
that the proposal has been rejected and needs to be resubmitted if to
be considered in the future (Head et al., 2013).

The main goal of this study was to test a possible delayed onset
of temperate conditions in NW Europe, by retrieving a detailed
paleomagnetic record of the Blake Event and correlating its posi-
tion in relation to the Eemian pollen zonation and other strati-
graphic signals in the type area, at a hereto suitable location near
the Eemian type locality. Especially, relative age control on the start
of the Blake Event vs. that of the Eemian is important as it enables a
direct comparison with the previous findings at Neumark Nord 2 in
Germany (Sier et al., 2011). A second goal is to better constrain the
duration of the Blake Event in this region of Europe, as published
durations are distinctly variable from ~1 kyr to over 7 kyr (e.g.
Bourne et al., 2012; Channell et al., 2012). A better constrained
duration opens up the possibility for the Blake Event to be used as a
geochronological marker, enabling inter-site comparisons of
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Fig. 1. Map showing NW Europe with the study area in The Netherlands and locations of the other paleomagnetic sites in Neumark (Germany) and Caours (France). Detailed map of
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Fig. 3. ChRM directions plotted against the sedimentary record and identified Pollen Assemblage Zones (PAZ) of Rutten core B15F1501. PAZ E1-E6 are Eemian pollen zones (cf.
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Fig. 2. A—H) Representative Zijderveld diagrams of alternating field demagnetization (AF) and thermal demagnetization (TH). Numbers next to the graphs denote alternating field
step in mT or demagnetization temperature step in °C. Panels A) and B) show an AF quality 1 sample. Panel A) shows the per-component (PC) Zijderveld diagram (for GRM
correction) and panel B) shows the standard (ST) demagnetization diagram of the same sample. An AF quality 2 sample is shown in panels C) (PC) and D) (ST). Panel E) (PC) and F)
(ST) show an example of a discarded sample due to high GRM. Examples of quality 1 and quality 2 TH samples are given in panel G) and H). Dec and Inc stand for declination and
inclination in degrees. MAD is maximum angle of deviation. See main text for further explanations, for stratigraphic levels see SI Tables I and II.
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archaeological sites in high detail, within the Last Interglacial.
Finally, the paleomagnetic directions from Rutten could provide
new information on the geomagnetic nature of the Blake Event and
the debate about the lack of fully reversed directions during the
Blake Event in north-western Europe (e.g. Sier et al., 2011; Scholger
and Terhorst, 2013).

2. Geological and stratigraphic setting

The Netherlands and adjacent parts of north-western Europe
experienced strong geomorphological modification due to expan-
sion and retreat of ice-sheets during the Middle Pleistocene
(Passchier et al., 2010; Laban and van der Meer, 2011; Lee et al,,
2012). The Saalian period in particular is of importance here,
since the northern half of the Netherlands (including the research
site) was covered by ice during the Drenthe Substage (e.g. Van Den
Berg and Beets, 1987; Busschers et al., 2008), resulting in the for-
mation of distinctive glacial morphology in the northern and cen-
tral Netherlands (Fig. 1). This morphology surrounds and constrains
the last-interglacial marine embayment that contains the deposits
that host the Eemian type sections at Amsterdam and Amersfoort
(Harting, 1874; Van Leeuwen et al., 2000; Zagwijn, 1961). In the
embayment, the sedimentary contact of the Eemian transgression
with its typical marine mollusc and palynological indicators, is well
recognizable. The Eemian transgressive strata always overlie the
glaciogenic stratigraphic levels of the Drenthe substage glaciation
and deglaciation, and always underlie the periglacial stratigraphic
levels of the Last Glacial (De Gans et al., 2000; Peeters et al., 2015).
Importantly, the transgressive surface is a stratigraphic marker
within the Eemian interglacial: a key finding of Zagwijn (1961, 1983)
was that temperate conditions were established before the trans-
gression began to affect the embayment area.

The series of ice-pushed ridges marking the Saalian maximum
ice-front, basically define a central basin within the former ice-
limit. During the deglaciation, the river Rhine established a
drainage route through the central basin. The Rhine inherited and
(partly) infilled former subglacial topography as well as a large
east-west oriented deglacial paleovalley (Fig. 1; Busschers et al.,
2007, 2008; Peeters et al., 2015). Due to postglacial sea-level rise,
the basin gradually transformed into a shallow-marine embay-
ment. Due to its inland position within the North Sea Basin, the
embayment recorded the last phases of transgression and the high-
stand. At Amersfoort and Amsterdam, on the south-western rim of
the embayment, in the absence of a nearby major river mouth, the
transgression and high-stand are recorded as tidal coastal envi-
ronments. In the surroundings of the Rutten site (Rutten core in
Fig. 1) on the rim of the embayment, lower-deltaic and estuarine
conditions prevailed in proximity to the river Rhine (Fig. 1). The
presence of a spatially well-recognisable and traceable trans-
gressive surface, makes that the Rutten, Amersfoort and Amster-
dam sites are all embedded in the same embayment and that each
of these sequence are evidently of Eemian age. All other means of
stratigraphic correlation of the Rutten site to the other localities in
the type area, such as on relative sea-level history, palynology and
through numeric dating are supporting secondary lines of strati-
graphic correlation, crucial for the subdivision of the Eemian.

In the northeast of the embayment, the Late Saalian Rhine
sediments are overlain by fine-grained and organic-rich, lower-
deltaic and estuarine sediments of Eemian and (partly) Weichselian
Early Glacial age. In the direct surroundings of the Rutten core,
hundreds of boreholes (available in the TNO-GSN subsurface
database) show younger fluvial erosion to have truncated the top of
the Eemian deposits (Peeters et al., 2015). The Rutten core was
placed at a location where TNO-GSN data had shown that preser-
vation of the fine-grained Eemian sediments was optimal (ca.

10 m). The sequence at Rutten indicates the locality to have
received fine-grained Rhine flood deposits throughout the entire
time period of interest, i.e. starting in the Late Saalian after ice-
sheet disintegration, and continuing into the Eemian interglacial,
also during transgression and high-stand, although Rhine influence
decreased with regression at the very end of the Eemian. The
continuous delivery of fine-grained sediment from the nearby river
and its trapping in a distal flood basin setting, imply that the li-
thology and facies of the Rutten core are well suited for collecting
paleomagnetic data throughout the Eemian (Section 4.1; Fig. 3; SI).
Compared to the type locality at Amersfoort (Zagwijn, 1961), where
the Eemian spans ca. 15 m of sequence with, however, at least four
sedimentary breaks (Cleveringa et al., 2000), the Eemian interval in
the Rutten core has a depositional record that is more continuous.
At the Amsterdam-Terminal type site (Van Leeuwen et al., 2000),
the Eemian interval spans a much greater thickness of ca. 30 m. Of
this interval, ca. 18 m comprise shallow marine sediments depos-
ited during the high-stand period in the later part of the Eemian,
containing crumbly portions of mixed composition, which repre-
sent sedimentary discontinuities in this part of the sequence. This is
in strong contrast to the Rutten core were steady sediment delivery
by the Rhine made that shifts in depositional environment related
to transgression and highstand were smaller. Paleomagnetic
investigation on the un-orientated core from Amsterdam-Terminal
had been attempted (Van Leeuwen et al., 2000), but was necessarily
restricted to interpretation of the inclination record. Further, only
alternating field demagnetization was utilized to uncover the
characteristic remanent magnetization component (see below).
The Amsterdam-Terminal type site is now built over and could not
be revisited to obtain fresh research material. Some 15 years later,
more advanced methods are available that were deployed on the
orientated Rutten core.

3. Methods
3.1. Coring and sampling

The 25 m long Rutten core (B15F1501) was retrieved with a
sediment-catcher equipped Nordmeyer core-sampler. The core-
sampler was modified to produce core segments with known
(magnetic north) orientation. The core-segments (1 m long and
10 cm diameter) were sealed airtight with paraffin and kept in cool
storage (<5 °C) at the TNO-GSN core facility. Here, upon arrival, the
core-segments were split in halves, were photographed, and
described according to the TNO-GSN standard (SBB 5.1: Bosch, 2000).

Paleomagnetic samples for alternating field (AF) demagnetiza-
tion were collected from one core half with dedicated Perspex
sample containers. Custom-made quartz-glass sample containers
were used for thermal (TH) demagnetization samples. These sam-
ple containers all have standard paleomagnetic dimensions
(25 mm diameter and 22 mm length) and were gently pushed into
freshly prepared core sections. A total of 252 samples were taken,
118 TH and 134 AF samples. TH and AF samples were taken alter-
natingly as much as possible to get an even distribution of the two
methods. Measurements were done within one week after sample
retrieval and within two weeks after retrieval of the core to ensure
the freshness of the sample material.

Samples for palynological analysis were taken from predomi-
nantly fine-grained, organic-rich sediments from this core-half as
well. The remaining other half of the core was sampled under
subdued red-orange light conditions for luminescence dating.
Luminescence samples were taken from (relatively) homogeneous
sediment sections (see Fig. 3 for sample levels), of which about
400—800 g of sediment per sample was transferred into an opaque
black plastic bag and sealed. The samples were transported to the
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Netherlands Centre for Luminescence-dating for further sample
preparation and age determination.

3.2. Pollen analysis and biostratigraphic zonation

Palynological analysis in this study was primarily used as a
biostratigraphic zonation tool in order to correlate the Rutten re-
cord to those of Amersfoort and Amsterdam-Terminal (Fig. 1).
Pollen analysis was performed on 40 samples derived from mostly
clayey, gyttjaic and peaty intervals in the Rutten core. Samples were
prepared following standard procedures: peptization with Na py-
rophosphate (15 g/dm?), sieving (250 and 7 pm mesh-size), HCI
(30%) rinsing, acetolysis (9:1 ratio of [CH3CO],H: H2SO4) and heavy
liquid density separation (sodium-polytungstate with a specific
gravity 2.1 kg/dm?). Residues were mounted in glycerine on glass
slides for microscopic analysis.

The complete percentage pollen diagram is provided as part of
the Supplementary Information (SI Fig. 1). The diagram distin-
guishes the Eemian Pollen Assemblage Zones (PAZ), based on
relative abundance of diagnostic taxa. These zones are labelled PAZ
E1-E6 following the standard scheme for the Eemian type area.
With these assemblage zones, and building on chronostrati-
graphical correlation of the type sites in the Netherlands to an
annual-laminated sequence relatively nearby in NW Germany
(Bispingen, Quakenbriick, Fig. 1; Miiller, 1974; Turner, 2002b), a
floating relative chronology for the Eemian of the study area has
been established (e.g. Cleveringa et al., 2000: their Fig. 11; Van
Leeuwen et al., 2000: their Fig. 2). This chronology was also
applied to the Rutten site.

PAZ E1 to E6 are distinguished based on regional vegetation de-
velopments seen in tree pollen mainly. PAZ E1 to E3 mark the
establishment of a temperate forest through pre- and early-
temperate stages of pioneer succession (Betula, then Pinus, then
Quercus; in conjunction with changes in Ulmus and Corylus), in stages
that typically follow each other up within short time (within a few
centuries). These transitions did indeed proceed quick (e.g. Turner,
2002b) in NW Europe, in the analogous situation of the early Holo-
cene and in that of the Eemian, as confirmed in annual-laminated
sequences (Miiller, 1974). Next, PAZ E4 and E5 mark changes in the
composition of prevailing temperate forests. PAZ E4 has the ther-
mophilous trees Corylus and Quercus both well established, and
Taxus rising and peaking. PAZ E5 shows Carpinus rising and peaking,
with Taxus disappearing and Corylus and Quercus continuing in
presence. These are developments through a series of stages that
each took longer time to commence and proceed. The base of PAZ E6
associates to a deterioration of temperate forests to a boreal forests,
with the species Quercus, Corylus and Carpinus disappearing, Pinus
and Picea being dominant and Abies occurring in smaller percent-
ages. Evidently, these variations in regional pollen signal were
searched for in the Rutten core to define zonations according to the
standard scheme for the Eemian (Zagwijn, 1961, 1996).

On top of this expression of mainly dry-land forest signal, the
pollen diagrams reflect variations in local wet-land vegetation; in
fluvial settings such as at Rutten they reflect also in-wash of hin-
terland pollen. The latter affects the pollen palynological record of
the Rutten core, which has urged us to restrain ourselves from
proposing highly detailed palynological zonations and overly spe-
cific correlations to the Amersfoort and Amsterdam-Terminal type
locations. Some 60 km upstream of the Rutten site, Busschers et al.
(2007) described latest Saalian, Eemian and Weichselian pollen
records from the fully fluvial low-land setting of the IJssel basin
(Fig. 1) that support the notion of in-wash of pollen and that
characterize the vegetation in the immediate fluvial hinterland.

We note that in the Rutten core, the palynological indications for
nearby transgressive and marine high-stand conditions are also

established independent from the standard PAZ schemes; they are
based on indications from local vegetation and from in-wash of
non-pollen indicators. The availability of a PAZ-tied relative sea-
level history for the central Netherlands' embayment in the
Eemian (Zagwijn, 1983, 1996) makes that site-to-site correlations
based on relative sea-level indicators can be verified with pollen
associations, and vice-versa. This was used to correlate subintervals
of the Eemian in the Rutten core to the floating PAZ-annual lami-
nation chronology.

3.3. Luminescence dating

Samples for luminescence dating were split in two parts upon
arrival at the Netherlands Centre for Luminescence dating. One
subsample was used to determine the dose-rate using high-
resolution gamma-ray spectrometry. For this purpose the sedi-
ment is dried, ground and moulded with wax to a puck that was
measured on a gamma-spectrometer for at least 24 h. Activity
concentrations of “°K and several nuclides of the U and Th decay
chains are converted to dose rate, taking into account effects of
moisture (20 + 3% by weight for sandy samples, 30 + 5% by weight
for loamy samples), the contribution by cosmic rays, and the
contribution from internal K and Rb in the K-feldspar grains used
for analysis (internal dose rate estimated to be 0.77 + 0.08 Gy/ka;
Kars et al., 2012).

The other subsample is prepared for equivalent dose determi-
nation. These samples are wet-sieved to obtain a fraction of
180—212 pm and were then treated with HCl and H,0, to remove
carbonates and organic matter respectively. A purified extract of K-
rich feldspar grains was obtained through density separation using
sodium-polytungstate heavy liquid at 2.58 kg/dm?>. This sediment
fraction was further cleaned and etched using 10% HF, and subse-
quently rinsed with HCI. A Risoe TL/OSL DA 20 reader was used for
luminescence measurements. This apparatus is equipped with
infrared diodes for stimulation (870 nm) and a Sr/Y beta source for
irradiation. A LOT/Oriel D410/30 interference filter was used to
select the K-feldspar emission around 410 nm.

Luminescence ages were obtained by novel post-infrared
infrared stimulated luminescence (pIRIRy99) dating methods,
applied to K-feldspar mineral extracts. This method was chosen as
most of the samples were too old for reliable quartz OSL dating due
to saturation of the OSL signal at relatively low doses (Wintle and
Murray, 2006). The pIRIRyg9p Single-Aliquot Regenerative (SAR)
protocol (Thiel et al., 2011) avoids issues with signal instability
(anomalous fading) and has been shown to yield meaningful results
for similar lithologies (Buylaert et al., 2012; Kars et al., 2012). Pa-
rameters used were a 60 s preheat at 320 °C, infrared bleach for
100 s at 50 °C, and pIRIR stimulation for 100 s at 290 °C. At the end
of each SAR cycle, the signal was reset by 40 s exposure to infrared
at 330 °C. Performance of this protocol was tested using a dose-
recovery experiment (average dose-recovery ratio: 1.05 + 0.03;
n = 12), and stability of the pIRIRzgg signal was confirmed using a
fading experiment (fading rate godays = 1.15 + 0.16%, n = 15). No
correction for fading was made as experiments on infinite-age
samples have shown that the pIRIR»g9g signal is not affected by
fading during geological storage (Kars et al., 2012; Thiel et al., 2011).
The results of luminescence dating are reported with errors indi-
cating the 1-sigma (68%) uncertainty, including all systematic and
random uncertainties in both equivalent dose and dose rate
estimation.

3.4. Paleomagnetism and rock magnetism

Stepwise progressive thermal demagnetization of the natural
remanent magnetization (NRM) was performed with an ASC
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thermal demagnetizer (residual field < 20 nT) at CENIEH, Burgos
(Spain). Maximum demagnetization temperature was 600 °C. The
remaining NRM after each step was measured with a SRM 755
helium free DC-SQUID (direct current superconducting quantum
interference device; 2G Enterprises (California, USA)) magnetom-
eter (instrument sensitivity 3x 1012 Am?, typical sample NRM in-
tensities were at least a couple of orders of magnitude higher) with
a low-field environment at the sample loading position. Before
measuring, samples were put in a shielded environment for at least
30 min. Alternating field demagnetization was done in 16 steps up
to 100 mT at the paleomagnetic laboratory of Utrecht University
(The Netherlands). The instrument's sensitivity is 3 x 10~1% Am?.
The instrument set-up is housed inside a magnetically shielded
room (residual field < 200 nT), the robotized interface for field
regulation and sample manipulation was built in-house. Up to 96
samples contained in dedicated cubic holders (edge 30 mm) are
loaded onto a sample plateau and the robot subsequently loads
them in batches of eight onto a tray. AF samples were processed
fully automatically with the so-called ‘three position protocol’ that
compensates for the magnetic moment of the transport tray.
Greigite (FesS4) that regularly occurs in organic-rich sediments
often shows gyroremanent magnetization (GRM) during AF
demagnetization. To compensate for possible GRM, AF samples
were processed with the so-called 'per component' protocol
(Dankers and Zijderveld, 1981; Stephenson, 1993), in addition to the
regular AF demagnetization. This was done for AF levels >30 mT.

The Characteristic Remanent Magnetization (ChRM) was typi-
cally determined by the steps between 280 and 340 °C (6 steps),
occasionally starting at 150° and continuing up to 480 °C (SI
Table I). ChRMs from AF demagnetized samples were all deter-
mined above 10 mT and mostly between 10 and 50 mT (SI Table II).
ChRM directions were calculated using least-squares principal
component analysis (Kirschvink, 1980) on at least four steps. Ac-
cording to common practice, line fits for TH samples were anchored
to the origin. The general trend of the ChRM component is then
better appreciated. Line fits of AF samples were not anchored to the
origin because this resulted in visually poor fits with unrealistically
large MAD (maximum angle of deviation) angles when compared
to line fits through the same data points without forcing through
the origin.

Three quality labels were defined for the ChRM directions. AF
demagnetization diagrams of which both ‘per component’
(Dankers and Zijderveld, 1981; Stephenson, 1993) and standard AF
measurements showed hardly or no GRM indication and with an
endpoint close to the origin, were labelled quality 1 (Fig. 2A and B:
MAD maximum = 11.3°, 9 out of 134 AF samples). A quality 2 label
was given to diagrams with a slight GRM in the standard diagrams,
which could be corrected for by per component protocol and an
endpoint close to the origin (MAD maximum = 14.8°, Fig. 2C and D,
76 out of 134 AF samples). ChRMs with a MAD >15° were given a
quality of 3 (2 out of 134 AF samples). All diagrams with a GRM that
could not be corrected for by the per component protocol or with a
too strong GRM in the standard measurement protocol were not
considered in the interpretation (examples in Fig. 2E and F: 47 out
of the 134 AF samples). Only quality 1 and quality 2 samples were
used for the interpretation of the magnetostratigraphy (see Fig. 2
for examples).

TH demagnetized quality 1 samples have clear ChRM directions
with endpoints close to the origin (Fig. 2G: 12 out of 118 TH sam-
ples), whereas quality 2 samples have well-defined ChRM di-
rections but endpoints were slightly off the origin (Fig. 2H: 49 out of
118 TH samples). Quality 3 samples are based on just four data
points and/or have MADs above 15°. The ChRM directions of quality
3 TH samples were calculated but not used for the interpretation
(25 out of 118 TH samples). All other samples and all great circle

trajectories were not included in the magnetostratigraphic inter-
pretation (32 of 118 TH samples).

Samples that were submitted to Anhysteretic Remanent
Magnetization (ARM) and Isothermal Remanent Magnetization
(IRM) measurements had first their NRM AF demagnetized. AF
demagnetization (standard and per component), ARM and IRM
acquisition was done with the robotized 2G DC-SQUID magne-
tometer. Programme controlled, it slides through the magnetom-
eter and demagnetization coils that are used for the ARM
acquisition (a bias field coil provides the asymmetry in the field
which was set at 38 uT). Standardization took place by scaling to
mean zero with a standard deviation of 1. Finally, IRM acquisition
curves were determined for all these samples with 60 steps up to a
peak IRM field of 700 mT. This was done with a pulse-field coil,
interfaced with the robotized magnetometer set-up. IRM acquisi-
tion curves were subjected to Cumulative Log Gaussian (CLG)
component analysis (Kruiver et al., 2001). Prior to the IRM acqui-
sition the samples were AF demagnetized at 300 mT peak field with
the final demagnetization axis parallel to the IRM pulse field di-
rection to force the shape of the subsequently measured IRM
acquisition curves as much as possible conform a CLG shape for
most meaningful fits (cf. Egli, 2004; Heslop et al, 2004). After
fitting of the data the different coercivity components can be rec-
ognised by their saturation IRM (SIRM), remanent acquisition co-
ercive force (Byj2) and dispersion parameter (DP) (Kruiver et al.,
2001).

Hysteresis loops, back-field demagnetization, and first-order
reversal curves (FORCs) were measured using a MicroMag alter-
nating gradient magnetometer (Model M2900, paleomagnetic
laboratory, Utrecht University; noise level 2 x 10~° Am?). Hyster-
esis loops were measured between —1 and +1 T with a field
increment of 5 mT and an averaging time of 150 ms. Back-field
demagnetization curves (250 ms waiting time) started with a
saturation at 1 T and were acquired with logarithmic field in-
crements with an averaging time of 150 ms as well. Hysteresis
parameters, including the saturation magnetization (Ms), the
saturation remanent magnetization (M;s) and coercivity (B;) were
determined after paramagnetic slope correction. High-resolution
FORC diagrams (Pike et al., 1999; Roberts et al., 2000) were ob-
tained by measuring ~500 FORCs with maximum applied fields of
1 T, field increments of 0.5 mT. FORC diagrams were calculated
using a program written by T.A.T. Mullender (paleomagnetic labo-
ratory, Utrecht University). This software package does not consider
the FORC distributions close to the vertical axis to avoid uncertain
interpretation for inherently incomplete FORC grids in this region
of the diagrams. A smoothing factor (SF) of 5 (Roberts et al., 2000)
was used to calculate all the FORC diagrams.

4. Results
4.1. Integrated sedimentary and biostratigraphical description

The basal unit in the Rutten record (—28.6 m to —27 m below
mean sea-level; m.s.l.) is characterized by fine-grained sands with
brittle clay fragments. These sands were most likely deposited in a
floodbasin setting. Upward in the record between —-27 m
and —23.0 m m.s.l., coarse-grained, cross-bedded gravelly sands are
present, which are interpreted as channel belt deposits of the
paleovalley complex of the Drenthe Substage deglaciation. Pollen
material collected from a gyttjaic-interval (ca. —24.4 m m.s.l.)
within these coarse-grained sediments showed the presence of
herb and heathland vegetation (SI Fig. 1), which is characteristic for
the Late Saalian (PAZ LS in Fig. 3: Zagwijn, 1961). The upper 1-2 m
of this coarse-grained unit is characterized by notable iron-oxide
precipitation. The iron-oxide precipitation is most likely caused
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by the dispersion of ferrous iron-containing groundwater origi-
nating from the southern rim of the glacial till plateau that was
positioned directly north of the Rutten core, a situation analogous
to the settings in the Holocene (Fig. 1). The top of this level repre-
sents a paleosurface, and part of the iron-oxide precipitation might
represent a paleosol from just before the onset of the Eemian
interglacial.

Overlying this coarse-grained unit, a medium to fine-grained
layered sand-layer of a few decimeters thick was found (Fig. 3),
marking more quiet fluvio-hydraulic conditions. From —22.8 m
m.s.l. upward, the sediments change to layered peats and fresh-
water mollusc-fragments containing clayey-gyttja, deposited in a
tranquil fluvial wetland environment. Here, the pollen record
shows a regional vegetation succession of herbs and heathland
dominance to Betula, Pinus, Tilia, Uimus and finally Quercus, which
matches the characteristics of the onset of the Eemian interglacial
(PAZ LS-E1-E2-E3: cf. Zagwijn, 1961). Towards the top of this in-
terval, at —22 m m.s.l. the local vegetation shows a marked peak of
Dryopteris and slightly more up-core Nymphaeaceae. Together with
an increase in washed-in Pinus and Picea pollen and increase in clay
content these changes indicate that aquatic conditions were
established. An increase in Corylus and Quercus pollen at —21.8 m
m.s.l. is indicative of the base of PAZ E4. Washed-in non-pollen
marine indicators, such as dinoflagellates, appear onward from this
level as well, but fresh water species are dominant. The aggrada-
tional fresh water floodplain environment developed in response to
sea-level rise immediately downstream (Peeters et al., 2015). It
matches the last stages of relative sea-level rise in existing re-
constructions for the embayment (Zagwijn, 1983), which based on
index-points at the Amersfoort type-locality occurred within PAZ
E4.

At a depth of —19.2 m m.s.l,, a ca. 10 cm thick fine-grained sand-
layer indicates a minor shift towards more organic-rich clayey, but
still finely layered floodplain deposits. Marine indicators (dinofla-
gellate cysts: SI Fig. 1) found from this level upward, indicate an
increased in-wash from estuarine areas downstream. At this time,
the depositional environment changed from a freshwater to a
brackish water river mouth environment marking the transition
from transgressive to high-stand situation (Peeters et al., 2015). In
agreement with the regional sea-level reconstruction (Zagwijn,
1996, 1983) this transition is correlated with the end of PAZ E4
(Zagwijn, 1996, 1983). The base of PAZ E5 in the Rutten core is
placed at —18.4 m m.s.l. based on the first occurrence of Carpinus at
this level, albeit at low percentages (SI Fig. 1). From this level up-
ward, the wood- and plant-fragment-rich clayey floodplain de-
posits show a further increase of estuarine in-wash (now also
including foraminifera: SI Fig. 1). This correlates to a high-stand in
the regional sea-level history, coincident with PAZ E5 (Zagwijn,
1996, 1983).

A thin bed of medium-fine sand at —15.8 m m.s.l. marks the
onset of regression and the deteriorating climatic conditions at the
end of the Eemian. These sands represent small-scale fluvial ac-
tivity by a local river (not a Rhine channel). The overlying alterna-
tion of peats with clays and incorporation of organic-debris up to a
depth of —12.7 m m.s.L, indicates the persistence a wetland depo-
sitional environment. From this level upwards, Pinus and Picea
remain the dominant trees. Based on the sedimentology and
regional mapping, we regard these tree pollen from this level up-
ward no longer a predominant result of Rhine in-wash. Instead,
they would resemble the regional vegetation of the surrounding
dry land. Therefore, this level (—15.8 to —12.7 m m.s.L.) is seen as the
last stage of the interglacial and correlated to PAZ E6. This matches
the sea-level reconstructions for the embayment that show
regression from the beginning of PAZ E6 onwards (Zagwijn, 1983,
1996). The regressive contact represents a discontinuity of

unknown duration that spans the E5/E6 PAZ boundary. A peak of
Betula and Poacea at —15.0 m m.s.l. would represent a short (cold)
event and/or a local dry phase, within PAZ E6. The occurrence of
such events is in agreement with general notion of the regional
climate and vegetation developments over the transition of the
Eemian to the Early Weichselian in Europe (e.g. Tzedakis, 2003;
Sirocko et al., 2005; Helmens, 2014).

A coarse-grained sandy unit is found up to —9.6 m m.s.l. This
deposit resembles the Weichselian Middle Pleniglacial periglacial
Rhine activity (Busschers et al., 2007; Peeters et al., 2015). It trun-
cates the very top of the Eemian interglacial sequence. This contact,
which can be regionally traced (Peeters et al., 2015) represents a
major hiatus. The pollen assemblage shows much lower percent-
ages of arboreal pollen and a dominance of a wet, herb-rich vege-
tation generally resembling pollen assemblages encountered in
Weichselian Middle Pleniglacial sediments elsewhere in the
Netherlands (e.g. Zagwijn, 1974; Van Huissteden et al., 2003).
Higher up, the record is completed by local fluvial and aeolian fine-
grained sandy deposits of Late Pleniglacial - Late Glacial age
(Peeters et al., 2015), often showing cryoturbated sedimentary
structures (Fig. 3). From a depth of —5.2 m m.s.l. up to the surface,
Holocene lagoonal and fluvio-deltaic deposits cap the sequence.

4.2. Luminescence dating

The derived luminescence-ages are in stratigraphical order
within their uncertainties (Table 1). The two samples associated
with Eemian pollen-zones (PAZ E4 and E6) return ages of 109 + 6 ka
and 112 + 11 ka (depths —19.17 m and —15.12 m m.s.L. respectively).
The sand layer at a depth of —12.52 m m.s.l. gives an age of
43 + 3 ka, in agreement with the pollen association (PAZ: W) and
the regional geological mapping of the Pleniglacial erosive phase
(see above). The sample associated with the top of the Late Saalian
paleovalley (PAZ: LS) provides an age of 161 + 14 ka
(depth —24.03 m m.s.l.), whereas the deeper sample (—25.17 m
m.s.l.) returned 421 + 29 ka. This last age estimate should be
interpreted with caution because it is beyond the reliable part of
the dose response curve. However, it is clear that the sampled de-
posit is much older than the overlying sediments. The local pres-
ence of ‘old’ sand in the deglacial paleovalley, possibly transported
over short distances and under partial ice-cover, may also have
affected the result of the sample (161 + 14 ka, see Fig. 3): it is likely
that it contains material that was incorporated from the old un-
derlying deposit, but as poor bleaching cannot be detected in this
age range this inference remains speculative.

4.3. Paleomagnetism

The magnetic polarity is based on quality 1 and 2 ChRM di-
rections only, of which examples are given in Fig. 2. All ChRM di-
rections are provided in Tables I and II in the SI Fig. 2 shows
examples of Zijderveld diagrams of AF demagnetized samples of
quality 1, 2 and 3 (Fig. 2A to F). Both standard and per component
diagrams are shown for each AF example. Also, examples of Zij-
derveld diagrams of quality 1 and 2 TH samples are given (Fig. 2G
and H). From the SI Tables I and II and Fig. 3 it becomes apparent
that almost all samples have ChRM directions with a positive
inclination; only two of the ChRMs have negative inclination, one
with a northern declination, the other with a southern declination.
TH demagnetized samples have more samples with a shallow
inclination, some of them can be labelled excursional even with a
normal declination (SI Tables I and II). All samples that show ChRM
directions with deviations of over 40° from the normal virtual
geomagnetic pole of the Brunhes (Merril and McFadden, 1994) have
been labelled excursional (SI Tables I and II).
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Table 1

Results of feldspar pIRIR,9g dating.
NCL labcode Sample depth (m below m.s.L.) Equivalent dose (Gy) Dose rate (Gy/ka) Age (ka) Validity
NCL-6312180 12.5 76 +3 1.76 + 0.09 43 +3 Likely OK
NCL-6312181 15.1 265 + 22 238 +0.1 112+ 11 Likely OK
NCL-6312182 19.2 231+9 211 £0.1 109 + 6 Likely OK
NCL-6312183 24 211 + 12 1.31 + 0.08 161 + 14 Likely OK
NCL-6312184 252 700 + 32 1.66 + 0.09 421 + 29 Questionable

There appears to be no correlation between the paleomagnetic
direction and sampling in either fine-grained lithology (silts and
clays) or sandy sediment. However, rotation of the more sandy
sediment within the core liner cannot always be excluded. Plotted
against their stratigraphic depth, the ChRM directions show two
different zones, a zone with normal polarity from the surface down
to a depth of —12.08 m below m.s.l, and a zone with “mixed” di-
rections from —12.08 m down to the base of the core at —28.62 m
(Fig. 3). Within core-segments from the “mixed” zone, both normal
and excursional directions are found, often centimeters apart.
Where multiple paleomagnetic samples were obtained from the
same core segment, cross-checks on possible rotational distur-
bances were carried out and confirmed the excursional directions.
Only for the quality 1 excursional sample at —12.35 m m.s.l. — just
above the top of the Eemian sequence at —12.6 m — performing
such a check was not possible, due to the low number of samples
from this core segment.

4.4. Rock magnetism

To constrain the interpretation of the ChRM directions, rock-
magnetic measurements have been carried out. The majority of
the samples had the NRM decayed at temperatures below 360 °C
indicating a dominant contribution of iron sulphides to the NRM
(see Fig. 4 for some examples). Rock-magnetic measurements can
help distinguishing between biogenic and diagenetic iron sulphides
and thus primary versus delayed NRM acquisition (e.g. Vasiliev
et al., 2008). Biogenic minerals are formed in situ often at the
oxic—anoxic interface in sedimentary settings (Bazylinski and
Frankel, 2004) while diagenetic sulphides are either formed
shortly after sedimentation by early diagenetic processes (often
bacterially mediated) or later in time by remagnetization (e.g.
Roberts and Weaver, 2005; Rowan and Roberts, 2006).
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Fig. 4. Normalized decay curve of three TH demagnetized quality 1 samples.
Demagnetization steps are in °C.

A wide range of hysteresis properties was observed for the
studied samples. Fig. 4 shows a representative selection of quality 2
and quality 3 samples. These quality labels were selected in order to
distinguish GRM affected from non-GRM affected samples. No
samples of quality 1 were selected because no GRM was present in
these samples. Typical hysteresis loops and high-resolution FORC
diagrams with single domain (SD) behaviour are shown in Fig. 5.
These hysteresis loops are relatively squared (Tauxe et al., 1996)
with M;s/M; ratios of ~0.4—0.5 and B, values of ~20—40 mT (Fig. 5a).
High-resolution FORC measurements indicate a range of magnetic
properties with variable coercivity distributions and levels of
magnetostatic interaction (Fig. 5b). Some FORC diagrams have a
central ridge along the B. axis with negligible vertical spread, which
indicate a lack of magnetostatic interactions (Pike et al., 1999). This
FORC central-ridge signature corresponds to that of non-interacting
or weakly interacting SD particles, which probably indicates the
presence of significant amounts of biogenic magnetic minerals
produced by magnetotactic bacteria (Egli et al., 2010). The FORC
diagrams also have another component consisting of concentric
contours with a relatively large vertical spread, which indicate
strong magnetostatic interactions (Pike et al., 1999; Roberts et al.,
2000). This FORC component also has two other pronounced fea-
tures. First, the centre of the concentric contours is shifted down-
ward to negative B; values. Second, there is a negative peak close to
the B; axis in the lower quadrant (white area in Fig. 5b). These
signatures all indicate a strongly interacting SD magnetic particle
assemblage (Newell, 2005; Pike et al., 1999; Roberts et al., 2000).
This type of FORC distributions is typical of diagenetic SD greigite-
bearing sediments (e.g. Roberts et al., 2011, 2006, 2000; Rowan and
Roberts, 2006; Sagnotti et al., 2010; Vasiliev et al., 2007). Many
FORC diagrams have a variable mixture of these two FORC distri-
butions: the central ridge representing one end member and the
vertically spread concentric contours the other (Fig. 5b). These
samples, therefore, contain a mixture of non-interacting and
interacting SD particles. With the non-interacting SD particles
having a biogenic origin (Egli et al., 2010; Chang et al., 2014a,
2014b). Both types of magnetic minerals are present throughout
the stratigraphic column; they are not restricted to a specific zone
of magnetic polarity.

CLG IRM component analysis shows the presence of three
components, a low-, a high-coercivity component and, at very low
coercivities, an extra component that is required to fit the slightly
skewed-to-the-left coercivity distribution. This extra component is
an artefact of the fitting method and not given a physical meaning
(Egli, 2004; Heslop et al., 2004). The artefact component (compo-
nent 1, Fig. 6D, with 6A, B and C for correlation to Fig. 3) has a mean
dispersion parameter (DP) value of 0.281 (log mT) and a mean
acquisition field Bq2 of 25.23 mT. The low-coercivity component 2
has a mean DP of 0.197 (log mT) and a mean By, of 67.48 mT, with a
range between 48 and 91 mT (Fig. 6D and E). Component 3 has a
high-coercivity with mean DP of 0.318 and By, of ~260 mT, with a
range between 158 and 794 mT. This latter component contributes
on average 6 per cent to the remanence (one clearly deviating
sample has a 22 per cent contribution). Component 3 most likely is
hematite but was not further investigated because its contribution
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Fig. 5. Hysteresis loop a) and high-resolution FORC diagram b) for sample ‘RG234’ (clay) taken at —22.42 m m.s.l. The hysteresis loop is normalized to the saturation magnetization
value (at 1 T) after paramagnetic slope correction. Hysteresis parameters (B, and M,s/M;), which are determined for the entire loop to +1 T, are indicated. 500 FORCs were measured
and a SF value of 5 was used to calculate the FORC diagram. B, is the coercivity, B; the interaction field. FORC densities are scaled between zero (purple) and one (orange-red), regions
with negative values (due to instrument noise) are indicated with white colouring. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)

to the NRM is marginal if present at all. Component 2 is greigite, as
also deduced from the hysteresis and FORC measurements. It was
already suspected to be present after AF demagnetization of the
NRM: a considerable portion of the samples showed an increase of
intensity after demagnetization at high AF levels. Even though
samples with high GRM were not used for interpretation of ChRM
directions, all samples were used for IRM analyses. No differences
can be identified in the IRM intensities between the different
quality samples (Fig. 6D and SI Table II).

The magnetic susceptibility (with a range of 0.19 x 10~8 m?/kg
to 446 x 10~® m>/kg) and the NRM intensity show a clear one-to-
one relationship with each other (Fig. 6F and G) but not with the
magnetic polarity (Fig. 6A). Samples from core B15F1501 show a
wide range of NRM intensities from 2.76 x 10~4 A/m to over no less
than 4.5 x 10~! A/m. A zone with increased intensities is observed
from —18.10 to —24.56 m m.s.l. (Fig. 6G).

5. Discussion

5.1. Paleomagnetic signal in the Rutten core and Blake Event
boundaries

The sedimentary context, pIRIR luminescence dates and the
characteristic Eemian pollen record together identify the paleo-
magnetic excursional zone, between —22.8 m and —12.6 m m.s.l. in
core B15F1501, as the Blake Event. Here, the syn-depositional na-
ture of the recording of the Blake Event at Rutten (Fig. 3) is dis-
cussed. The deposition took place in a quiet floodbasin sedimentary
environment, implying synchronous acquisition of pollen and
paleomagnetic signals, with none or very little delayed NRM
acquisition. The rock-magnetic results show AF quality 2 samples,
in which the GRM was corrected for by the per component protocol,
to be mainly composed of biogenic magnetic minerals (Fig. 5)
which form at the oxic—anoxic interface in aquatic habitats
(Bazylinski and Frankel, 2004). This means that the paleomagnetic
signal is partly in-situ biogenic recorded, which implies non-
delayed acquisition.

Recording of the Blake Event begins below the base of PAZ E1 (as
in the earlier study at NN2, Sier et al., 2011) and continues all the
way up to the PAZ E6 truncation contact with the Weichselian
Pleniglacial. The lowermost AF quality 2 sample with biogenic
minerals is sample RG220 with a depth of —22.48 m m.s.l. in PAZ E1,
and several AF and TH quality 1 samples were measured from levels
just below PAZ E1. This indicates an onset of the Blake Event just
before the beginning of the Eemian. Below —22.8 m m.s.1., the Blake
Event appears also recorded. Sedimentological study of the

sequence, however, identifies at that depth a possible paleosol in
the top of the fluvial deposits, besides considerable post-
sedimentary ferric precipitation in these permeable beds as it
became sealed by the fine-grained transgressive units above.
Because of the ferric precipitation, the paleomagnetic directions
from the interval between —25.0 m and —22.8 m m.s.l. are regarded
as post-depositional overprints (cf. Fig. 3).

Above —12.6 m m.s.l, two measurements from within Weich-
selian Pleniglacial deposits (luminescence dated to 43 + 3 ka) give
excursional ChRM directions. At this position, excursional di-
rections cannot be linked to the Blake Event. For this sample, it
cannot be excluded that the core-liner was accidently rotated
during retrieval (see Section 4.3). If the core orientation is correct, it
is possible to attribute the signal to the much younger Laschamp
paleomagnetic excursion. It would be a coincidence if that event
turns out superimposed on the Blake Event at Rutten.

5.2. Duration of the Blake Event and the Eemian in NW Europe

The results from the Rutten core show the duration of the Blake
Event to be of roughly the same duration as the Eemian interglacial
in NW Europe. Recording of the Blake Event commences just before
the onset of PAZ E1 and continues throughout the preserved parts
of PAZ E6. These results at Rutten reproduce the earlier findings at
site NN2 (Sier et al., 2011), albeit that the upper boundary of
registration of the Blake Event at Rutten within PAZ E6 (cf. Zagwijn,
1961; equivalent to PAZ EVI of Menke and Tynni, 1984) is consid-
erably later than what had been deduced at NN2 (terminating in
PAZ EIVb3 cf. Menke and Tynni, 1984; Sier et al., 2011; equivalent to
the later part of PAZ E4 cf. Zagwijn, 1961).

Independent estimates for both the duration of the Eemian and
for the duration of the Blake Event exist from other studies, to
which the new results can be compared. The duration of the
Eemian in NW Europe has been estimated by Miiller (1974) and
Hahne et al. (1994) to be ca. 11,000 years from partially varved
deposits at Bispingen and Quakenbriick (Fig. 1). It should be noted
that actual counted varves only make up ca. 7000 years (PAZ
transition LS/E1 and to E5/E6) of the ca. 11,000 year duration
(Miiller, 1974; Hahne et al., 1994; Caspers et al.,, 2002). The addi-
tional 4000 years come from extrapolation of inferred sedimenta-
tion rates in the slightly varying, micro-laminated, lithology in PAZ
E6 (Miiller, 1974). In the ELSA record in the German Eifel (Sirocko
et al., 2005), the time interval between the E5/E6 boundary (their
LEAP event, the top of their “Eem s.s.”) and the beginning of North-
Atlantic cold stage 24 is ca. 7700 varve years, which provides a
theoretical maximum duration of PAZ E6.
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In the Rutten core, not the full length of PAZ E6 and hence not
the full length of the Eemian is recorded, but how much time
within PAZ E6 is missing is unknown. For that reason, a minimum
duration of ca. 8000 years and a maximum of ca. 11,000 years are
assigned to the interval spanning PAZ E1 to the truncated top of PAZ
E6 at Rutten. Comparison of the duration of the Blake Event to the
durations of the Eemian at Rutten and Bispingen, should include
the possibility that the Blake Event terminated before PAZ E6 ended
(at Rutten the top of PAZ E6 is an erosional contact, at Bispingen and
in ELSA it is not). More paleomagnetic research at new sites
(including at Bispingen and in the Eifel) is needed to properly
determine the position of the top of the Blake Event in the upper
Eemian. The duration estimate for the Blake Event should further
include for a few hundreds of years of time within the Blake Event
just before the onset of PAZ E1; at Rutten represented by the
interval —23.0 to —22.6 m m.s.l. (Fig. 3), and at NN2 by the interval
6.90—7.70 m below surface (Sier et al., 2011; estimated 200—300

years). Still, the 8000 and 11,000 years estimates for the length of
Eemian record at Rutten copy as minimum and maximum esti-
mates for the length of the Blake Event. Note that in southern
Europe, last-interglacial sequences have a considerably longer
duration, for example 17,700 + 200 years in Southern Italy (Brauer
et al., 2007).

Importantly, the above duration estimates for the NW European
Eemian and the Blake Event come from varve counting and
extrapolation of sedimentation rates of partially varved sequences,
and are independent of numeric dating and/or precession tuning.
This is unlike most other estimates for the Blake Event duration in
for example the marine cores discussed below.

5.3. Comparison with other Blake Event records in Europe

In this study, the identification of sampled paleomagnetic sig-
nals as excursional is based on deviating declinations and very
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shallow inclinations (SI Tables I and II). In an unorientated core,
‘Rutten’-style samples would be difficult to identify as being
excursional. Only one sample in the Rutten core has a negative
inclination for its ChRM direction in the zone that is interpreted as
the Blake Event (Fig. 3, and SI Tables I and II). Also, the ChRM di-
rections of NN2 and Caours (Somme valley, France) were more
prominent excursional in declination than in inclination (Sier et al.,
2011: 2015). Although sedimentary recording issues can never be
fully excluded to have influenced the recording of the paleomag-
netic signal, it is possible that the lack of negative inclinations in
north-western and central Europe is a geographical expression of
the Blake Event. Excursional declinations with positive inclinations
seem to dominate the paleomagnetic directions. In other regions
across the globe, the Blake Event is identified by its clear negative
inclinations (e.g. Bourne et al., 2012; Smith and Foster, 1969).

Some clear similarities and differences can be noted when
comparing the Rutten to the NN2 record. In NN2 the lower
boundary of the Blake Event is well defined on the basis of high-
quality paleomagnetic directions above and below it. Like the
Rutten site, the NN2 site has a detailed rock-magnetic record. The
NN2 Blake Event is registered by magnetite with a varying amount
of hematite. Combined with the sedimentary indications for a high
sedimentation rate delayed NRM acquisition is not very likely.
Also, the rock-magnetic properties follow closely the local envi-
ronmental changes suggesting again, an in situ signal (Sier and
Dekkers, 2013). Both sites have good pollen preservation and
show a rather complete PAZ sequence (Sier et al., 2011; this study).
The NN2 pollen record, however, is more condensed from pollen
zone IVb3 onward (cf. Menke and Tynni, 1984; PAZ E4b cf.
Zagwijn, 1961). This is due to a decrease in sedimentation rate as a
result of a dry phase in and around the Neumark basin, to which
small basins are sensitive (Sier et al., 2011; Bakels, 2012). The
Rutten site was not, or less hydrologically sensitive to such dry
phases because of its position in the lower Rhine delta. The upper
boundary of the Blake Event at NN2 was arbitrarily defined on the
uppermost undisputed high-quality excursional direction sample.
With low-quality samples with potential excursional directions in
younger levels excluded, the minimum duration of the Blake Event
in NN2 is around 3400 years (Sier et al., 2011). The Rutten site
records the Blake Event at higher quality over a longer duration
(see above).

Other studies have reported paleomagnetic events in last-
interglacial deposits in NW, central and NE Europe before. A
study of an unorientated core from Anholt, Denmark in shallow
marine Saalian and Eemian sediments showed two consecutive
paleomagnetic samples with negative inclinations, interpreted as
the Blake Event (Abrahamsen, 1995). In the same study, two further
isolated samples with negative inclinations between samples of
normal directions, were not considered as the Blake Event. The full
range over which negative inclinated samples are found in the
Anholt core, closely matches the range and duration of the Blake
Event in the Rutten core, and the positioning of the event with
respect to pollen zonations matches that in Rutten and NN2.

A recent study in Wels-Aschet (Austria) identified the Blake
Event in a loess sequence in central Europe (Scholger and Terhorst,
2013). This identification was based on virtual geomagnetic pole
(VGP) latitude values of around —10° to 5°. These VGP values are
clearly not corresponding to fully reversed orientations, similar to
the results presented in this study.

A recent multidisciplinary study of the Netiesos section
(southern Lithuania) identified the Blake Event in combination
with the “Eemian” (Mikulinian) pollen zonation in NE Europe
(Baltrunas et al., 2013). The authors interpret three consecutive
fully reversed ChRM directions as the Blake Event. However,
throughout the Netiesos section, ChRM directions with a south

declination and positive inclination are reported (Baltrunas et al.,
2013), that should also be interpreted as excursional following
the definitions of Merril and McFadden (1994) as deployed on the
Rutten and NN2 sites. It thus seems that the Blake Event of the
Netiesos section in NE Europe spans the full Mikulinian, similar to
the new results for the Eemian in NW Europe and those for central
Europe.

5.4. Correlation of the Rutten Blake Event with the MIS record and
Southern Europe

The previous paragraphs suggest that the Blake Event and the
Eemian have commenced rather synchronously in NW Europe and
central Europe, with the Blake Event starting just before PAZ E1 in
Rutten and NN2 as the example sites. Multiple records exist of the
Blake Event within marine cores that also have 8'0 records, which
allows to tie terrestrial records that registered the Blake Event to
marine isotope signals and its standard stage divisions (MIS 6,
Termination II, MIS 5e; Fig. 7).

In the Eastern Mediterranean, the Blake Event is registered
immediately above sapropel S5 but is of apparent short duration at
these locations (Tric et al., 1991; Tucholka et al.,, 1987). In the
western Mediterranean, where this sapropel does not occur, the
Blake Event is registered with apparent longer duration (Tucholka
et al.,, 1987). This is of importance because datings of sapropel S5
are used to anchor the MIS curve and the onset of the Blake Event
on an absolute time scale (see also the SI of Sier et al., 2011). The
start of MIS 5e (midpoint of Termination II) at ca. 131 ka coincides
roughly with the base of sapropel S5 at 129.5 ka (Ziegler et al., 2010;
precession-tuned to U/Th dates in the Sanbao and Hulu caves in
China). MIS 5e reaches maximum depleted 580 values within
sapropel S5. A plateau value is reached around 126 ka, which starts
to drop off near the top of sapropel S5, dated at 121.5 ka (Ziegler
et al,, 2010). If indeed the Blake Event postdates sapropel S5, the
Eemian in NW Europe would start at this moment.

Independent age estimates for the Blake Event are available
from a number of studies and they generally indicate a younger age
than that of sapropel S5. In a stalagmite in northern Spain (Osete
et al., 2012), the Blake Event is U/Th-dated and spans the interval
from 119.3 + 0.8 to 112.0 + 1.9 ka (including their B3 part of the
event) and postdates the isotope signal peak correlated to MIS 5e.
In the earlier mentioned Netiesos site in southern Lithuania
(Baltrunas et al., 2013), dating of the base of the Blake Event comes
from ESR dating of freshwater molluscs at 112.5 + 10.8 and
112.1 + 25.9 ka (Gaigalas and Molodkov, 2002), whereas the top of
sequence produced U/Th dates of 108.8 + 8.7 and 105.7 + 10.0 ka
(Gaigalas et al., 2005). The earlier mentioned Caours tufa-sequence
produced a set of U/Th (TIMS) of ca. 120 ka (Antoine et al., 2006)
that relate to the base of the Blake Event (123 + 3 Kka; Sier et al.,
2015). In the Rutten core (this paper), the luminescence dates of
109 + 6 and 112 + 11 ka are from within the Blake Event.

An independent age constraint for the E5/E6 boundary comes
from the ELSA-record in NW Germany (Sirocko et al., 2005). In that
record, this boundary times 7700 years before the onset of a dust
event that correlates to North Atlantic cold event C24 and to stadial
GS-25 in the Greenland ice records (e.g. Sirocko et al., 2005;
Rasmussen et al., 2014). The age of this onset according to the
NGRIP (North Greenland Ice-core Project) age-model is 111 ka
(NGRIP members 2004) and in the NEEM (North Greenland Eemian
Ice Drilling) age-model is 108.5 ka (NEEM community Members,
2013; their SI Fig. S7). This gives an age of E5/E6 boundary of
118.7 respectively 116.2 ka in the ELSA record. Assuming that this
cooling-driven regional vegetation development was near-
synchronous throughout NW Europe, this provides an age point
in the upper part of the Blake Event.



24 M. Sier et al. / Quaternary Geochronology 28 (2015) 12—28

Pollen assemblage zonations Planctonic 60 %o

3 2 1 0
_ L n 1 n 1 n |
1 _ . w 4
50 |MD42-15 Stadial Il 4 2
| — =
5 |MD42-14 | Ognon | Interstadial E 2
—  [vpa2-13 Stadial | 30
21 5a
- |MD42-12 St-Germain Il
= MD42-11 Melisey Il
2 5b
- >
- w
| —
1 [
4 |mD42-10| St-Germainlc %
7 O
23— :(‘ 5¢c
E 7 ]
< i " <<
‘g_ - | MD42-9 Montaigu event o]
e _ 4 |vmpa2s St-Germain la i
24 — - = 5d
3 |mpa27 Melisey | =z
3 |mpa2-6 5
B <
| -
25— | MD425 Eemian
E MD42-4 5
- |MD42-3
. tadial
26 — | MD42-2 Zeifen
E =
| o << 6
= 59
4 [Mp421 Stadial z3
27 400

Sanchez-Goni et al. (1999); Shackleton et al. (2003)

Declination Inclination
0 40 80 -60 -30 0 30 60
.
4
&
o 20

e

22

:*-m'\

23

oY

A

24

g.

%°
[

T

25

'.1'*9'-‘,;'

26

t.u

*';q
A

27

3

-

Thouveny (2004); Thouveny et al. (2004)

Fig. 7. Compilation of data from research-core MD95-2042 (south-western margin off the Iberian Peninsula): pollen zonations and oxygen isotope data (Sanchez-Goni et al., 1999)
and paleomagnetic record including the Blake (Thouveny et al., 2004). Paleomagnetic data retrieved from http://www.pangaea.de (Thouveny, 2004).

Further literature review on the Blake Event in marine settings
shows nearly all sites to yield data supporting an onset after the MIS
5e peak, regardless of large differences in apparent duration of the
event. On the Yemak plateau (northern Atlantic Ocean), the Blake
Event starts well after the onset of MIS 5e and its inferred duration
is ca. 10 kyr (Nowaczyk et al., 1994). The same applies to marine
core A179-4 (Blake-Bahama Outer Ridge), with an estimated
duration of the Blake Event of 7 kyr (Smith and Foster, 1969; Wollin
et al., 1971) and the ODP site 1062 cores where the Blake Event
starts slightly after MIS 5e with an estimated duration of the event
of 6.5 + 1.3 kyr (Bourne et al,, 2012). The Blake Event at the
Bermuda Rise has a notably short estimated duration of <1000
years and straddles the MIS 5d-5e boundary (Channell et al., 2012).
An exception on the post-MIS 5e plateau position for the Blake
Event comes from the study of core MD972151 in the South China
Sea, where the Blake Event was identified well before the MIS 5e
plateau (Lee et al., 1999; Lee, 1999). The quality of the data seems to
be good but this claimed position of the Blake Event is about 11 kyr
at odds with all other studies.

An important reference site is core MD95-2042 off the coast of
Portugal, for which marine isotope stratigraphy and pollen
biostratigraphy exists (Sanchez-Goni et al., 1999; Shackleton et al.,
2002). An interglacial pollen signal commences shortly after the
beginning of MIS 5e, on the rising limb towards the benthic 5'80
plateau, and climax vegetation culminates in the plateau-interval.
Paleomagnetic data of core MD95-2042 also exists (Thouveny
et al., 2004). The 880, pollen zonation, and paleomagnetic data
combined are shown in Fig. 7. Thouveny et al. (2004) highlight that
the full Blake Event at site MD95-2042 features two inclination
anomalies, at 122 and 115 ka respectively. The Blake Event again
begins well after the MIS 5e plateau is reached (Fig. 7). It coincides
with pollen assemblage zones that mark climax stages of the
interglacial vegetation succession.

The duration of the pollen-defined “Eemian” off SW Europe in

MD95-2042 is 16,400 years (126.1—109.7 ka; age-model published
in Shackleton et al., 2002), which matches the varved-based
duration estimate from southern Italy (Brauer et al., 2007). The
inferred duration for the MD95-2042 Blake Event matches that of
the Rutten site. It is the pollen signal of the onset of the bio-
stratigraphical Eemian that is diachronic between the SW European
MD95-2042 site and the NW European Rutten and NN2 sites. It may
be that the pollen-defined stages of ending of the interglacial
conditions in NW and SW Europe (e.g. developments recorded over
the PAZ E5/E6 boundary), are less diachronic than those at the
onset of temperate forest development. The last pollen zone of the
Eemian appears to extend into MIS 5d, in NW Europe in a similar
way (this study) as earlier recognized off Iberia (Shackleton et al.,
2003; Tzedakis, 2003) and in ELSA (Sirocko et al., 2005). Based on
the recording of the Blake Event in MD95-2042 (Fig. 7), the
beginning of the Eemian in NW Europe (PAZ E1) lags that of the
“Eemian” of Southern Europe by ca. 5 kyr. In NW Europe, inter-
glacial vegetation begins to establish ca. 10 kyr after MIS 5e began,
whereas in SW Europe the lag is ca. 4.5 kyr (Fig. 8).

5.5. Implications for paleoenvironmental and archeological
research

Identifying noteworthy diachroneity in the onset of interglacial
conditions between southern and northern parts of Atlantic
Europe, implies that vegetational and climatic developments dur-
ing the Late Saalian and Eemian were very different from those
during the Late Glacial to Holocene. Whereas in SW Europe
development of climatic warming and vegetation change during
Termination I and Termination II may still be considered essentially
analogous, NW Europe would have seen a (very) late return to
temperate climate conditions in the Last Interglacial, some 5000
years ‘too late’, meaning non-analogy with the beginning of the
Holocene. Yet, when the interglacial vegetation also established up
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north, this pioneer-vegetation transition went rapidly: essentially
equally rapid as in the Holocene, unaffected by the relatively later
timing. It suggests that regional climatic conditions over Europe
and the North Atlantic in the first part of MIS 5e were very different
from those in equivalent parts of MIS 2 and 1 (Late Glacial and Early
Holocene). Known differences between the melting history of the
Greenland ice cap following Termination II (NEEM community
Members, 2013) and following Termination I (Lowe et al., 2008),
also seen in North Atlantic paleoceanography (Bauch et al., 2000),
can be regarded to provide mechanisms that can explain the dif-
ference in climate history between the Eemian and Holocene
(Renssen et al., 2012; Cohen et al., 2014).

Past interglacial histories may not be analogous to that during
the Late Glacial and Holocene, which brings potential pitfalls in

their interpretation with it. These can only be identified and cir-
cumvented by applying multiple independent paleoenvironmental
reconstruction and dating techniques on data collections
comprising both marine and terrestrial sites. Paleomagnetic iden-
tification of the Blake Event from inclination and declination
measurements shows to be a crucial technique to resolve these
differences for the Last Interglacial.

A global stratigraphic section and point (GSSP) for the base of
the Late Pleistocene and the Last Interglacial is still on the agenda to
be defined (Head et al., 2013) and the community is discussing
potential sites. This paper stresses the importance of paleomag-
netics in assessing diachroneity between potential GSSP locations,
and the outcomes suggest far-field (in glacio-isostatic adjustment
geophysical context) Last-Interglacial sites away from Atlantic
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Europe to be better candidate GSSP host-regions than the classic
Eemian type area in NW Europe.

One of the reasons to perform paleomagnetic investigations of
the Blake Event was to improve application in the dating of po-
tential Last-Interglacial archaeological sites. For NW and central
Europe, the long duration of the Blake Event implies in an
archaeological context in absence of pollen data a confirmation of
the Eemian as interglacial age. However, within the Eemian no
additional resolution is possible.

6. Conclusions

In this study, a detailed analysis was performed on a 25-m long
orientated core taken at Rutten (The Netherlands), close to the
stratotype localities for the Eemian in the Netherlands. The position
of the onset of the Blake Event within the Eemian pollen biostra-
tigraphy for NW Europe is confirmed, the duration of the Blake
Event better constrained, and diachroneity in the onset of the
interglacial conditions across Europe assessed. The latter compli-
cates correlation to the marine isotope stratigraphy and results in
differences of that correlation for the Eemian of NW Europe and the
“Eemian” of SW Europe.

Regarding the onset of the NW European Eemian, the new data
from Rutten confirmed results and hypotheses from the earlier
studied Neumark Nord 2 site (Sier et al., 2011). The identification of
the Blake Event at these two sites, and correlation to findings in
marine core MD95-2042 (Sanchez-Goni et al.,, 1999; Thouveny
et al.,, 2004) indicates NW and central Europe to be ca. 5000 years
later in entering interglacial environmental conditions than
southern Europe.

The Rutten site provides evidence for an unanticipated long
duration of the Blake Event, with a minimum duration of ca. 8000
years: the Blake Event at Rutten sets on just before the Eemian does
(PAZ E1), and continues into the final phase of the interglacial
(across the boundary of PAZ E5 and E6). Through this period,
excursional declinations with positive inclinations seem to domi-
nate the paleomagnetic directions in NW Europe during the Blake
Event, contrary to other regions of the world where fully reversed
directions are predominantly found. This suggests large
geographical variability in the behaviour of the Earth's magnetic
field during the Blake Event.

The Blake Event is timed to begin ca. 121.5 ka and to last to at
least 113.5 ka. The Eemian of NW Europe sets on at ca. 121.0 ka, just
after the onset of the Blake Event. These ages follow from corre-
lations to established age-models for the MD95-2042 site and
sapropel S5 in the Eastern Mediterranean and are in agreement
with dating of the Blake Event at various marine and terrestrial
sites.
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