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SPACE TELESCOPE AND OPTICAL REVERBERATION MAPPING PROJECT. II. SWIFT AND HST
REVERBERATION MAPPING OF THE ACCRETION DISK OF NGC 5548
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ABSTRACT

Recent intensive Swift monitoring of the Seyfert 1 galaxy NGC 5548 yielded 282 usable epochs over 125 days across six
UV/optical bands and the X-rays. This is the densest extended active galactic nucleus (AGN) UV/optical continuum
sampling ever obtained, with a mean sampling rate <0.5 day. Approximately daily Hubble Space Telescope UV sampling
was also obtained. The UV/optical light curves show strong correlations (r 0.57 0.90max = − ) and the clearest
measurement to date of interband lags. These lags are well-fit by a 4 3τ ∝ λ wavelength dependence, with a normalization
that indicates an unexpectedly large disk radius of 0.35 0.05∼ ± lt-day at 1367 Å, assuming a simple face-on model. The
U band shows a marginally larger lag than expected from the fit and surrounding bands, which could be due to Balmer
continuum emission from the broad-line region as suggested by Korista and Goad. The UV/X-ray correlation is weaker
(r 0.45max < ) and less consistent over time. This indicates that while Swift is beginning to measure UV/optical lags in
general agreement with accretion disk theory (although the derived size is larger than predicted), the relationship with
X-ray variability is less well understood. Combining this accretion disk size estimate with those from quasar microlensing
studies suggests that AGN disk sizes scale approximately linearly with central black hole mass over a wide range of masses.
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1. INTRODUCTION

Because of their great distances and small sizes, the central
regions of active galactic nuclei (AGNs) cannot be resolved
directly with current technology. Thus it is necessary to use
indirect methods to gain information about AGN structure and
physical conditions. Variability studies, along with gravita-
tional microlensing (e.g., Morgan et al. 2010; Mosquera
et al. 2013; Blackburne et al. 2014; Jiminez-Vicente
et al. 2014), have emerged as powerful techniques for probing
the central regions of AGNs.

In particular, the “reverberation mapping” (RM) technique
(Blandford & McKee 1982) has proven quite effective at
taking advantage of strong AGN line and continuum variability
to probe the structure of the broad emission line region (BLR).
The fundamental idea of RM is that if the variability in band B
is powered by variability in band A, with only light travel times
affecting the light curves, then variations in band A will be seen
in band B, but delayed and smoothed by the size and geometry
of the latter emitting region. The first unambiguous application
of RM came in an IUE campaign on the Seyfert 1 galaxy
NGC 5548, which found that variations in the driving UV
continuum (band A in this picture) were highly correlated with
those in emission lines such as C IV line (band B). The line
variations lagged the continuum by ∼10 days, indicating that
the C IV-emitting region was of order 10 lt-days in size (Clavel
et al. 1991). Optical emission lines showed similarly strong
correlation but with larger lags. For example, Hβ showed a lag
of ∼20 days (Peterson et al. 1991), indicating a stratified BLR
in which higher-ionization lines are formed closer to the central
engine. The distance estimate, when combined with the
line width, allows estimation of the mass of the central black
hole. For NGC 5548 the current best mass estimate is
M 3.2BH ∼ × M107

⊙ (Denney et al. 2010; Pancoast et al.
2014). This technique is now a standard tool for AGN
astronomy, yielding BLR size, stratification information and
black hole mass estimates and physical conditions for ∼50
AGNs (see, e.g., Bentz & Katz 2015 for a recent compilation).
For a more extensive general discussion of BLR RM, please
see the first paper in this series (de Rosa 2015; Paper I
hereafter).

The structure and physics of the central engine that produces
the continuum emission is currently less well understood than
the reverberation-mapped BLR. Observations and accretion
disk theory both suggest that the inner accretion disk/corona
region emits short wavelength continuum, i.e., X-ray, ultravio-
let (UV hereafter), and much of the optical, which then
illuminates and ionizes the gas in the more distant BLR and
beyond. The prevailing picture is that the black hole is
surrounded by a small, hot (T 109∼ K), and relatively
spherical corona and a larger, cooler (T 5 10max

5∼ × K), and
relatively flat accretion disk (e.g., Haardt & Maraschi 1991).
Gravitational lensing studies also indicate that this putative
corona is small enough to be considered point-like relative to
the disk ( R5 Sch∼ ; Dai et al. 2010; Morgan et al. 2012;
Mosquera et al. 2013; Blackburne et al. 2014, 2015). The
energy released by the accretion process heats both the
optically thick disk—producing the thermal UV/optical emis-
sion—and the corona, which in turn can illuminate the disk as

an external heating source. The fraction of the energy that goes
into heating the corona has not been established and therefore it
is not clear whether the disk is mainly heated internally or
externally. In either case, however, the disk is expected to have
a stratified temperature structure with the hotter, UV-emitting
regions closer in and the cooler, optically-emitting regions
farther out. Quasar microlensing studies find that accretion disk
sizes increase with wavelength (e.g., Poindexter et al. 2008),
supporting this picture. We note, however, that this picture
contains important unreconciled discrepancies. For instance
gravitational lensing disk sizes are typically reported to be a
factor of ∼4 larger than predicted (e.g., Morgan et al. 2010),
and the observed UV spectrum is too steep with a Lyman
discontinuity that is typically smaller than predicted or not seen
(e.g., Koratkar & Blaes 1999; Collin 2001). Recent improve-
ments in AGN accretion disk models (e.g., Dexter &
Agol 2011) may overcome these difficulties, but see also
Antonucci (2013).
Just as RM of the BLR allows us to estimate the distances at

which each line is formed, RM of the accretion disk could
allow us to constrain the temperature structure of the disk and
test the standard α-disk model (Shakura & Sunyaev 1973 or
any other predictive model). Repeated efforts have been made
to implement RM of the accretion disk by correlating X-ray
light curves gathered with space-based observatories with
optical light curves typically from ground-based observatories
(e.g., Edelson et al. 1996; Nandra et al. 1998; Suganuma
et al. 2006; Arévalo et al. 2008, 2009; Breedt et al. 2009, 2010;
Cameron et al. 2012; Gliozzi et al. 2013). However the optical
time resolution of these early experiments was typically limited
by the diurnal cycle to T 1Δ > day, resulting in lag measure-
ments that were suggestive but not statistically significant
(1 2σ− ), although often in the expected sense, with X-rays
leading the optical. Other experiments from this period used
Hubble Space Telescope (HST; Edelson et al. 2000) or XMM-
Newton (Mason et al. 2002) to attain finer optical time
resolution at the cost of shorter monitoring periods
(∼1–2 days). Again the results were suggestive but inadequate
to make a definitive lag measurement. Further, these experi-
ments typically only sampled a single optical or UV band, and
thus were unable to explore temperature stratification in the
disk. Ground-based multicolor optical/IR studies also yielded
tentative evidence of shorter wavelength variations leading
longer wavelength variations in some AGNs (Sergeev
et al. 2005; Cackett et al. 2007; Lira et al. 2011).
The unique capabilities of the Swift observatory (Gehrels

et al. 2004), originally optimized to detect γ-ray burst counter-
parts, are also ideally suited for AGN monitoring. Its rapid slew/
acquisition times and large sky coverage make it feasible to
sample AGN light curves (which show variability over a broad
range of temporal frequencies) with high cadence over a long
duration. Further, the coaligned UltraViolet-Optical Telescope
(UVOT; Roming et al. 2005) and X-Ray Telescope (XRT;
Burrows et al. 2005) cover the entire energy range of interest (the
X-ray/UV/optical) with a single space-based telescope, so data
quality is no longer limited by the diurnal cycle or weather.
This is leading to important advances in accretion disk RM,

as highlighted by the success of two recent Swift AGN
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monitoring campaigns. After detecting from the ground that the
relatively normal galaxy NGC 2617 had transitioned into a
Seyfert 1, Shappee et al. (2014) used Swift to cover a ∼50 day
period with approximately daily cadence, generally in all six
UVOT filters. Ground-based optical/infrared coverage of the
first part of this period was obtained at a lower cadence.
McHardy et al. (2014) analyzed 359 “visits” (separated by 1
orbit or longer; see Section 2.1) to the archetypical Seyfert 1
galaxy NGC 5548, over ∼2 years (2012 February–2014
February). Approximately 20% of the visits utilized all six
filters. In both cases, the data show significant ( 3σ> ) interband
lags throughout the UV/optical, with increasing lags to longer
wavelengths, consistent with a 4 3λ dependence as predicted by
the standard α-disk model under the assumption that time lags
are dominated by light travel times.

The experiment detailed herein combines Swift ’s powerful
capabilities with simultaneous, intensive UV spectroscopic
monitoring by HST to yield the densest X-ray/UV/optical
coverage—in both time and wavelength—ever obtained.
NGC 5548 is the target of this campaign. Figure 1 shows that
this campaign yields a factor of ∼2.5–4 improvement in the
number of UVOT filter data pairs available for correlation
compared to the two best previous campaigns. This provides
superior power to measure small (<2 day) interband lags with
high precision.

The result, presented in this paper, is a clear measurement of
lags across the entire UV/optical range, with shorter wave-
length bands leading the longer wavelength bands. The
timescales generally increase to longer wavelengths as
expected for a standard α-disk, but direct fitting indicates a
larger than expected disk ( 0.35 0.05∼ ± lt-day at 1367 Å). The
U-band lag is slightly longer than expected from the fits,
apparently consistent with contamination from BLR continuum
emission as predicted by Korista & Goad (2001). The X-rays
show a relatively weak and less coherent relation to the UV/
optical. Finally combining RM and microlensing disk size
estimates suggest that disk size scales roughly linearly with
black hole mass over a wide range of masses.
This paper is organized as follows. Section 2 describes the

observations and data reduction, Section 3 presents cross-
correlation analyses applied to these data, Section 4 discusses
the theoretical implications of these results, and Section 5
concludes with a brief summary of this work and implications
for the future.

2. OBSERVATIONS AND DATA REDUCTION

2.1. Observations

The target of this experiment, NGC 5548 (z = 0.01717; de
Vaucouleurs et al. 1991), shows strong, reliable variability
across the entire X-ray/UV/optical wavelength range accessible
to Swift . It is also among the brightest AGN in the sky at these
wavelengths. In 2014 February–June, Swift executed a
monitoring campaign on NGC 5548 that was ground-breaking
in two respects: 1) it was comprised of 360 separate visits over
a ∼4 month period, of which 282 successful visits were
obtained, for a sampling rate (after removing bad data) better
than one visit every ∼0.5 day, and 2) it utilized all six UVOT
filters (Poole et al. 2008) in each visit, with 239 (84%)
providing usable measurements in all six filters. (For the
purposes of this paper, a visit is defined as an observation in
which at least one UVOT filter measurement is obtained.
Multiple observations within a single ∼96 minute orbit are
combined to form a single visit.) This entailed a significant
commitment of spacecraft resources given the limit of 500
time-critical non-GRB guest investigator visits per year and the
desire to minimize wear on the filter wheel.42

In addition, a parallel HST emission-line RM campaign
yielded daily UV spectroscopic monitoring of NGC 5548 over
a slightly longer period (see Paper I). This provided mutual
synergies: the HST 1367 Å continuum light curve was used in
the cross-correlation functions (CCFs) reported herein, while
the Swift optical, ultraviolet, and X-ray light curves can be
used to better define the continuum variability characteristics
needed to understand the emission-line RM results.
These observations are summarized in Table 1. Start and

stop times for Swift observations are originally recorded in
MET (Mission Elapsed Time; seconds since the start of 2001)
and corrected for the drift of the onboard Swift clock and leap-
seconds. These times were averaged and converted to
Heliocentric Julian Date (HJD), the standard for this observing
campaign. Throughout this paper we utilize the truncated HJD,
defined as THJD = HJD − 2,456,000. We reduced all Swift
data on NGC 5548 for both the UVOT and XRT, but restricted
scientific analysis to observations taken during the intensive

Figure 1. Histograms showing the number of UVW2/U pairs for the current
intensive NGC 5548 monitoring campaign (top), the earlier NGC
5548 campaign (middle, McHardy et al. 2014), and the NGC 2617 campaign
(bottom, Shappee et al. 2014). Data are binned by orbit, and all pairs with
separations of less than half an orbit are excluded. UVW2 was used because it
was the most frequently observed UVOT band, while U, a typically less-well
sampled band, was used because that band is particularly interesting (see
Section 4.2). The range ± 2 days is shown because this is the key cadence
range that has not previously been well sampled. Note that the current
campaign samples these short cadences ∼5–8 times more frequently than the
previous NGC 5548 and NGC 2617 campaigns.

42 http://swift.gsfc.nasa.gov/proposals/tech_appd/swiftta_v11/node42.html
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monitoring period, from THJD 706 to THJD 831 (approxi-
mately 2014 February 17.5–June 22.5 UTC).

The HST 1367 Å data reduction is detailed in Paper I. The
following two subsections will describe the reduction of the
Swift UVOT and XRT data.

2.2. UVOT Data Reduction

Swift observed NGC 5548 for a total of 2935 exposures in
six UVOT filters from the beginning of the mission through
THJD 876. All UVOT data were reprocessed for uniformity,
applying standard FTOOLS utilities (Blackburn 1995; from
version 6.15.1 of HEASOFT43). The astrometry of each field
was refined using up to 35 isolated field stars drawn from the
HST GSC 2.3.2 (Lasker et al. 2008) and Tycho-2 (Høg
et al. 2000) catalogs, yielding residual offsets that were
typically ∼0.3 arcsec. Fluxes were measured using a 5 arcsec
circular aperture and concentric 40–90 arcsec regions were
used to measure the sky background level. The final values
include corrections for aperture losses, coincidence losses, and
variation in the detector sensitivity across the image plane. The
galaxy contributes a fraction of the observed flux within the
UVOT apertures (see Section 4.4) but no attempt was made to
remove the contribution of host galaxy flux, as this contamina-
tion is constant and will not affect measurement of interband
temporal correlations or absolute variability amplitudes.

We screened the data to eliminate exposures affected by
significant tracking errors. To identify observations with
distortions in the wings of their point-spread function (PSF),
we measured the ratio of counts in annuli from 5 to 7 and 7 to
10 arcsec, determined the distribution of these ratios for each
filter, and discarded any observations that were found to be
outliers by at least 3.5σ (defined iteratively). In addition, we
measured the PSFs of the isolated field stars used for
astrometric refinement, flagging any observations for which
either the average PSF FWHM differed by more than 1.0 arcsec
from the nominal UVOT FWHM (2.2–2.9 arcsec depending
upon the filter; Breeveld et al. 2010) or the average FWHM of
the stellar PSF projections along the X and Y axes differed by
more than 0.75 arcsec. All flagged observations were manually

inspected, leading to the rejection of one additional exposure in
which the stars were streaks 15 arcsec long. In total, 30
exposures are rejected.
The resulting light curves exhibited occasional, anomalously

low points, especially in the UV. Subsequent investigation
found that these “dropouts” occur when the source falls within
specific regions of the detector. Data potentially affected by
these suspect detector regions are identified and removed using
a new methodology discussed in the Appendix, eliminating
7.4% of the exposures. Finally we combined fluxes and errors
in quadrature so there is no more than one data point per filter
per orbit for any orbit in which multiple measurements were
made in the same filter. The final light curves are presented in
Figure 2 and data from the full mission are given in Table 2.

2.3. XRT Data Reduction

The Swift XRT data were gathered in photon counting mode
and analyzed using the tools described by Evans et al. (2009)44

to produce light curves which are fully corrected for
instrumental effects such as pile up, dead regions on the
CCD and vignetting. We generated soft X-ray (SX;
0.3–0.8 keV) and hard X-ray (HX; 0.8–10 keV) light curves.
We utilized “snapshot” binning, which produces one bin for
each spacecraft orbit. As with the UVOT data, we averaged
multiple ObsIDs within a single orbit in quadrature. We
investigated the use of other bands by subdividing HX into
0.8–2.8 keV and 2.8–10 keV but made no change after finding
the correlation properties of the sub-bands to be very similar to
the original choice.
The gap in the X-ray light curves during THJD 812–819

(2014 June 4–10; Figure 2) corresponds to the time that the
Swift XRT was in an anomaly state (Burrows
et al. 2014a, 2014b; Kennea & Burrows 2014b), during which
time XRT was either disabled or collected data in a non-
standard, not-fully calibrated mode. We excluded the data
taken during this time interval from our analysis. We
additionally excluded all visits where the total good integration
time was less than 120 sec. This resulted in a final light curve
having 272 X-ray points over the 125 day intensive monitoring
period (see Table 1). The complete NGC 5548 XRT data are
presented in Table 3.

2.4. Light Curves

Although the Swift data for NGC 5548 span many years,
Figure 2 and Table 1 cover only the ∼125 day intensive
monitoring period THJD 706–831. The light curves are
presented in order of descending frequency with the highest
frequency band at the top and the lowest at the bottom. The
HST light curve plays a critical role as the only data set not
gathered by Swift . This means that CCFs relative to this band
will not suffer from “correlated errors” (see Edelson & Krolik
1988). The HST light curve also has much higher signal-to-
noise ratios and better exclusion of BLR emission than the
Swift data, but with less than half the sampling cadence.

3. INTERBAND CORRELATION AND VARIABILITY
ANALYSES

In this section we estimate the interband correlation and lag
between continuum bands. Before performing these correlation

Table 1
Monitoring Information

(1) (2) (3) (4) (5)
Central Wavelength Number Sampling

Band λ (Å) Range (Å) of Points Rate (days)

HX 4.4 1.2–15.5 272 0.46
SX 25.3 15.5–41.3 272 0.46
HST 1367 1364.5–1369.5 121 1.03
UVW2 1928 1650–2250 262 0.47
UVM2 2246 2000–2500 254 0.49
UVW1 2600 2250–2950 266 0.47
U 3465 3050–3900 266 0.47
B 4392 3900–4900 265 0.47
V 5468 5050–5800 258 0.48

Note. Column 1: Observing band name. Column 2: Central wavelength of that
band. Column 3: FWHM wavelength range of that band, estimated from Poole
et al. (2008). Column 4: Total number of good data points in that band.
Column 5: Mean sampling rate in that band.

43 http://heasarc.gsfc.nasa.gov/ftools/ 44 http://www.swift.ac.uk/user_objects.
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Figure 2. Light curves for the intensive monitoring period (HJD 2,456,706–2,456,831), going from shortest wavelength (top) to longest (bottom). The band name
and central wavelength are given on the left of each panel. Top two panels show the Swift hard and soft X-ray (HX and SX, respectively) light curves, in units of c/s.

Third panel shows the HST light curve, in units of10 erg cm s14 2 1 1Å− − − − . Error bars for this light curve are typically ∼1.5%, just barely visible in the plot. The bottom
six panels show the Swift light curves, again in units of 10−14 erg cm−2 s−1Å−1 . Dashed gray lines show times THJD 747.179, 785.752 and 818.993, three local
maxima of the HST light curve.
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analyses we detrended the data by subtracting a 30 day boxcar
running mean. This was done to remove long-term trends that
could potentially degrade our ability to measure the expected
small lags.

In all correlation analyses we reference the correlation of one
band (the HST band) relative to all other bands (the eight Swift
UVOT and XRT bands), restricting our analysis to just the data
shown in Figure 2. We used the interpolated CCF (ICCF) as
implemented by Peterson et al. (2004), to measure and
characterize temporal correlations within these data. These
results are shown in Table 4 and discussed in the following
subsection. The second subsection reports the result of fits to
these data, and the third describes our characterization of the
variable UVOT spectral energy distribution (SED).

3.1. Correlation Analysis

The traditional CCF (e.g., Jenkins & Watts 1968) requires
evenly sampled data, but most astronomical data are not evenly
sampled. The ICCF performs a piecewise linear interpolation in
the reference (HST) band with a user-defined interpolation step
of 0.1 day, and then measures the correlation relative to the
non-interpolated data in the other band. These data are then
shifted and correlated to build up the correlation function. In
this case, the HST data, with an initial cadence of ∼1.1 day, are
resampled to a grid with 0.1 day spacing, and then the CCF of
each Swift light curve is measured relative to the HST light
curve.
The results are shown in Figure 3(a). The third panel shows

the auto-correlation function (ACF) of the HST data; all others
are CCFs measured relative to the HST light curve, so a
positive lag indicates that variations in that band lag behind the
HST light curve. Two points are clear. First, there is a tendency
for peak lags to increase with wavelength: the HX band shows
a negative lag relative to HST, the SX band shows
approximately zero lag, the lags are positive and small within
the Swift UV (longer wavelengths lag HST), and the lags are
positive and larger between HST and the Swift optical. Second,
the strength of the correlation is larger between the HST and
UVOT data (peak correlation coefficients r 0.57 0.90max = − )
than between the HST and XRT data (r 0.45max < ).
In order to quantify the uncertainties on the interband lag

estimates, we utilized the flux randomization/random subset
selection (FR/RSS) technique of Peterson et al. (1998) as
modified by Peterson et al. (2004) to produce the cross-
correlation centroid distribution (CCCD), as shown in
Figure 3(b). FR/RSS is a model-independent Monte Carlo
technique that attempts to deal with both flux uncertainties in
individual measurements and uncertainties due to sampling of
the time series. In “RSS,” for a light curve of N data points, one
randomly selects N data points without regard to whether a data
point has been previously selected or not. Thus, approximately

e1 of the original points in the light curve are not selected in a
given realization, and the remaining points are selected one or
more times. For data points selected n times in a given
realization, the uncertainty associated with the data point is
reduced by n 1 2− . “FR” consists of altering the observed flux by
random Gaussian deviates whose standard deviation is equal to
the flux uncertainty on the data point. The CCCD is built by

Table 2
UVOT Data

(1) (2) (3) (4)
HJD Filter Flux Error

2454270.833 UVW2 0.625 0.018
2454270.905 UVW2 0.632 0.015
2454276.539 UVW2 0.671 0.017
2454276.606 UVW2 0.663 0.017
2454283.359 UVW2 0.701 0.019
2454283.427 UVW2 0.701 0.019
2454283.492 UVW2 0.707 0.020
2454290.329 UVW2 0.802 0.023
2454290.378 UVW2 0.796 0.020
2454290.445 UVW2 0.796 0.020

Note. Column 1: Heliocentric Julian Date. Column 2: Observing Filter.
Column 3: Measured flux in units of 10−14 erg cm−2 s−1 Å−1. Column 4:
Measured 1σ error in the same units. Note that this table includes all usable
Swift observations of NGC 5548, not just those from the intensive monitoring
period. The data are sorted first by filter, then by HJD. Only a portion of this
table is shown here to demonstrate its form and content.

(This table is available in its entirety in machine-readable form.)

Table 3
XRT Data

(1) (2) (3) (4) (5)
HJD HX Flux HX Error SX Flux SX Error

2453468.872 0.324 0.039 0.093 0.023
2453469.005 0.361 0.051 0.061 0.021
2453469.139 0.282 0.049 0.156 0.042
2453470.283 0.425 0.057 0.114 0.030
2453470.349 0.343 0.037 0.075 0.019
2453470.418 0.360 0.028 0.076 0.013
2453470.814 0.353 0.024 0.088 0.012
2453470.882 0.469 0.043 0.088 0.019
2453473.227 0.496 0.055 0.175 0.033
2453475.169 0.384 0.049 0.073 0.021

Note. Column 1: Heliocentric Julian Date. Columns 2 and 3: Measured HX
flux and 1σ error, in ct sec−1. Columns 4 and 5: Measured SX flux and 1σ error,
in ct sec−1. Note that this table includes all usable Swift observations of
NGC 5548, not just those from the intensive monitoring period, sorted by
HJD. Only a portion of this table is shown here to demonstrate its form and
content.

(This table is available in its entirety in machine-readable form.)

Table 4
Interband Correlation Coefficients and Lags

(1) (2) (3)
Band rmax Lag (days)

HX 0.35 −0.66 ± 0.46
SX 0.44 +0.08 ± 0.52
HST 1.00 +0.00 ± 0.25
UVW2 0.90 +0.40 ± 0.17
UVM2 0.87 +0.35 ± 0.16
UVW1 0.85 +0.61 ± 0.20
U 0.81 +1.35 ± 0.24
B 0.74 +1.23 ± 0.29
V 0.57 +1.56 ± 0.50

Note. Column 1: Band for which correlation was measured relative to HST
1367 Å. Column 2: Maximum correlation coefficient. Column 3: Measured
centroid lag and associated 1σ error in days.
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combining the results from 2000 realizations, with results that
are summarized in Table 4.

A number of factors can contribute to the widths of the
histograms and thus the error estimates on the interband lags.
These include the sampling cadence and finite duration of the
campaign, measurement errors, and deviations from the
stationarity assumption implicit in the FR/RSS method. An
example of the second contribution could be the appearance of

somewhat different lags at different epochs, as may be
occurring with the BLR (see Paper I). At present it is not
possible to determine the relative contribution of each effect.

3.2. Lag-wavelength Fits

As discussed in the introduction, the standard model predicts
a relationship between lag and wavelength because the disk is
expected to be hotter at smaller, inner radii and cooler at larger,
outer radii. Following the analysis of McHardy et al. (2014)
and Shappee et al. (2014), Figure 4 presents the CCF lag (τ)
results as a function of wavelength (λ). We fit the wavelength
dependence of the lags with the function A Bτ = +
(( ) 1)C

0λ λ − . The top three sets of panels show the effect
of restricting the fitting function by first setting C 4 3= and
then setting A = 0. This yields only a slight increase in 2χν ,
which is acceptable in all cases. For instance the third panel has
reduced 2χ of 0.982χ =ν , corresponding to a probability value
p 0.45= . Thus we conclude these data are fully consistent
with a single-parameter fit, B (( ) 1)0

4 3τ = λ λ − . The fit
parameter B gives an estimate of the size of the disk at

13670λ = Å, the HST reference wavelength, assuming a face-
on geometry. This is the most important result of this paper,
discussed in detail in Section 4.1.
The bottom three sets of panels explore the effect of

excluding particular bands from the fit. The third panel shows
the effect of excluding the HST ACF lag, which of course
should be identically zero. This has no effect on the number of
degrees of freedom (dof) as the fit parameter A is dropped as
well (as discussed above).
The fourth panel shows the additional effect of dropping the

two X-ray lags, HX and SX. This has essentially no effect on fit
quality, which is not surprising because the correlation
coefficients are low and the lags have by far the largest errors
of any waveband. That is, the X-ray variations do not show a
clear, consistent relation to the UV/optical variations. The
implications of this divergence is explored in detail in
Section 4.4.
Another new result of this experiment is that the U-band lag

is consistently larger than predicted by the fits. The fifth set of
panels show that additionally excluding the U-band lag from
the fit shown in the fourth panel greatly reduces the 2χν
although, as mentioned earlier, the fits are acceptable in all
cases. This is discussed in Section 4.2.

3.3. Spectral Variability

In this section we utilize the fact that emission from the AGN
(central engine and surrounding regions) is variable while
starlight from the underlying galaxy is not to separate these
components and characterize the spectral shape of the AGN
component. For most analyses, emission from the underlying
galaxy is a complication to be removed from the UV/optical
SED before proceeding. One way to do this is image
decomposition, as has been performed for NGC 5548 by
Bentz et al. (2009, 2013) and Mehdipour (2015). Here we
use an alternate approach to estimate the shape of the variable
SED (although not its normalization) directly from Swift data
alone.
We first filter the intensive monitoring data to include only

orbits with observations in all six UVOT filters in order to
obtain a uniform data set. For each band, we next measure the
standard deviation of the flux (σ) and the mean error (̄ ) and

Figure 3. (3a) ICCFs for the intensive monitoring period light curves
(Figure 2), with all correlations measured relative to the HST light curve, after
removing long term trends (see Section 3). The band name and central
wavelength are given on the left of panel 3a and the band name on the left of
panel 3b. Note that the interband lag goes from negative to increasingly
positive as the band’s wavelength increases. Note also that the UV/optical
correlations are all strong (r 0.57 0.90max = − ) but the X-ray/UV correlations
are much weaker, (r 0.45max < ). (3b) Cross-correlation centroid histograms
derived from the CCFs as discussed in the text. The band name and central
wavelength are given on the left of each panel. All distributions except HX
appear consistent with a Gaussian.
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then calculate the error-corrected standard deviation,
¯C

2 2σ σ= − , although the error correction was always
small, typically ∼1%. This provides a direct estimate of the
intrinsic variability in each band but does not include the mean
flux of the AGN. We then take the logarithm of both quantities
and fit a function of the form log ( ( )) log ( )C10 10σ α βλ = λ + ,
which is equivalent to ( )Cσ λ ∝ λα, in order to measure the
power-law slope α of the variable component. As shown in
Figure 5, this fit yields 1.88 0.20α = − ± . In order to estimate
the intrinsic shape of the variable AGN SED, we perform the
same exercise after first dereddening the data (assuming
E B V( ) 0.017− = ; see Paper I). This yields a slope of

1.98 0.20α = − ± . We note that this is consistent with
predicted thin accretion disk slopes of 2α = − to −2.33 (Davis
et al. 2007).

4. DISCUSSION

4.1. Reverberation Mapping of the Accretion Disk

The standard model of a geometrically thin, optically thick
AGN accretion disk predicts that the disk will be hotter in the
inner radii and cooler in the outer radii, with dependencies on
the black hole mass (and thus the Schwarzschild radius) and
Eddington ratio. This is for instance quantified in Equation
(3.20) of Peterson 1997,

T r
M

M
M

r

R
( ) 6.3 10

˙

˙
K (1)5

Edd

1 4

8
1 4

S

3 4

≈ × −
−⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

where T(r) is the temperature at radius r, M M˙ ˙ Edd is the mass
accretion rate divided by the Eddington rate, assuming a
radiative efficiency of 0.1η = , M8 is the black hole mass in
units of M108

⊙, and RSch is the Schwarzschild radius.
Combining Equation (1) with Wien’s law ( 2.9maxλ = × T107 ,

where λ is measured in Ångstroms and T in Kelvin) and the
idea that the lags are dominated by light travel times from
the center (so r cτ = ) yields the relation 4 3τ ∝ λ . Note that
while this derivation was for a disk heated “internally” by
viscous processes, the same 4 3λ dependence will arise in a
disk heated “externally” by the putative central corona. This
is shown in Equations (1) and (2) of Cackett et al. (2007)
and Equation (4.56) of Netzer (2013). However, these deriva-
tions all assume a relatively flat disk. If the disk is strongly
warped or if the corona is distributed across the disk (Dexter &
Agol 2011), then an externally-heated disk will be hotter at
large radii, leading to a flatter lag-wavelength relation. The
consistency of the observed τ − λ relation with the predicted
relation broadly supports the standard accretion disk temperature
profile.
Equation (1) can also be used to estimate source parameters

under the simple assumption of a face-on disk in which each
annulus at temperature T(r) radiates all its luminosity at maxλ as
given above. The observed relation B (( ) 1)0

4 3τ = λ λ − has a
single free parameter B 0.35≈ day, which indicates, for a face-
on disk, that an annulus of radius ∼0.35 lt-day radiates at
T 2.9 10 2.2 107

0
4= × λ = × K for 13670λ = Å. This dis-

tance of 0.35 lt-day corresponds to r R 90Sch = for a
M3.2 107× ⊙ black hole.

A more realistic picture would account for the fact that each
annulus radiates as a blackbody of temperature T(r) instead of
radiating at a single wavelength maxλ . Accounting for that will

Figure 4. Lag-wavelength fits based on the data in Tables 1 and 4. The top row
shows the most general fit, A B (( ) 1)C

0τ = + λ λ − , with the power-law index
C allowed to float. The next row fixes the index at the theoretically expected
value C 4 3= . All data are included in the first two sets of fits. In the third row
the intercept is fixed at A = 0 and the HST ACF data are excluded. The fourth
row shows these fits with the X-ray data HX and SX also excluded, while the
fifth row additionally excludes the U-band data. See the text for further details.
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yield a larger value for the radius at which the disk emission
peaks at maxλ because more flux at a given wavelength is
produced by hotter blackbody emission interior to radius R than
by cooler blackbody radiation exterior to R. A future paper in
this series (D. Starkey et al. 2015, in preparation) utilizes direct
modeling of each UV/optical light curve to produce a more
rigorous analysis.

Nonetheless these large sizes may cause problems for the
standard Shakura & Sunyaev (1973) α-disk model. Assuming
a value for M M L L˙ ˙ 0.03Edd Edd= = , derived using a disk
luminosity L that is ∼37% of the total luminosity, yields an
accretion disk radius of only r R 40Sch = using the same
formula and assumptions as above. We note that there are
models that produce effectively larger disks which can
potentially better explain the UV/optical variability properties
of AGNs, such as the inhomogeneous disk model of Dexter &
Agol (2011).

4.2. Contribution of BLR Emission

Another interesting result shown in Figure 4 is the longer U-
band lag, relative to the fit and to the lags of nearby bands.
Excluding the U-band data from the fit yielded a significant
improvement in 2χν , although the overall fit is acceptable in either
case. The final fit on the bottom of Figure 4, which excludes U
band, predicts a U-band lag of 0.85τ = while the observed
value is 1.35 0.24τ = ± , a difference of 2σ. In retrospect, one
can see in both the previous NGC 5548 campaign (McHardy
et al. 2014) and the NGC 2617 campaign (Shappee et al. 2014)
that the U-band lags were larger than the B-band lags, although
those campaigns measured lags with much larger errors, so the
deviation was not significant. The vastly superior short timescale
sampling provided by the current campaign (see Figure 1)
allows for the measurement of this apparent effect with higher
significance.

There is a simple explanation for this excess lag, discussed
by Korista & Goad (2001): Balmer continuum emission (both
thermal diffuse and reflected incident continuum) and other
pseudo-continuum emission from BLR clouds (e.g., UV Fe II)
contribute significantly to the observed U-band flux, and since
the BLR is much larger than the optically-bright accretion disk,
it will increase the observed lag. This effect was seen by Maoz
et al. (1993) in NGC 5548 RM data from the 1989 campaign.
The sensitivity of the strength of the diffuse continuum

component to the presence of high gas densities and high
ionizing photon fluxes make it an important diagnostic of the
physical conditions within the BLR. A possible alternative is
that the Balmer continuum (and other pseudo-continua) is
produced in an “intermediate” region smaller in size than the
classical BLR but larger than the accretion disk. This could
more naturally explain the relatively small increment in the
U-band lag, although it would also mean adding a previously-
unknown emission component to the many already required to
explain AGN SEDs.
We note that continuum light curves measured at longer

wavelengths and/or with narrower bands will be much less
sensitive to this effect. This cannot be done with Swift , but future
papers in this series will analyze an expanded set of HST and
optical photometric bands (M. Fausnaugh et al. 2015, in
preparation) and ground-based spectroscopy of NGC 5548
(L. Pei et al. 2015, in preparation), providing a more sensitive test
of the degree to which these CCFs are contaminated by emission
from hot gas surrounding the central engine.

4.3. The Accretion Disk Size–Black Hole Mass Relation

As discussed in Section 1, quasar gravitational microlensing
studies have been used to estimate accretion disk sizes, finding
a tendency for disk sizes to increase with black hole mass
(Morgan et al. 2010; Mosquera et al. 2013). Disk RM
measurements of Seyfert galaxies can be used to extend such
relations to lower masses, luminosities, and (probably)
Eddington ratios, generally with smaller uncertainties because
of the greatly reduced physical complexity of the measurement.
Figure 6 shows a summary of microlensing sizes estimates (the
half-light–radius R1 2 at rest frame 2500 Å) from Mosquera
et al. (2013) as open triangles. Microlensing studies frequently
focus on R1 2 because estimates of its value are relatively
insensitive to changes in the underlying (disk) emission profile
(Mortonson et al. 2005). A fit to these data as a power-law,

R A B M Mlog ( ) log ( )10 1 2 10 0= + , with M M3 100
8≡ × ⊙

to minimize covariances between the parameter estimates
and assuming 0.3 dex uncertainties in the black hole
mass estimates, yields A Rlog( cm) 15.81 0.160= = ± and
B 1.29 0.33= ± with 8.732χ = for 9 dof, a statistically
acceptable fit. The slope of the fit is driven by the higher mass
systems, leading it to lie below the measurements in the mass
range of NGC 5548.
The comparable disk RM size from the present study is the

distance corresponding to the lag for the UVW1 filter centered
at 2600 Å, which we show as the filled square labeled
“N5548.” This combines the parameter B ( 0.35 0.04= ± day
for the simple face-on model in Figure 4) with the HST UV to
UVW1 lag (0.61± 0.20 days), to give an estimate that
R 0.96 0.211 2 = ± light-days. This assumes that the size
corresponding to the observed lag corresponds to R1 2, which
may not be correct, but is a reasonable assumption pending a
theoretical model for how the disk RM lag should be
interpreted in detail. For example, R1 2 is 2.44 times larger
than the radius at which the photon wavelength matches the
disk temperature discussed in Section 4.1. A similar procedure
was used to add the UVW1 size estimate for NGC 2617 from
Shappee et al. (2014), where the error bar is designed to span
their systematic uncertainties.
While there are residual systematic uncertainties in this

comparison, such as the meaning of the disk RM lag as a
physical size and potential differences in the Eddington ratios of

Figure 5. The error-subtracted variable flux ( ( )Cσ λ ) as a function of
wavelength (λ). The original data are shown as red Xs and the dereddened
data as blue crosses. A fit to the function log ( ( )) log ( )C10 10σ α βλ = λ +
yielded 1.88 0.20α = − ± for the original data (solid red line) and

1.98 0.20α = − ± for the dereddened data (dashed blue line).
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the nearby lower luminosity Seyfert 1 s and the distant high
luminosity quasars, the results from the two very different
methods are broadly consistent. If we simply fit the combined
data, we find A 15.96 0.12= ± and B 0.98 0.23= ± with

13.512χ = for 11 dof, which is shown by the dashed line in
Figure 6. The slope is flatter and better defined, the fit is
consistent with the combined data, and the parameters are
consistent with the results using only the microlensing results.
Interestingly, the slope B is almost exactly unity (and thus the fit
line is nearly parallel with the last stable orbit, shown as a solid
line in Figure 6), indicating that the disk size in units of
Schwarzschild radii is nearly constant, R R(2500 ) 1001 2 SchÅ ∼ ,
over a very wide range of AGN masses. That these two radically
different methods agree this well seems remarkable given the
different underlying physics and the possible range of systematic
effects.

4.4. Relation of X-Ray to UV/Optical Continua

Figure 3 shows that compared to the strong
(r 0.57 0.9max = − ) correlations within the UV/optical, the
correlation between the HST 1367 Å and the X-ray bands is
much weaker (r 0.35 0.44max = − ). This is surprising because it
is well established that the optical and X-ray light curves of
NGC 5548 are very well correlated (r 0.95max = ) on longer
timescales of years (Uttley et al. 2003). That is, the strong long
timescale optical/X-ray correlation does not translate to strong
short timescale UV/X-ray correlations in NGC 5548. Visual
examination of the NGC 5548 UV and X-ray light curves both
in this paper and McHardy et al. (2014) shows that there are
some periods in which the UV appears to lead the X-rays, some
in which the UV appears to lag the X-rays, and some in which
there is no simple discernible relationship.

Periods of uncorrelated X-ray/optical variations are also seen
in other Seyferts (e.g., NGC 3516; Maoz et al. 2002 and
Mkn 79; Breedt et al. 2009). The phenomenon may be linked
to internal heating fluctuations in the disk which are not “seen”
by the X-ray emitting region, perhaps linked to mass accretion
fluctuations which do not propagate to the central X-ray
emiting region due to viscous damping (e.g., the explanation of
a similar phenomenon seen on equivalent, mass-scaled time-
scales in a stellar mass black hole X-ray binary Cassatella
et al. 2012). This may indicate that a significant fraction of the
UV/optical emission is not due to reprocessing of X-ray
photons, but rather is generated internally. In this case, the
observed time lags would not be dominated by light travel
effects, but instead would depend on the physics of the internal
disk variations.

Alternatively, the lack of correlation between the UV/optical
and X-ray could be a signature of absorption due to intervening
material, but then one would expect the UV to be better
correlated with the HX than the SX, because the latter would be
much more strongly affected (and the light curves more
decorrelated) by “warm” absorption. We do know that
NGC 5548 shows strong variable absorption in the X-rays
(Mehdipour 2015), and there are indications that the absorption
was changing (decreasing) during the Swift campaign. None-
theless the fact that the HX show a smaller correlation
coefficient than the SX suggests that this may not be a
complete explanation. A somewhat different scenario, based on
a correlation between SX excess and far-UV also observed by
(Mehdipour 2015), is that both are associated with

Comptonization. Finally, it could simply mean that the
observed 0.3–10 keV X-ray band is a poor proxy for emission
from the putative hot corona, which should emit the bulk of its
luminosity at harder energies. At this point it is not possible to
say with certainty which, if any, of these explanations is
correct.

5. CONCLUSIONS

This paper presents the results of the most intensive
X-ray/UV/optical AGN monitoring ever, spanning a dura-
tion of months. We find that the UV/optical light curves are
all well correlated with lags of ∼1–2 days increasing to
longer wavelengths. These lags are well-fitted by the
relation 4 3τ ∝ λ , in agreement with standard steady-state
accretion disk predictions under the assumption that time
lags are dominated by light travel times. The fits yield a disk
size of 0.35 0.05∼ ± lt-day at 1367 Å, larger than expected
from standard α-disk models or extrapolation from higher-
mass microlensing studies. Interestingly the U-band lag is
anomalously large, suggesting that the U band is affected by
Balmer continuum emission from the BLR. The X-ray/UV
correlations are weaker and less consistent, however, so
these data do not confirm all predictions of the reprocessing
picture.
We are planning a series of future papers to explore these

results in greater detail. M. Fausnaugh et al. (2015, in
preparation) will present ground-based optical and further
HST continuum data, allowing a check on the wavelength
dependence of the observed interband lags. L. Pei et al. (2015,

Figure 6. Accretion disk size estimates from quasar microlensing studies (open
triangles; Mosquera et al. 2013), the current study of NGC 5548 (black filled
square) and NGC 2617 (open square, Shappee et al. 2014) as a function of
black hole mass. The dotted line shows the fit to just the microlensing data and
the dashed line the fit to all data points including the Seyfert 1 RM
measurements. To give a sense of other scales associated with accretion disks,
the lower solid line shows the last stable orbit of a non-rotating black hole at
R R GM c3 6Sch

2= = and the upper solid lines shows R1 2 at 2500 Å for a
simple thin disk with Eddington ratio L L 0.03Edd = and efficiency 0.1η = to
provide a sense of scale. The latter curve can be shifted as L L( )Edd

1 3 for
different choices of these factors.
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in preparation) will use ground-based spectroscopy to measure
the continuum in narrow spectral windows much less affected
by BLR emission, further refining this analysis. D. Starkey
et al. (2015, in preparation) will apply Markov Chain Monte
Carlo methods to directly model disk emission from these
continuum data, allowing a much more direct probe of the
physical conditions.

This RM disk size estimate of a relatively low-mass Seyfert 1
galaxy forms a nice complement to more numerous but more
uncertain accretion disk size estimates derived from generally
higher-mass quasar microlensing studies. The combination of the
two datasets allows improved determination of the accretion disk
size–black hole mass relation, which interestingly suggests
2500 Å accretion disk sizes of R R1001 2 Sch≈ . Further Seyfert
1 accretion disk RM experiments will allow this relation to be
tested and refined.

Most important for the long term is that this experiment
demonstrates how dense and broad coverage in both
wavelength and time can be used to probe a nearby AGN
accretion disk with unprecedented detail. Swift was named
“the premier facility for multi-wavelength time domain
astronomy” by the latest NASA Senior Review Panel.45

There is certainly no other observatory that can single-
handedly monitor AGNs with such dense and broad temporal
and frequency coverage in the UV/optical and X-rays. We
expect that this experiment will become a template for future
Swift campaigns that characterize the accretion disks of a
sample of AGNs covering a range of black hole masses,
Eddington ratios, and other source parameters.
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Figure 7. Initial UVOT light curves of NGC 5548 for the period THJD 390–832. The error bar colors indicate the results of the dropout test: black errors indicated
that the point passed the dropout test (small deviation), red error bars indicated that it failed the test (large deviation) and cyan error bars indicate that it was not tested
(as it lacked sufficient nearby neighbors). The symbols show if the point fell inside/outside the UVOT boxes (shown in Figure 9): black dots fell outside the boxes and
thus were used in the final light curve (shown in Figure 1) and red Xs fell inside the boxes and were excluded from the final light curves.

45 http://science.nasa.gov/media/medialibrary/2014/05/15/Final_Report_Ast
ro2014_SeniorReview_Panel.pdf
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APPENDIX

As discussed in Section 2.2 we discovered “dropouts” in the
UVOT light curve in the course of the data reduction: isolated
points with fluxes many sigma below those of their nearest
neighbors. Figure 7 shows the UVOT light curves of
NGC 5548 after initial flux measurements and removal of
data points affected by tracking problems. The dropouts are the
points with red error bars, most frequently seen in the UV
bands. In order to quantify this effect, we first parametrized the
deviation for every point in the light curve as df F( 0.5N= − ×
F F( ))N N N1 1 σ+− + , where FN and Nσ are the measured flux
and 1σ error bar for visit N. To minimize the effects of intrinsic
variability, we only tested data with observing gaps
t t 2.5N N1 1− <+ − days (tN is the THJD of the Nth visit); all
visits with longer gaps between their nearest neighbors were
ignored.

We then flagged all points with negative excursions greater
than the largest positive excursion seen in that filter as
dropouts. The largest positive excursions used to define the
threshold of what is a dropout are themselves sensitive to
dropout measurements, in that the largest df values tend to be

found when the N 1− or N 1+ flux measurement is a
dropout. We therefore redefine these thresholds iteratively,
removing the dropout points and then re-evaluating the
largest positive excursions. This is repeated until the largest
positive excursion remained the same, that is, it was not
associated with a dropout. This procedure limits the number
of false positives to of order one per light curve. Note the
strong dependence on UVOT band, with 33, 13, 21, 11, 2,
and 1 dropouts for the UVW2, UVM2, UVW1, U, B, and V
bands, respectively.
We then mapped the source location of every exposure for

the three UV filters (UVW2, UVM2, UVW1) to the UVOT
detector coordinates (Figure 8). Blue dots show the points
used in the analysis, red Xs the dropouts as defined above,
and open black circles the points ignored because they lacked
nearby (in time) neighbors. Figure 9 is a blow-up of the

Figure 8. UVOT detector coordinates of the UVW2, UVM2, and UVW1 data in
Figure 7. Data that were tested for dropouts are shown as blue dots and those
that were not tested (due to their not having sufficiently nearby neighbors) are
shown as open black circles. The points that failed the dropout test are marked
with red Xs. The black rectangle denotes the region shown in Figure 9.

Table 5
UVOT Detector Bad Boxes

x1 x2 y1 y2

357 371 634 651
415 440 582 632
441 469 634 655
448 457 440 442
479 484 539 542
516 537 596 619
536 538 564 568
545 583 573 607

Note. UVOT detector coordinates (x1,x2,y1,y2) for the eight “bad” boxes
shown in Figure 9. These are image coordinates for a full-frame raw UVOT
image with 2×2 binning (the default UVOT image mode).
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region with the dropouts. Note that the dropouts cluster
together such that most can be enclosed by a small number
of boxes. We define eight rectangles in the detector plane,
one for each cluster of at least three dropout points.
The coordinates of these boxes are given in Table 5. We
then went back to all six filters (including the optical UBV
bands) and flagged every visit/filter that falls in any of these
boxes.

These additional suspect points are shown as red Xs in
Figure 7. We ran Kolmogorov-Smirnov tests on each band to
test if the deviation for points in the suspect regions (the red
Xs in Figure 7) derives from the same population as the
unaffected data (black dots in Figure 7). We find that for
five of the six UVOT filters (all except V) the two samples

are not consistent at the 10−4–10−16 level, with the strongest
differences at the highest frequencies. We then eliminated
all data points in any filter that fell in these eight boxes.
These points are shown as red Xs in Figure 7. The remaining
points (the black dots in Figure 7) then formed the final
light curve shown in Figure 2 of the main section of this
paper.
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