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Design and performance of a high-resolution frictional force microscope
with quantitative three-dimensional force sensitivity
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In this article, the construction and initial tests of a frictional force microscope are described. The
instrument makes use of a microfabricated cantilever that allows one to independently measure the
lateral forces in X and Y directions as well as the normal force. We use four fiber-optic
interferometers to detect the motion of the sensor in three dimensions. The properties of our
cantilevers allow easy and accurate normal and lateral force calibration, making it possible to
measure the lateral force on a fully quantitative basis. First experiments on highly oriented pyrolytic
graphite demonstrate that the microscope is capable of measuring lateral forces with a resolution
down to 15 pN.© 2005 American Institute of Physics.fDOI: 10.1063/1.1889233g

I. INTRODUCTION

One of the oldest unresolved problems in physics con-
cerns mechanisms of friction. This may seem surprising in
the light of the fact that systematic research dates back to
Leonardo da Vinci.1 There is an impressive body of phenom-
enological knowledge on friction, but most of this knowl-
edge lacks a true understanding on a microscopic level.
Questions about atomic-scale details of energy dissipation
are becoming increasingly important as, e.g., technologies of
data storage, microelectromechanical systemssMEMSd and
specialized coatings advance. In these areas, the phenomeno-
logical and often used friction law of Amontons and Cou-
lomb, that the frictional force is linearly proportional to the
normal force, does not always apply.2,3 In order to better
predict and control tribological behavior on the small length
scales involved, a truly microscopic understanding of friction
and wear is required. Real surfaces in contact only truly meet
at those points with the highest topography due to surface
roughnesssi.e., asperitiesd. It has been shown that it is the
statistics of these asperities that leads to the Amontons and
Coulomb law.4 As asperities move with respect to each other,
the contributions of individual asperities to the friction force
are averaged. One approach to obtain information on the
tribological behavior of single asperities is to control the
surfaces such that only one asperity is created. This area of
research has come to be called nanotribology. It has long
been recognized that the tip-on-flat geometry of an atomic

force microscope sAFMd closely resembles a realistic
asperity.5 AFMs have been adapted to measure lateral forces
down to the nanometer and nanonewton regimes by measur-
ing the torsional response of the force probe. In the past,
frictional force microscopessFFMsd have produced predomi-
nantly qualitative results although recently some groups have
succeeded in obtaining quantitative nanotribology results.3,6

Even as the techniques in traditional FFM become more re-
fined, the basic problem remains that this method uses a
force probe designed to be most sensitive to forces normal to
the contact. The ramification of this is that most cantilevers
snap into contact as the tip-to-sample distance approaches
the near contact regime, so that the lateral forces are mea-
sured in “hard” contact. This near-contact regime is of great
technological importance as fly heights in disk drives de-
crease and as the length scales in MEMS are reduced. Can-
tilevers that do not suffer from the “snap-to-contact” problem
will have large torsional spring constants so that small lateral
forces cannot be detected. In most FFMs, only one compo-
nent of the lateral force is measured. In addition, bending
motion of standard cantilevers cannot be distinguished from
buckling7 and it is very difficult to minimize coupling be-
tween the normal and the torsional bending,8 which can be
seen by the fact that the feedback parameters can have dra-
matic influence on the measured friction signal.9 This is also
a fact well known and of equal frustration to the AFM com-
munity. Our main objective was to build a quantitative FFM
that would measure both lateral forces with better sensitivity
and at smaller tip-sample separation distances than current
FFMs. Ultimately it is our aim to atomically control the con-
tact area between the tip and sample in UHV via field ion
microscopy and field evaporation.10 Consideration of these
requirements and future additions played an important role in
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some of the design decisions for our prototype, ambient-
condition FFM with three-dimensional detection. The instru-
ment consists of two stages: the fiber head assembly contain-
ing the detection system and the specialized lateral force
cantilever, and the sample stage that allows for manipulation
of the sample with respect to the tip and cantilever. We began
our FFM design by first designing a dedicated force probe.
The precise design and manufacturing details of this so-
called “Tribolever®” have been reported in another article.11

A scanning electron microscopesSEMd image of the monoc-
rystalline monolithic silicon structure is seen in Fig. 1. Four
high aspect ratio legs extend out from a central detection
pyramid. A fiber optic interferometer reflects off of each
pyramid face to track the motion of the pyramid. The scan-
ning tip, which can be an etched metal wire, for example,
tungsten, is threaded through the central hole of the pyramid
and extends,50–100mm out from the base of the pyramid
to interact with the surface. The shape and dimensions of the
four legs have been chosen and tested using finite element
analysis,12 so that the two lateral spring constants are equal
and significantly lower than the torsional spring constant of
single board-type cantilevers used in AFMs. Using cantilever
dimensions obtained from the literature,13 a typical torsional
spring constant is 72 N/m, whereas the Tribolevers® lateral
spring constants are typicallykx

Tribolever;ky
Tribolever=1.4 N/m.

In the normal direction,kz
AFM =0.2 N/m, while kz

Tribolever

=10.6 N/m ssee belowd. Additionally, the coupling in the
Tribolever between the three orthogonal directions is,10−6

and coupling between torsionalsout of scanning planed and
normal forces is essentially zero. The focus of the present
article is on the apparatus, which houses, moves and manipu-

lates the optical fibers with respect to the detection pyramid
and the tip-fiber head with respect to the sample. Initial re-
sults are reported, and used to demonstrate the performance
of this microscope.

II. INSTRUMENTATION

A. Detection principle

As discussed briefly above, the pyramid is in the center
of the detection system, which consists of four all-fiber in-
terferometers. Each of the four glass fibers is coupled to a
laser diode and a photodiode detector as described in Sec.
II B. The light that leaves the fiber at the end face is centered
on one of the four pyramid faces. Part of that light is re-
flected back into the fiber, where it interferes with the light
that is reflected internally at the fiber end face. The interfer-
ometer’s output is given by

I = I0F1 + V cosS2p
2D

l
DG , s1d

where I is the output current,V is the relative interference
amplitude,D is the fiber-sample distance, andl is the wave-
length of the lasers780 nm in our cased. The offsetI0 and the
amplitudeV are both determined by the reflectivities of the
two interfaces responsible for the interference signal. Spe-
cifically, for the fiber/air interface a maximum reflectance of
4% is expected and for the pyramid surface a maximum re-
flectance in the order of 60%. The pyramid, which is ap-
proximately 80mm high, with a 150-mm-wide base, is
formed via a KOH wet etch, which exposes thes111d planes
of silicon, which provides an area available for the fibers to
reflect from of at least 1500mm2. A special passivation tech-
nique, necessary to protect the corners of the convex struc-
ture from underetching,11 gives rise to the presence of a
cross-shaped hole within the pyramidsFig. 1d. One advan-
tage of this design is that the entire cantilever structure can
be made out a single-crystal silicon wafer. The faces of the
pyramid are highly reflective and of a well-defined angle,u
=54.74°, with respect to thes100d surface plane of the wafer.
If each of the four glass fibers is adjusted such that the light
intensity increases when the fiber-pyramid distance decreases
fEq. s1dg the three-dimensional displacement with respect to
the fixed fibers can be extracted from the normalized sum
and differences of the signals coming from the four
interferometers.14 These linear combinations need to be
weighted by the appropriate geometrical projectionsFig. 2d

X =
X2 − X1

2 sinu
, s2d

Y =
Y2 − Y1

2 sinu
, s3d

Z =
X1 + X2 + Y1 + Y2

4 cosu
. s4d

B. Interferometers

The design of our interferometers follows closely those
discussed in the literature,15,16 with attention given to the

FIG. 1. Schematic of the “Tribolever®” devicesad. The prototype chip
s10 mm38 mmd includes two force sensors, each with its own set of kine-
matic mounts. SEM micrographsbd of the sensor. The dimensions of the
legs of the sensor areL=350mm, t=1.4 mm andh=10.6mm.
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stability of the laser diode’s output intensity and
wavelength.17 One unique aspect of our design is that each
opposing pair of interferometers is driven by a single laser
diode so that the influence of fluctuations in laser intensity
and wavelength is greatly reduced, while the remaining
variations can be divided out by use of a reference signal. A
schematic of one such pairse.g., the X paird is seen in Fig. 3.

Light coming from the laser diode is first divided over
two branches using a bidirectional 232 fiber coupler. The
two branches are denoted with X1 and X2, respectively. A
second 232 coupler in each arm completes the interferom-
eter, by coupling out the backwards traveling reflected light
into the photodiode detector. The same coupler couples out

50% of the the primary light into the reference signal detec-
tor.

We see no evidence for optical coupling between the two
fiber pairs. Such coupling was not expected, as little diffuse
reflection occurs at the pyramid faces. As a result, we see no
change in one pair, even when the other pair is optically
disconnected. In order for the 125-mm-diam fibers to be po-
sitioned close the pyramid faces, they must be tapered to a
maximum end face diameter of 80mm.18 We have used both
sharpened fibers with cleaved end faces19 and fibers chemi-
cally etched using the liquid layer protection procedure.20

The latter method results in fiber tips with a cone angle that
can be varied from 8° to 41° depending on the protection
fluid.21 To create an end face the fiber tips were mechanically
polished. The former method results in slightly stronger in-
terference signalsspresumably due to the cleaved. The latter
method routinely produces end face diameters on the order
of 30 mm, which allows for more flexibility when position-
ing all four fibers.

C. Fiberhead

To position the four fibers with respect to the silicon
pyramid we constructed a special fiberheadssee Fig. 4d. The
fiberhead was machined by spark erosion from a single block
of low-thermal-expansion metalsInvard. The distance of the
end face of each fiber with respect to the pyramid face is
adjusted by miniature inertial piezomotorssNanomotors®22d,
that can either be driven in discrete steps over a maximum
distance of approximately 4 mm or be adjusted continuously
with sub-Å resolution over a range of 400 nm. The first
mode allows one to retract the glass fibers to a safe distance
during change of sensors, the latter is used to calibrate the
interferometer signals and to position the fibers at the dis-
tance of maximum sensitivity. Additionally the continuous

FIG. 2. Schematic showing two of the four glass fibers. If the pyramid
moves laterallysad, the distance X1 between the left glass fiber and the
pyramid increases and the distance X2 between the right glass fiber and the
pyramid decreases or vice versa. If the pyramid moves normal to the sample
surface, both distances either decrease or increase. This allows one to extract
the displacements of the pyramid in the X and Z directions. Similarly, from
the other fiber pair one obtains the displacements in the Y and Z directions.
The displacements are extracted from the distance changes, according to
Eqs.s2d–s4d.

FIG. 3. Components of one interferometer pair. The interferometer can be
divided into three distinct sections: the laser system, the fiber system and the
detection system. The laser system consists of the laser diode with integrated
Faraday isolator and the controlling power supplies. The fiber system con-
sists of couplers, connectors, adapters and the fiber itself. The detection
system consists of photodiodes and supporting electronics.

FIG. 4. Schematic drawing of the fiber positioning head cut open for illus-
tration.s1d Tribolever®,s2d Tribolever® support plate,s3d Nanomotor®,s4d
flexure hinge, ands5d adjustment screws.
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mode can be used to compensate possible drift between the
fibers and the pyramid due to thermal expansion of the mi-
croscopessee electronics sectiond. The Nanomotors® are
mounted in miniature flexure hinge springs, which are part of
the fiber head. These springs allow the adjustment of each
fiber axis in a plane parallel to the pyramid plane.

Different types of the Tribolever® can be clamped onto
an exchangeable plate by means of two stiff leaf springs. On
the backside of the cantilever plate, three small diameter
ruby spheres are cemented. A quadrahedral hole-groove-flat-
type kinematic mount is integrated into the silicon chip that
houses the Tribolever®.23 The ruby spheres rest within the
kinematic mount on each silicon chip. We have found that
this system of kinematic mounts works so well that only
little repositioning s,10 mmd of the fibers via the flexure
hinge springs is necessary between different cantilevers to
restore optimal signals.

The fiberhead is fixed into an invar plate that matches
the dimensions of the sample stage underneath. The com-
plete assembly of the microscope can be seen in Fig. 5. The
samplesrestricted to lateral dimensions of 10310 mm2d sits
on a scan tube,24 which rests inside a set of nested inertial
piezo motors that allow for four-dimensional motion of the
sample with respect to the tip: X, Y, Z and rotationsFd. The
Z and X-Y motors are similar to those discussed by Huget
al.25 The scanner is directly coupled to the Z coarse approach
motor. The Z motor is located in the center of an X-Y-F
motor, which allows for long range manipulation of sample
with respect to the tip. The rotation can be used to rotate the
lattice planes of a blunt tip and the sample with respect to
each other to measure variations in friction forces that are
introduced when the tip and sample lattices are brought in
and out of registry.26 The X-Y-F motor consists of a sapphire
disk of 100 mm diameter, which is clamped between three
pairs of piezo stacks using CuBe leaf springs. The rotational

motion of the X-Y-F motor is achieved by three shear pi-
ezos, which are arranged 120° rotated with respect to each
other. On each of these piezos a stack of shear piezos is
glued for the X-Y motion.

D. Electronics

The system electronics can be split into two main com-
ponents: data acquisition and sample motionssee Fig. 6d.

As discussed in Sec. II A, the signal coming from each
interferometer consists of a sinusoidal interference compo-
nent plus an offset, which is due to the difference in reflec-
tion amplitudes. In our detection electronics, we first subtract
a fraction of the reference signal and amplify only the inter-
ference component. The amplified signal is then divided by
the reference signal to reduce the effect of fluctuations in
laser diode intensity. The four resulting signals are then
added and subtracted according to Eq.s4d to produce the
three-dimensional Tribolever displacement information. All
signals are then used as input for an RHK SPM200 system
with added input capabilities so that the fully three-
dimensional motion of the tip can be monitored in real time.

A common problem in force microscope setups using
fiber optic interferometry is drift between the fiber end face
and the cantilever due to thermal expansion of the
microscope.27 Although we have used materials with low

FIG. 5. sad Perspective drawing of the microscope assembly.sbd Side view
with s1d fiber positioning head,s2d XY motor, s3d Z coarse approach motor,
s4d kinematic mount between the motor/sample stage and the fiber position-
ing head.

FIG. 6. Block diagram of the microscope’s electronicssshown again only
for the X paird. From the X1 and X2 signals coming from the interferometer
an adjustable fraction of the reference signal is subtracted before the first
amplification. The result is divided by the reference signal. This procedure
allows the maximum amplification of the signal while introducing the low-
est noise level. In the addition and subtraction electronics, the outputs from
the X1 and X2 dividers are combined according to Eqs.s2d–s4d in order to
obtain voltages that correspond to the true displacement of the TriboleversX
and Zd. These voltages are then fed into a commercial scan electronics
system, which acquires the measured data and controls the sample motion
sscanning and feedbackd.
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thermal expansion coefficients for the fiberhead components,
the fiber-pyramid distance drifts slowly due to temperature
variations in our nonclimatized laboratory. Using home-built
electronics we apply very slow voltage ramps to the Nano-
motors®, to keep the fiber-pyramid distance constant for sev-
eral hours.

E. Calibration

One of the extreme advantages of the Tribolever® is that
it allows easy, yet very precise calibration. We routinely cali-
brate each Tribolever® prior to its first use. By exciting the
Tribolever® acoustically with a loudspeaker, that is placed
close to the fiberhead, frequencies of the resonances in the X,
Y and Z directions can be measured. Soda lime glass beads28

with masses ranging from 1.57 to 9.01mg have been placed
on the central cross of the pyramid. By measuring the reso-
nance frequencies as a function of the added mass, extremely
accurate values of the Tribolever’s® lateral and vertical
spring constants have been determined.29 Figure 7 is an ex-
ample of one such calibration run. This calibration procedure
has no effect on the Tribolever® because the sphere is held
in place by gravity. Calibration of the lateralstorsionald
spring constant on traditional AFM cantilevers is more time
consuming, more complex and significantly less accurate.30

Measured lateral spring constants in this examplesFig.
7d are kX=s1.67±0.03d N/m and kY=s1.67±0.04d N/m.
These two spring constants are virtually identical and they
are close to the value of 1.4 N/m calculated from the dimen-
sions of the legs of the Tribolever® using finite element
analysis. The measured vertical spring constant for the Tri-
bolever® iskZ

Tribolever=s10.3±0.1d N/m as compared to the
calculated value of 25.8 N/m. The large deviation is due to
the additional flexibility of a thin diaphragms2 mm
32 mm310.6mmd that supports the Tribolever® on the
silicon chip. This diaphragm is the result of a wet etch step

that forms a wide, recessed window to allow room for the
detection fiber’s access to the pyramidsFig. 1d.

In the design of the Tribolever® device the geometry of
window was changed to overcome this problem.

We also used the resonance spectra of the Tribolever® to
estimate the noise levels of the optical detection and the elec-
tronics. With a spectrum analyzer, we measured the ther-
mally excited X and Y resonances of a Tribolever® with
lateral spring constants of 5.75 N/m. The amplitude of the
resonant motion can be calculated by the equipartition theo-
rem 1

2kxxrms
2 = 1

2kBT, wherexrms is the root mean square ther-
mal motion amplitude,kB is the Boltzmann constant andT is
the temperature. If the electronic instrument noise is much
smaller than the thermal motion of the sensor, the root mean
square voltage noiseVrms at the resonance frequency is given
by the relationaVrms=xrms=ÎkBT/kx.

31 a is a known calibra-
tion factor that relates the output voltage to the displacement
of the Tribolever®. We compared the measuredVrms with the
calculated value ofVrms at the thermal limit. We found that
the detected noise in the frequency range of the lateral reso-
nancess9.38 kHzd is a factor of 1.9sX1d–4.8 sY2d higher
than the thermal noise. In a FFM measurement, the noise
levels are certainly different. Typical signal frequencies are
lower sbelow 2−3 kHzd and the tip is in contact with a sur-
face. However, the measured noise levels provide a good
indication that the detection is operating close to the thermal
limit, which is confirmed by test measurements on a graphite
samplessee next sectiond.

The differences in the noise levels between X and Y
might be due to specific details of the interferometer
branchessespecially the quality of connectors and of the end
face of each fiberd. We assume that the signal to noise ratio
can be further improved by coating the fiber end faces with a
metal layer to increase the reflectance of the fiber/air inter-
face ssee Sec. II Bd.

III. EXPERIMENTAL RESULTS

For a first testing of the instrument and the complex data
acquisition we used a commercial AFM calibration sample
with a regular ripple structure of known dimensions.32 The
employed sample is a glass substrate that has parallel alu-
minium hills with a period of 278±1 nm and a height ex-
ceeding 30 nm. The tip was electrochemically etched from a
tungsten wire and glued into the Tribolever®. Figures
8sad–8scd show topography and friction images that were re-
corded simultaneously at a constant normal load of 0.85 nN.
The topography image shows the parallel hill-and-valley
structure of the calibration sample. The height of the hills is
33 nm. The friction force images show high frictional forces
on top of the aluminium stripes both in X and Y direction
plus an additional lateral force, where the tip ran against the
stripes. A plot of a scan line in the forward and in the back-
ward direction of image 8sbd shows a typical friction loop.
When the ridges are aligned perpendicular to the X direction,
the maximum friction force measured in the X direction is a
factor 200 higher than the maximum friction force that is
measured in the Y direction, which shows that the coupling
between X and Y directions is at most 0.5%.

FIG. 7. Calibration data for one Tribolever® using the added mass method.
Plots of the added mass vs frequency of the resonance peaksad for the X
direction,sbd for Y direction, andscd for Z direction.sdd Typical resonance
spectrum of the microscope and the Tribolever® without added mass in the
X direction ssolid lined and in the Y directionsdashed lined.
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As a second test sample we used a highly oriented py-
rolytic graphite sHOPGd surface. Figure 9 depicts lateral
force maps measured in the forward X direction and Y direc-
tion sa,bd and the topography mapscd of two graphite ter-
races separated by a 0.3-nm-high step. Because of the much
higher spring constant in the normal direction the topo-
graphic image shows less detail than the lateral force map.
As has been reported in several previous articlesse.g. Ref.
33d the lateral force at the step edge is enhanced when the tip
is moving step up and also step down.

Figure 10 shows friction forces measured in the X direc-
tion sopen circlesd and in the Y directionsopen squaresd on
an atomically flat graphite terrace as a function of the sliding
angle. To obtain the friction force in the sliding direction
sclosed circlesd the vector addition of the friction forces in
the X and the Y direction needs to be computed

FF = FX
F cosz + FY

F sinz, s5d

where z denotes the angle between the X direction of the
Tribolever and the sliding direction of the tip. Whereas the
measured friction force in the X and the Y direction varied
strongly with the sliding direction, the friction force in the
sliding direction stayed nearly constant as expected from a
Tomlinson model calculation. This demonstrates the capabil-
ity of the microscope to measure friction forces in any slid-
ing direction.

The three-dimensional force sensitivity at the atomic
scale is demonstrated in Fig. 11. Panelssad,sbd,sdd,sed show
forward and backward friction maps with the HOPG sample
in X and Y direction of a 3-nm33-nm-wide area. The mea-

surement was performed in a scan direction, which was not
aligned along either the X or the Y direction of the Tri-
bolever, and atomic scale variations in the friction force
could be observed in two directions. The friction loops show
a “sawtooth-like” signal for the X directionfFig. 11scdg and a
“square-wave”-like signal for the Y directionfFig. 11sfdg.
From these signals it can be deduced that the tip follows a
“zig-zag” trajectory on the graphite lattice.34 It is important

FIG. 8. Simultaneously measured topography and lateral force images of a
TDG01 calibration sample.sad Topographysfeedbackd image. The gray
scale corresponds to 39.8 nm,sbd lateral force image in the X direction. The
gray scale corresponds to 115 nN,scd lateral force image in the Y direction.
The gray scale corresponds to 258 nN,sdd friction loop formed by a forward
ssolidd and backwardsdashedd scan line measured in the X direction. The
image size is 1.5mm31.5 mm and the constant normal force isFN

=0.85 nN.

FIG. 9. Correlation between lateral force and topography images of a step
running across a HOPG sample.sad Lateral force image in the forward X
direction. sbd Lateral force image in the forward Y direction. The insets in
sad and sbd show line scans in the forwardsblackd and in the backward
direction sgrayd, as indicated by a line in both images. The lateral force at
the step is enhanced, both in the upward and the downward direction. Note
also that the force response of the step is different in the X and the Y
direction. The lateral force scale of the insets corresponds to 300 nN.scd
Simultaneously measured topography image,sdd line scan of the topography
image.

FIG. 10. Friction force on an atomically flat HOPG surface as function of
the sliding angle. The open circles denote the frictionFX

F measured in the X
direction of the Tribolever, the open squares the frictionFY

F in the Y direc-
tion. The closed circles show the frictionFF in the sliding direction calcu-
lated from these components, according to Eq.s5d. The dashed lines are a
sine and a cosine fit to the friction components in the X and the Y direction.
The dotted line shows calculated friction forces, obtained using a Tomlinson
model.
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to note that the lateral forces measured with our microscope
are much lower than in previous studiesse.g. Ref. 35d. From
the noise in the X and Y channels during the friction mea-
surements, we estimate that the lateral force resolutionsrmsd
in the measurement is 15 pN in the X direction and 41 pN in
the Y direction. The topography imagesnot shownd does not
show any structure, although the feedback system had been
set for constant normal force. This implies that the topogra-
phy and friction signals are completely decoupled.
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FIG. 11. Lateral force maps for a W tip on HOPG moving in the X direc-
tion. Lateral forces in the X directionsad forward scan. The gray scale
corresponds to 1.4 nN,sbd backward scan. Gray scale: 1.5 nN,scd friction
loop. Lateral force map in the perpendicular Y direction:sdd forward scan.
Gray scale: 222 pN,sed backward scan. Gray scale: 243 pN,sfd friction
loop. All images were measured simultaneously withFN=35.8 nN; image
size 3 nm33 nm.
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