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PHYSICAL REVIEW B, VOLUME 65, 174203

Dynamic effect of phase conjugation on wave localization

K. J. H. van Bemmel, M. Titov, and C. W. J. Beenakker
Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands
(Received 22 October 2001; published 26 April 2p02

We investigate what would happen to the time dependence of a pulse reflected by a disordered single-mode
waveguide if it is closed at one end, not by an ordinary mirror, but by a phase-conjugating mirror. We find that
the waveguide acts like a virtual cavity with resonance frequency equal to the working frequgmdythe
phase-conjugating mirror. The decay in time of the average power spectrum of the reflected pulse is delayed for
frequencies neab,. In the presence of localization the resonance widt iexp(—L/1), with L the length of
the waveguide| the mean free path, and the scattering time. Inside this frequency range the decay of the
average power spectrum is delayed up to timves expL/1).

DOI: 10.1103/PhysRevB.65.174203 PACS nuniber42.65.Hw, 42.25.Dd, 72.15.Rn

[. INTRODUCTION by a phase-conjugating mirror was developed by Paasschens
et al’® We summarize the basic equations for the case of a

The reflection of a wave pulse by a random medium prossingle propagating mode in the geometry shown in Fig. 1. A
vides insight into the dynamics of localizatibf* The re- single-mode waveguide is closed at one exd Q) by either
flected amplitude contains rapid fluctuations over a broag normal mirror or by a phase-conjugating mirror. Elastic
range of frequencies, with a slowly decaying envelope. Thecattering in the waveguide is due to random disorder in the
power spectruna(w,t) characterizes the decay in tim®f  region 0<x<L. For simplicity we consider a single polar-
the envelope at frequenay. In an infinitely long waveguide jzation, so that we can use a scalar wave equation.
(with N propagating modesthe signature of localizatioh® The phase-conjugating mirror consists of a four-wave

(a(w,t))t2 for t=Nr, (1)  mixing cgll:12'13Tw9 counterpropagating beams at frequency

wo Mix with an incident beam at frequenay + o to yield a
PBtroreflected beam at frequeney— » (for w<wg). The
mixing is due to the presence in the cell of a medium with a
large third-order nonlinear susceptibilitye.g., BaTiQ or

is a quadratic decay of the disorder-averaged power spectru
(a), which sets in afteN? scattering times.

The decayl) still holds over a broad range of times if the
lengthL of the waveguide is finite, but much greater than theCSZ)
localization lengthé=(N+ 1)l (with |=crg the mean free F(;r x>L the wave amplitude at frequencies. —
path. What changes is that for exponentially large times o . . P | d @8 = @o
>rexpl/l) the quadratic decay becomes more rapid— ¢ IS an incoming or outgoing plane wave,
xcex g—constxlnzt). This is the celebrated log-normal
tail.”~! We may assume that the finite length of the wave- uT(F,t)zRed;iﬂexp[—ik+(x—L)—iw+t]</;+(y,z),
guide is realized by terminating one end by a perfectly re- - - - o (23
flecting mirror, so that the total reflected power is unchanged.

In this paper we ask the question what happens if instead -
of such a normal mirror one would use a phase-conjugating  u%'(r,t)=Re ¢ exfik. (Xx— L) —iw.t].(y,2).
mirror!213 The interplay of multiple scattering by disorder (2b)
and optical phase conjugation is a rich problem even in the
static casé? 1®Here we show that the dynamical aspects areHere k. =ko* w/c is the wave number at frequeney. ,
particularly striking. Basically, the disordered waveguide iswith k, the wave number ab, and c=dw/dk the group
turned into a virtual cavity with a resonance frequengyset  velocity. The transverse wave profife. (y,z) is normalized
by the phase-conjugating mirror. such that the wave carries unit flux.

We present a detailed analytical and numerical calculation The reflection matrix relates the incoming and outgoing
for the single-mode caseNE=1). For timest> 75 we find ~ wave amplitudes, according to
thata(w,t) has decayed almost completely except in a nar-

row frequency range rs_lexp(—L/I) aroundwg. In this fre- o O

quency range the decay is delayed up to times o o

=rsexplL/l), after which a log-normal decay sets in. The

exponentially large difference in time scales for the decay jo o o 00

nearw, and away fromwg is a signature of localization.

Il. FORMULATION OF THE PROBLEM x=0 x=L

FIG. 1. The geometry under investigation consists of a single-
mode waveguide with a mirror &&= 0. It can be a normal mirror or

A scattering matrix formulation of the problem of com- a phase-conjugating mirror. There are randomly positioned ob-
bined elastic scattering by disorder and inelastic scatteringtacles betweer=0 andx=L.

A. Scattering theory

0163-1829/2002/68.7)/1742036)/$20.00 65174203-1 ©2002 The American Physical Society
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¢+ out r r,_ ¢+ in e CX:d(l) Ciw
(¢* e ) e ] 3 Uout)=Ree otjo SAlN (@)1 (@)]e
_ . +r* _(0)+r* , (w)]e'“}. (11
The reflection coefficients are complex numbers that depend
on w. They satisfy the symmetry relations (We have suppressed the transverse coordingtefor sim-
. . plicity of notation) Using the symmetry relationd), we can
r (w)=ry (o), ri (o)=r,_(—o). (4) rewrite this as
If there is only reflection at the mirror and no disorder, then q
H . * w .
one has Slmply uout(t): Ree*letJA_ E[r++(w)+r+_(w)]e7""t.
My Tao —e?lkt 0 (12
re, r__|= 0 —e 2k-L ) _
The time correlator of the reflected wave becomes
for a normal mirror and Ugud D Ugudt+17)
Fey To_ 0 —jeditelc T dwfx de’  , .,
—1 g - _ Ao —o)thie’t
( ., r) :< jg2iLule 0 (6) 2Ree™ | o) ox ¢ €

X + * ’ + * ’
for a phase-conjugating mirror operating in the regime of [re (@)t (@i (e)Fri(o)], (13

ifdﬁal retroreflection(We will assume this regime in what plus terms that oscillate on a time scalesd/We make the
ollows.) rotating wave approximation and neglect these rapidly oscil-

We wish to determine how the reflection coefficients ar€jating terms. The power spectruanof the reflected wave is
modified by the elastic scattering by the disorder. For this Weyhtained by a Fourier transform

need the elastic scattering matrix

rot a(w,t)=f dt’cos (wg+ )t Jugu ) Ugu(t+1")
S:(t r’) ) -
_ = déw —idwt
The reflection coefficients,r’ and transmission coefficients - Rej_mﬁe a(w,dw), (14)

t,t’ describe reflection and transmission from the left or from

the right of a segment of a disordered waveguide of lehgth where we have introduced the correlator in the frequency
The matrix S is unitary and symmetrichencet=t’). The  domain

basis forSis chosen such that=r'=0, t(+ w)=e*:! in

the absence of disorder. The relationship between the coeffi- a(w,dw)=3[r, ,(w+dw)+r, (w+dw)][r* (w)

cients in Eqs(3) and(7) is™®

+r*_(w)]. (15
r(0)=r'(o)tt(o)[1-r* (o) (o)] (- o)t(o),
(83 Integration of the power spectrum over time yields, using
also Eq.(10),
M (0)=—it(o)[1-r*(—o)r(e)] 't* (- o), (8
for a phase-conjugating mirror. For a normal mirror there is foo dt a(w,t)=Rea(w, Sw=0)
no mixing of frequencies and one has simply — ' '
r(w)=r"(0)—t(o)[1+r(o)] (o), (93 =it+zRer, _(o)ri,(w). (16
r. (w)=0. (9b) For a normal mirrom . _(»)=0 anda(w,5w=0)=1%, ex-

pressing flux conservation. For the phase-conjugating mirror
In each case the matrix of reflection coefficients is unitary, sdhere is inelastic scattering, which mixes the frequency com-
ponentsw and — w. The constraint of flux conservation then
Irc(w)|?+]|r._(0)|?=1. (10)  takes the form

B. Power spectrum a(w,d0=0)+a(-w,s0=0)=3. (17)

We assume that a pulses(t) is incident atx=L [corre-  This follows from the symmetry relatior@) and the unitar-
sponding tog'? =1 for all ® in Eq. (2)]. The reflected wave ity of the reflection matrix. Equatiofl7) implies thata(w
atx=L has amplitude =0,6w=0)=7.

174203-2
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IIl. RANDOM SCATTERERS 0.25 T T T
We assume weak disorder, meaning that the mean frec 02 7]
pathl is much larger than the wavelengthrik,. The mul- ¢ 5| i
tiple scattering by disorder localizes the wave with localiza-
tion length equal to R We consider separately the case of a S 7]
phase-conjugating mirror and of a normal mirror. 0.05 |- _
0 1 1 1
A. Phase-conjugating mirror 25 20 -15 -10 - 225 220 -15 10 -
We first concentrate on the degenerate regime of smal n(radw) In(rsdw)
frequency shiftw and will simplify the expressions by put- 025 oage, T 1 0.1 T T
ting =0 from the start. We note that, ,(0)=0, r,_(0) 02k %\ - 010%0
=—1i, as follows from Eq(8) and unitarity of the scattering Q ; o
matrix (7). Using Egs.(8) and (15), we arrive at the power < %8 8 12 oesl @.’é 3
spectrum in the frequency domain £ o1l Q 4 E OQ/ o
o <) o)
i 0.05 | ‘Q% . o
a(0,5w)=Z{I”(&o)-ﬁ-[l—r*(—5w)l’(5w)]_1 0 ] ] | _©n 0 e ] 1
6 4 2 0 2 6 4 2 0 2
In{750w) In(75éw)

X[t2(Sw)r* (— dw)—it(Sw)t* (— dw)]}.
FIG. 2. Average power spectrum for reflection by a disordered

(18)
. . .. waveguide [/1=12.3) connected to a phase-conjugating mirror
The scattering amplitudes have the polar decomposition [gqjig curves, from Eq(21)] or a normal mirror[dashed curves,

=JRexp(6), r'=\Rexp(#), and t=iJ1—Rex{dii(f from Eq.(28)]. The data points follow from a numerical simulation.
+6"], with R, 0,0’ real functions of frequency. The phase There is no adjustable parameter in the comparison. Notice the
6" may be assumed to be statistically independeniRof much faster frequency dependence for the phase-conjugating mirror
(*+ dw), 0(* dw), and uniformly distributed in (02). (This (top panely compared to the normal mirrgbottom panels

is the Wigner conjecture, proven for chaotic scattering in
Ref. 17) In this way only the last term in Eq18) survives
the disorder average - - ),

(a(0,60))=3%+ i rs6w exp2L/1) — & 2 Swexp(6L/1)
+0(sw?). (22

t(Sw)t* (— dw)
1-r*(=Sw)r(dw)

defined Z,=(t(dw)t* (— dw)

The result(21) is plotted in Fig. 2 forL/1=12.3. We
compare with the data from a numerical solution of the wave
equation on a two-dimensional lattice, using the method of
recursive Green functiorfS. (The method of simulation is
the same as in Ref. 15, and we refer to that paper for a more

> > Zn, (19

m=0

4<a(0,5w)>=<

where we have
X[r* (= Sw)r(dw)]™.

The 8Tg§) ments Z, satisfy the Berezinskii recursion detailed description. The agreement with the analytical
relatiort L . .
curves is quite good, without any adjustable parameter. The
dz,, Sdw dependence ofa(0,6w)) for large L/l occurs on an

exponentially small scale, within the range of validity of Eq.
(21).
A Fourier transform of Eq(21) yields the average power

(20)
_ ) ) spectrum in the time domain for liit)>L/I>1, with the
with 7s=I/c the scattering time(The mean free pathac-  agylt

counts only for backscattering, so that the scattering time in
a kinetic equation would equalr.) The initial condition is
Zn(L=0)=6n0. In Appendix A we derive an analytical re-
sult for (a(0,6w)) in the small frequency range In(ifw)
=L/I>1. It reads

I =M (Zms 1+ Zin-17 2Z) + (2M+ 1) (Zis 1~ Zin)

+2its0w(2m+1)Z,,,

(a(0t))y=g AL/~ ¥exp —L/al)7g Y412

X In(4t/ mo)exd — (1/4L)In2(4t/79)].  (23)

The leading logarithmic asymptote of the decay is log-
o normal, = exg —(I/4L)Int], characteristic of anomalously lo-
dkik( — 2i 70w)k~ 122~ 3ik=1/2 calized state$

* These results are calculated =0 and remain valid as
long asw<< rs‘lexp(—L/I). This can be checked by perform-
ing a Taylor expansion i of Eq. (8), using the polar de-
composition forr,r’,t. We still haver,,(w)~0 and
r,_(ow)=—i aslong asw df/dw<1—R. In order of mag-
The initial decay is determined by the contributions of thenitude this corresponds te,w<<exp(—L/l). This is the de-

poles atk=—13%i, —3i, —3i, generate regime. Forsw>exp(—L/l) the power spectrum

(a(050)) =1 |

XT3 +ik)T (3 —ik)T L 1+ik)[ (k)

xexd — (3 +k?)L/I]. (21

174203-3
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a(w,dw) is dominated by the term’(w+ dw)r'*(w). The  sult (28) is plotted in Fig. 2 and is seen to agree well with
decay of(a(w,dw)) then occurs in the rangedw=<1. The data from the numerical simulation.

same is true for the normal mirror, which we consider in the For In({t/7)<L/I (andL/I>1) one can perform the Fourier
next subsection. The presence of the mirror is now only otransform of Eq.(28) to get the average power spectrum in
importance for very smalbw [In(1/76w)=L/1>1], when  the time domain

a(w,dw)~3. For r;w>1 the average power spectrum

(a(w,dw)) in the range In(F;dw)>L/l is the same as that

for a normal mirror, leading to exactly the same log-normal (a(w,t)y=%rt+27) 72 t>0. (29)
decay in the time domain. This is proven in Appendix B.

B. Normal mirror It decays quadraticallyt ~2 for t/7s>1. For exponentially
long timest> r.exp(/l), one should instead perform the

For comparison we discuss the known results for a disor—"_ 2. ! :
dered waveguide connected to a normal mirror instead of ourier transform of Eq(26). One finds that the quadratic
ecay crosses over to a log-normal decayexp

E)f;se-conjugatmg mirror. Sinee. =0, one has from Eq. [ - (1/4L)In%],” the same as for the phase-conjugating mirror.

Ha(w,0w))y=(r, (o+d)rs (w)=Ry. (29
IV. CONCLUSION
The quantitiesR,=([r; ; (o+ dw)ri  (w)]™) satisfy the
Berezinskii recursion relatidf® We have shown that the interplay of phase conjugation
and multiple scattering by disorder leads to a drastic slowing
dR, ) i down of the decay in time of the average power spectrum
Id—L=m (Rmt1t Rn—1—2Rp) +2i 7s60mRy,. (29 (a(w,t)) of frequency components of a reflected pulse.
The slowing down exists in a narrow frequency range around
The initial condition isR,(L=0)=1 for all m. The solution  the characteristic frequeney, of the phase-conjugating mir-
for In(1/7s8w) = L/I is knowrf* and gives the average power ror (degenerate regimelf w is outside this frequency range

spectrum (nondegenerate regimehe power spectrum decays as rap-
idly as for a normal mirror.
A(w.00)) = V= 2i 7edw| Ki[2—2i 7.0 The slowing down can be interpreted in terms of a long-
(a(w,00))=2 Ts w( il msow] lived resonance abg, which is induced in the random me-

dium by the phase-conjugating mirror. This resonance is
I EJ“ dk ksinh( k) (2 +k2) 1 known from investigations of the static scattering
T —w 4 properties® The resonance is exponentially narrow,
ocrs’lexp(— L/, in the presence of localizatiomwith 74 the
) o s - (12 scattering timeL the length of the disordered region, and
*Kal 2= 2irdwlexd — G+, the mean free pathThe resonance leads to the exponentially
26) large differences in time scales for the decay of the power
spectrum in the degenerate regime and the nondegenerate
with K a Bessel function|The result(26) does not require regime.

L/I>1, in contrast to Eq(21).] The initial decay is domi- We have restricted the calculation in this paper to the case
nated by the contributions of the poleslkat —3i, —3i, of a single propagating mode, when a complete analytical
—3i, theory could be provided. We expect that tlienode case is

qualitatively similar: An exponentially large difference in

(a(w,00))=3%+3irdwlll — 72 80exp2L/1)+ O(dw).  time scaleszexp(L/é) for the decay in the degenerate and
nondegenerate regimes provided the medium is localike

(27 d i ided th dium is locaiked

) _ large compared to the localization lengfl=(N+1)I]. In
Comparison of Eqs26) and(27) with Egs.(21) and(22)  the diffusive regime we expe¢a(w,t)) to decay on the time
shows that the decay is much slower for a normal mirror thany-51e of the diffusion timer(L/1)2. The difference with the
for a phase-conjugating mirror. The characteristic frequenc)hondegenerate regimfer a normal mirroy is then a factor
s:cfale is larger .by a factor exp(®). So Eq.(26) is not suf- (L/)? instead of exponentially large.
ficient to describe the entire decay (@f(w, d)), which oc- In final analysis we see that phase conjugation greatly
curs in the rangersw=1. The decay in this range is ob- magnifies the difference in the dynamics with and without
tained by putting the left-hand side of H@5) equal to zero,  |ocajization. Indeed, if there is no phase-conjugating mirror
leading tG* the mainzdifference is a decayt‘wéin the diffusive regime
T . . versust™ < in the localized regimé,but the characteristic
(a(w,60)) =3 = 317500 exp( -~ 2i 7500)Ei(2i 755“’)'(28) time scale remains the sanget by the scattering time.).
We therefore suggest that phase conjugation might be a
where Ei is the exponential integral function. The range ofpromising tool in the ongoing experimental search for dy-
validity of Eq. (28) is In(1/rs6w)<L/l andL/I>1. The re- namical features of localizatior:**

174203-4
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APPENDIX A: POWER SPECTRUM IN THE FREQUENCY
DOMAIN

We show how to arrive at the resuitl) starting from the
recursion relatiori20). We assume In(ftdw)=L/I>1. Itis
convenient to work with the Laplace transform

edL
Zm()\)=f I—exp(—)\L/I)Zm(L) (A1)
0
of the momentsZ,,,. The recursion relatioi20) transforms
into

AZp(N) = 8 o= M Zis1(N) + Zi—1(N) = 2Z(N)]
+(2m+1)[Z 1 (M) —Zn(V)]

—=B(2m+1)Z,(N), (A2)

with B= —2ir5dw.
For small| 8| and largem this equation can be written as
a differential equation

,°Z(m,\) dZ(m,\)
——+2m———(\+2B8m)Z(m,\)=0,

m amz Jm
(A3)

PHYSICAL REVIEW B5 174203

The factorC(\,B) is determined by matching to the solution
of Eqg. (A2) for Bm—0, m—c, which has been calculated
in Ref. 25. The result is

CN,B)=4mBY (2 +1J1+4)N)
XT ™Y1+ 1V1+a0T (51 +4N)
X exd 3 V1+4NIn(B/18)].

To obtain the power spectruiii9) we replace the sum
over m by an integration, with the result

(A5)

o0

2 Zy(\)=2"2mpT V(G 4+ 314N

XT(3—-3J1+40T 11
+3VIHANT (3 V1+4N)

xexfd 3V1+4NIn(B/8)]. (A6)

There are poles at=n(n+1), n=0,1,2 ..., and aranch

cut starting ath\ =—1/4. When doing the inverse Laplace
transform we put the integration path in between the poles
and the branch cut. The final result is given by E21). The

wherem is now considered to be a continuous variable. Thg’€ason that we need the conditiahl>1 is that Eqs(A4)

solution of Eq.(A3) is
Z(m,\)=C(\,B)(BM) YK rrax(2V28m).

(A4)

and (A5) are only correct fom>1. The first terms in the
sumX, _,Zn, are important fol./I <1, but can be neglected
for L/I>1.

APPENDIX B: EQUIVALENCE OF NORMAL AND PHASE-CONJUGATING MIRROR IN THE
NONDEGENERATE REGIME

We show that the average power spectratw, Sw)) in the range In(I#;dw)>L/l is the same for a normal mirror and a

phase-conjugating mirror in the regimgw>1.

First we consider the normal mirror. One can wig€ w, dw)) in terms ofR, 8,6’ using the polar decomposition and Egs.

(9) and(15). Only two terms survive the average owgr

da(w,0w))y=(r"(w+ dw)r'*(w))+

< t?(w+ dw)t?* (o) (B1)

[1+r(w+ 5w)][l+r*(w)]> '

The first term is also present for the phase-conjugating mirror, so we only need to consider the second term. This term can be

written as

n,m

t>(w+ dw)t?* (w)
[1+r(w+dw)][1+1*(w)]

where we have averaged ovelin the last step.

> (tA(0+ 80)t?* ()"0 + d0)r™ (w)),

D (— )" (w+ )t ()N (w+ dw)r™ (w))

(B2)

Now we consider the phase-conjugating mirror in the regige>1. In that regime the phasf w) is independent of the
phasefd(— w). The power spectruma(w,w) can again be written in terms &, 6,0’ [Egs.(8) and(15)]. Only three terms

survive the average oveé( + w), 6’ (w),

174203-5
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2 *(— — 2% _
4<a(w,5w)>:<r'(w+5w)r’*(w)>+< twt d0)r* (o= Su)t™ (0)f (~ w) >

[1-r*(—w—dw)f(w+ o) ][1-r(—w)r*(w)]

+< t(w+ dw)t* (—w—do)t* (0)t(— o) > B3

[1-r*(—w—do)r(w+dw)][1-T(—w)r*(w)]

The first term is also present for the normal mirror. Fgv>1, t(w) is independent of( — w). The second term is then much

larger than the third term because of the large fluctuations in the localized relgirig.(The second term can also be written
as

t?(w+ Sw)r* (—w— w)t?* (w)r(— )
[1-r*(—o—dw)r(w+dw)][1-T(—w)r*(w)]

= (tA(w+ 80)t?* (0)"(0+ 60)r™ ()™ (- w) " (- w—dw))

= (tAw+ 8)t?* (@) 0+ o)™ () )" (= )" * (— w— dw)). (B4)

Comparison with Eq(B2) for a normal mirror shows that the two expressions are the same as long as we can replace
(r"* (= w)r"**(—w—Sdw)) by 1 for the relevant terms in the summation overlt is now convenient to write"(w

+ 8w)r™ (w)=R"(w)[1—-C(w,dw)]". The average over (w),r (w+ dw),t(w),t(w+ dw)} is dominated by configurations

where the transmittancBis large. For smalbw this corresponds to configurations where B(w) and|C(w, dw)| are much

larger than typical values of these quantities. For these dominating configurations the number of relevant terms in the
summation oven is relatively small and for these relatively smallve can replacér"™}(— w)r"** (— v — dw)) by 1. We
therefore conclude that for smailw, the average power spectry@a(w, dw)) is the same as for a normal mirror. The above

argument breaks down {f""}(— w)r""* (— w— dw)) starts to deviate from 1 for the relevant terms in the summation. This
is the case for In(H,6w)=<L/I.
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