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We propose to create and detect optomechanical entanglement by storing one component of an entangled
state of light in a mechanical resonator and then retrieving it. Using micro-macro entanglement of light as
recently demonstrated experimentally, one can then create optomechanical entangled states where the
components of the superposition are macroscopically different. We apply this general approach to two-
mode squeezed states where one mode has undergone a large displacement. Based on an analysis of the
relevant experimental imperfections, the scheme appears feasible with current technology.
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Vigorous efforts are currently being undertaken to bring
quantum effects such as superposition and entanglement to
the macroscopic level [1–9]. One prominent goal in this
context is the creation of entanglement between a micro-
scopic and a macroscopic system [2–9], following
Schrödinger’s famous thought experiment that involved a
decaying nucleus and a cat [10]. In optomechanical systems
the quantum regime has recently been reached [11–14],
but optomechanical entanglement has not yet been dem-
onstrated. In a certain sense any entanglement of an
optomechanical system can be seen as micro-macro entan-
glement, because the mechanical system always involves
billions of atoms. However, for many proposals [15–17] the
different components of the entangled state only differ by
(of order) a single phonon.
Here we show how to create optomechanical micro-

macro entanglement in a stronger sense by combining two
key ideas. First, we propose a convenient method for both
creating and detecting optomechanical entanglement, based
on mapping one component of an entangled state of light
onto the mechanical resonator and then retrieving it
[18,19]. Demonstrating entanglement for the retrieved light
then demonstrates the existence of optomechanical entan-
glement in the intermediate state. Second, we show that this
approach makes it possible to create optomechanical “cat
states” where there is a macroscopic difference for a
physical observable between the different components of
the superposition, based on recent work demonstrating
micro-macro entanglement of light [3–6]. The physical
observable in our case is the variance of the phonon
number. Our proposal is thus different from Ref. [20],
which aim to create superposition states of mechanical
systems with a large separation in position.
We propose to first create purely optical micro-macro

entanglement by amplification of one component of an

initial microscopic entangled state [3–8], and to then
convert the photons in the amplified component into
phonons. The entanglement can be verified by reconverting
the phonons into photons and using the deamplification
and detection techniques of Refs. [3–6]. Deamplification is
advantageous in practice compared to trying to verify
micro-macro entanglement by direct detection, which
requires extremely high measurement precision [21].
The general approach described above can be applied to

different micro-macro entangled states [3–8]. We illustrate
it by introducing two-mode squeezed states where one
mode has undergone a large displacement. We propose to
use displacement as the amplification process because it
creates states that are comparatively robust under photon
loss [3,4,6]. Displaced two-mode squeezed states further-
more have the interesting property that the degree of
entanglement and the degree of macroscopicity can be
varied almost independently by choosing the amount of
squeezing and the size of the displacement. Moreover,
these states are Gaussian, making it possible to quantify
their entanglement exactly even in the presence of imper-
fections. See the Supplemental Material [22]for the appli-
cation of our approach to displaced single-photon
entanglement [3,4,6].
We start by creating a two-mode squeezed state jψ0i ¼ffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2

p P∞
n¼0 t

njniAjniC with t ¼ tanhðrÞ where r is the
squeezing strength. For moderate r only the first few terms
contribute significantly. For example, for r ¼ 0.5 (or
4.3 dB of squeezing) the probabilities for the first terms
are p00 ¼ 0.786, p11 ¼ 0.168, p22 ¼ 0.036, and the total
weight of the remaining terms is only 0.001. We denote the
optical modes A and C, reserving the label B for the
mechanical oscillator. We apply the displacement operator
DðαÞ ¼ eαa

†−α�a in mode A, generating the state
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jψDi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2

p X∞
n¼0

tnðDðαÞjniÞAjniC. (1)

The displacement can be implemented by interference with
a strong coherent beam [3,4,6,23,24], see Fig. 1. A
displaced Fock stateDðαÞjni has a photon number variance
ð2nþ 1Þjαj2. For moderate r and large α the state (1) is thus
a superposition of a small number of relevant components
that have macroscopically distinct photon number varian-
ces. Increasing the displacement α increases the macro-
scopicity of the superposition. On the other hand,
increasing the squeezing parameter r increases the entan-
glement of the state, in particular the number of compo-
nents that contribute significantly. Here we focus on the
moderate squeezing regime with only a few components,
which is also the easiest regime to achieve experimentally.
The displaced mode A of the two-mode squeezed state is

now fed into a cavity and stored onto the mechanical mode
B using the optomechanical coupling between the cavity
field and the mechanical mode [18,19], see Fig. 1. The
basic optomechanical Hamiltonian is H ¼ ℏΔa†aþ
ℏωmb†bþ ℏg0a†aðbþ b†Þ, where Δ ¼ ωc − ωL is the
detuning between the cavity resonance and the frequency
of the control beam (see below), a is the annihilation
operator for the cavity mode, ωm is the mechanical

resonance frequency, b is the mechanical mode annihilation
operator, g0 is the bare optomechanical coupling, and the
Hamiltonian is written in the rotating frame with respect to
the frequency of the control beam. If the control beam is red
detuned by ωm with respect to the cavity resonance (and if
ωm ≫ κ, the resolved-sideband regime), one obtains the
effective beam splitter Hamiltonian Heff ¼ gða†bþ ab†Þ,
where g is proportional to g0 and to the amplitude of the
control beam [13,25]. The resulting equations of motion are

a
: ¼ −κa − igbþ ffiffiffiffiffi

2κ
p

ain and b
:
¼ −iga. The input-output

relation for the cavity is aout ¼ −ain þ
ffiffiffiffiffi
2κ

p
a. We consider

the situation where the cavity decay rate κ ≫ g (and it is
also much greater than the bandwidth of the input light).
One can then adiabatically eliminate the cavity mode
[25,26], aðtÞ ¼ ð1=κÞð−igbþ ffiffiffiffiffi

2κ
p

ainÞ. This gives the

equation of motion b
:
¼ −Gb − i

ffiffiffiffiffiffi
2G

p
ain with G ¼ g2=κ,

and the input-output relation aout ¼ ain − i
ffiffiffiffiffiffi
2G

p
b. The

solution is bðtÞ ¼ −i ffiffiffiffiffiffi
2G

p
e−Gt

R
t
0 e

Gt0ainðt0Þdt0 þ e−Gtbð0Þ
for the mechanical mode and aoutðtÞ ¼ −i ffiffiffiffiffiffi

2G
p

e−Gtbð0Þ þ
ainðtÞ − 2Ge−Gt

R
t
0 e

Gt0ainðt0Þdt0 for the output field.
Both storage and retrieval can be implemented by

applying a constant coupling strength G for a time duration
τ (each). Using techniques similar to those of Ref. [25] one
can then show that

Aout ¼ −ð1 − y2ÞðAin þ αÞ − iy
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

q
Bin þ yδA; (2)

see also the Supplemental Material [22]. Here Aout is the
optical output mode after storage and retrieval (but before
the eventual displacement back to the microscopic level),
y ¼ e−Gτ, Ain is the optical input mode, Bin is the initial
state of the mechanical oscillator, and δA is an optical noise
mode that is in the vacuum state. One can see that the
overall storage and retrieval efficiency is ð1 − y2Þ2 (in
terms of photon number). This is very similar to the
expressions obtained for the efficiency in other types of
quantum memories [27].
The displaced two-mode squeezed state is Gaussian. Its

entanglement can therefore be quantified via the logarith-
mic negativity [28]. Expressing Eq. (2) in terms of
quadratures one has Xout

A ¼ −ð1 − y2ÞðXin
A þ ffiffiffi

2
p

αÞ þ
y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p
Pin
B þ yδXA and Pout

A ¼ −ð1 − y2ÞPin
A−

y
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p
Xin
B þ yδPA, where Xout

A , Pout
A , XB, PB, δXA,

δPA are the quadrature operators corresponding to Aout,
respectively. It is then straightforward to determine the
covariance matrix for the output modes and calculate the
logarithmic negativity, see also the Supplemental Material
[22]. Note that in this calculation the covariance matrix
does not depend on the displacement, since α is fixed and
mean values are subtracted in the definition of V. This
changes, however, in the presence of phase noise, see
below. Figure 2 shows the entanglement in the final state as

SPDC

homodyne
detection

homodyne
detection

displacement
field

undisplacement field

m

inA

outA

l c m

C

B

FIG. 1 (color online). Proposed setup. The spontaneous para-
metric down-conversion source (SPDC) creates a (microscopic)
two-mode squeezed state. One mode is directly detected by
homodyne detection. The other mode is displaced by a macro-
scopic amount through the interference with a strong displace-
ment field and then stored onto a mechanical oscillator using an
optomechanical cavity and a strong red-detuned control beam.
This creates optomechanical micro-macro entanglement. The
state of the mechanical system can subsequently be reconverted
into light. The entanglement is detected by first displacing the
mode back to the microscopic level, followed by homodyne
detection.
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a function of y. One can see that there is a threshold for y
above which the entanglement becomes exactly zero. The
value of this threshold depends on the initial phonon
numberNin ¼ hððXin

B Þ2 þ ðPin
B Þ2 − 1Þ=2i of the mechanical

oscillator. Precooling the mechanical oscillator close to the
ground state is helpful for entanglement detection, but not
strictly necessary. Note that the red-detuned control beam
that is applied in the present protocol has a cooling effect
[14]. Figure 2 includes the effects of several other imper-
fections, namely phase noise, mechanical decoherence, in-
and out-coupling loss, and loss on the micro side. We now
discuss these effects in more detail.
Phase noise can be modeled through the transformation

Aout → eiϕAout, with a random phase ϕ with distribution
pðϕÞ. Let us assume that pðϕÞ is symmetric around ϕ ¼ 0
and has a standard deviation σ, where σ ≪ 1. The only term
contributing to the covariance matrix that is significantly
affected by the phase noise is hðPout

A Þ2i, which gets an
additional term 2jαj2ð1 − y2Þ2σ2. All other matrix elements
only receive Oðσ2Þ corrections (without the enhancement
by the large jαj2 factor). However, this change in hðPout

A Þ2i,
which is not undone by the final displacement back to the
microscopic level, has a significant effect on the entangle-
ment, see Fig. 3. Phase noise limits the size of the
displacement for which entanglement can be shown.
This increasing sensitivity to phase noise for increasing
displacement provides further evidence (in addition to the
above argument based on the photon or phonon number
variances of the displaced Fock states) that the displaced
two-mode squeezed state is indeed a macroscopic super-
position state, see also Refs. [3,4,6,29,30]. Reference [3]
achieved very large displacements (ND > 108) by using the

same spatial mode (but orthogonal polarization modes) for
the signal and displacement beam, leading to very high
stability. This may be more challenging in the optome-
chanical context. In our examples we have picked σ values
more comparable to Ref. [4], where the signal and
displacement beam were in separate spatial modes.
We will now take into account the mechanical damping

and associated noise. The equation of motion for b is

now b
:
¼ −γb − igaþ ffiffiffiffiffi

2γ
p

bin, leading to b
:
¼ −G0b −

i
ffiffiffiffiffiffi
2G

p
ain þ

ffiffiffiffiffi
2γ

p
bin after adiabatic elimination of the cavity

mode. Here G0 ¼ Gþ γ. Using techniques similar to
Ref. [25], but keeping all orders of γ, one can show that
this equation together with the input-output relation for the
cavity leads to the following modified equation for the
optical output mode after storage and retrieval:

Aout ¼ − 1 − y2

1þ x
Ain − i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

1þ x

s
yBin þ f1δAþ f2δB;

where we have introduced the notation x ¼ γ=G, and Ain is
defined analogously to before, but using G0 instead of G.
The modes δA and δB correspond to the optical and
mechanical noise, respectively, where the former is in
the vacuum state, and the latter is in a thermal state at
the temperature of the mechanical bath with a mean phonon
number Nth. The expressions for the coefficients f1 and f2,
as well as more details on the calculation, are given in the
Supplemental Material [22]. Figure 4 shows the effect of
the mechanical noise on the entanglement in the final state;
x has to be below a certain threshold in order for
entanglement to be present, where the value of the thresh-
old depends onNth. For the parameters of Fig. 4 one has the
condition Nthx ¼ Nthγ=G≲ 0.2; Nthγ can be interpreted as
the effective mechanical decoherence rate.
Another important imperfection is photon loss, including

coupling losses for the optomechanical cavity and detection
inefficiency. These effects are discussed in the

Nin 1
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FIG. 2 (color online). Entanglement in the final state as a
function of the optomechanical coupling parameter y ¼ e−Gτ, for
different values of the initial mechanical phonon number Nin. In
all cases y has to be below a certain threshold value for
entanglement to be observable, where the value of the threshold
depends on Nin. The figure also includes the effect of other
imperfections; the relevant parameter values are x ¼ γ=G ¼ 0.01
and Nth ¼ 10 (mechanical noise), η1 ¼ η2 ¼ ηc ¼ 0.8 (losses),
σ ¼ 0.01 (phase noise); see the text for more discussion. The
photon (or phonon) number corresponding to the displacement is
ND ¼ jαj2 ¼ 5000, and the squeezing parameter is r ¼ 0.5.
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FIG. 3 (color online). Entanglement in the final state as a
function of the displaced photon (or phonon) number ND ¼ jαj2,
for different values of the phase noise standard deviation σ. Phase
noise limits the size of the displacement for which entanglement
can be shown. Here y ¼ 0.1, Nin ¼ 1, and the other parameters
are the same as in Fig. 2.
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Supplemental Material [22]. Most importantly, Fig. 2 of the
Supplemental Material [22] shows that the cavity in-
coupling efficiency has to be above a certain threshold
value (of order 0.4 for our choice of parameters) in order to
be able to demonstrate entanglement.
We propose an implementation based on the integrated

optical and mechanical nanoscale resonator of Ref. [14]
and the narrow band cavity-enhanced parametric down-
conversion source of Ref. [31]. Taking ωm ¼ 2π× 3.7 GHz,
κ ¼ 2π × 500 MHz, and γ ¼ 2π × 35 kHz from Ref. [14]
and assuming a bath temperature T ¼ 2 K, which is
accessible with fairly simple cryostats, one has Nth ≈ 10.
The highest drive power used in Ref. [14] corresponds to
g ≈ 2π × 40 MHz, leading to an effective coupling
G ¼ g2=κ ≈ 2π × 3.2 MHz. This gives x ¼ γ=G ≈ 0.01.
We propose τ ≈ 100 ns, which is in good correspondence
with Ref. [31]. This gives y ¼ e−Gτ ≈ 0.1. Concerning
photon loss, Ref. [32] already demonstrated of order 75%
in-coupling efficiency and 52% out-coupling efficiency,
and even higher values should be possible. We have
neglected the effects of the squeezing part of the opto-
mechanical Hamiltonian. They are expected to be sup-
pressed by a factor ðκ=ωmÞ2, which is less than 0.02 for the
system parameters given above, justifying the approxima-
tion for this proposed implementation. Beam-splitter type
optomechanical coupling was also demonstrated, e.g., in
Refs. [11,19]. The creation and detection of optomechan-
ical micro-macro entanglement is thus within reach of
current technology.
The approach based on optomechanical storage and

retrieval also allows one to conceive experiments that
would test proposals for quantum gravity induced wave
function collapse. For example, using the approach of
Ref. [33] it is realistic to fabricate trampoline resonators
with an effective mass of 500 ng, a mechanical frequency
ωm ¼ 2π × 10 kHz, and a mechanical quality factor of 106.
At a temperature of 1 mK the environmentally induced
decoherence time scale 1=Nthγ of 7.6 ms is then

significantly longer than the decoherence times predicted
for this system by the quantum gravity induced collapse
models of Ref. [34] (240 μs) and of Ref. [35] (95 μs), see
also Ref. [36]. The latter number is obtained using the
nuclear radius to define the mass distribution following
Ref. [37]. For a cavity length of 10 cm, a cavity finesse of
106, and a control field power of 40 pW one can then have
κ ≈ 2π × 1.5 kHz and G ≈ 2π × 200 Hz, satisfying
ωm ≫ κ ≫ G ≫ γNth ≈ 2π × 20 Hz, as required for side-
band cooling, adiabatic elimination of the cavity, and
entanglement detection, respectively. These parameters
require a source of sub-kHz bandwidth two-mode squeezed
light, which should be feasible based on parametric down
conversion with a narrow band pump laser in combination
with filter cavities. Compared to the proposal of Ref. [17],
which may also allow testing collapse models with weakly
coupled optomechanical systems, the present approach has
the advantage of not requiring any postselection.
While the above-mentioned collapse times are not

sensitive to the size of the displacement α, varying α
and hence the number of phonons involved in the super-
position would also allow one to look for other types of
deviations from quantum physics that might manifest in the
little explored regime of superpositions of macroscopically
different quantum numbers.

This work was supported by AITF, NSERC, NSF Grant
No. PHY-1206118, and NWOVICI Grant No. 680-47-604.
We thank P. Barclay for useful discussions.
Note added.—In the recently published experiment of

Ref. [38] optomechanical entanglement in the microwave
domain (created via blue-detuned driving, not by storing an
entangled signal) is also detected by mapping the state of
the mechanical mode onto the microwave field.
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