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Disorder and magnetic-field-induced breakdown of helical edge conduction in
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We calculate the conductance of a two-dimensional bilayer with inverted electron-hole bands to study the
sensitivity of the quantum spin Hall insulator (with helical edge conduction) to the combination of electrostatic
disorder and a perpendicular magnetic field. The characteristic breakdown field for helical edge conduction splits
into two fields with increasing disorder, a field B, for the transition into a quantum Hall insulator (supporting
chiral edge conduction) and a smaller field B, for the transition to bulk conduction in a quasimetallic regime.
The spatial separation of the inverted bands, typical for broken-gap InAs/GaSb quantum wells, is essential for
the magnetic-field-induced bulk conduction—there is no such regime in HgTe quantum wells.
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A two-dimensional band insulator can support two types
of conducting edge states: counterpropagating (helical) edge
states in zero magnetic field and unidirectional (chiral) edge
states in a sufficiently strong perpendicular field. These two
topologically distinct phases are referred to as a quantum spin
Hall (QSH) and quantum Hall (QH) insulator, respectively
[1,2]. The physics of the QSH-to-QH transition is governed by
band inversion [3-5]: The electronlike and holelike subbands
near the Fermi level are interchanged in a QSH insulator, so that
the band gap in the bulk becomes smaller rather than larger
with increasing perpendicular magnetic field [6,7]. The gap
closing at a characteristic field B, signals the transition from
an inverted QSH gap with helical edge states to a noninverted
QH gap supporting chiral edge states.

The early experiments on the QSH effect were performed
in HgTe layers with CdTe barriers (type-I quantum wells)
[8,9]. Recently the effect has also been observed in InAs/GaSb
bilayers with AISb barriers (type-II quantum wells) [10-13].
Both types of quantum wells can have electron-hole subbands
in inverted order, but while these are strongly coupled in
type-1 quantum wells, they are spatially separated and weakly
coupled in the broken-gap quantum wells of type II (see Fig. 1).
Although the difference has no consequences in zero magnetic
field, we will show here that the breakdown of helical edge
conduction in a magnetic field becomes qualitatively different.

In both type-I and type-1I quantum wells we find an increase
with disorder of the characteristic field B, for the QSH-to-QH
transition, as a consequence of the same mechanism that is
operative in topological Anderson insulators [14]: a disorder-
induced renormalization of the band gap [15]. Basically, in a
narrow-gap semiconductor the effect of disorder on the bulk
band gap is opposite in the inverted and noninverted cases.
While a noninverted band gap is reduced by disorder, the
inverted band gap is increased. Since B, is proportional to the
zero-field band gap, it is pushed to larger fields by impurity
scattering.

As a consequence, disorder increases the robustness of
helical edge conduction in type-I quantum wells, such as
HgTe. In contrast, we find that in broken-gap quantum
wells of type II a second transition at a weaker field B,
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appears, at which helical edge conduction gives way to bulk
conduction. This lower characteristic field splits off from B,
with increasing disorder, producing a quasimetallic regime
in a broad field interval B, < B < B.. The robustness of
helical edge conduction is therefore reduced by disorder in
type-1I quantum wells, such as InAs/GaSb. We discuss the
magnetic-field-induced bulk conduction in terms of Landau-
level hybridization [16] and explain why it is only operative
for weakly coupled electron-hole subbands.

Our investigation is based on the Bernevig-Hughes-Zhang
Hamiltonian for inverted electron-hole bilayers [8,10,17]. In
zero magnetic field the Hamiltonian of the clean system takes
the form
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as a function of wave vector k = (ky,k,) in the x-y plane of the
quantum well. We have defined k* = kj + k3, k+ = ky £ iky,
U+ = po £ 8. It is a tight-binding Hamiltonian in the spin
(14) and subband (4) degrees of freedom, acting on a wave
function with elements (¥ 4,%_4,%, ,%_ ). The term Bk
in block Hj describes the intersubband coupling, and the block
H, accounts for Rashba and Dresselhaus spin-orbit coupling.
To model the two types of quantum wells we use the parameters
listed in Table I [18].

The time-reversal symmetry breaking effect of a perpen-
dicular magnetic field B = (0,0, B) is predominantly orbital,
accounted for by the substitution k — k — (e/h)A, with vector
potential A = (0, Bx,0). The Zeeman effect, which would be
the dominant effect in a parallel field, is not included. (We will
return to this later on.)

In Figs. 2 and 3 we show the magnetic field dependence
of the Landau levels in the two types of quantum wells.
If the inverted electron and hole subbands would be totally
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FIG. 1. (Color online) Alignment of the conduction band (blue)
and valence band (red) in a quantum well of (a) type I and (b) type
II. Both quantum wells have electron and hole subbands in inverted
order (dotted lines, red A-like above blue e-like). The band gap (gray)
is broken in the InAs/GaSb quantum well of type I, providing for
a spatially separated electron-hole bilayer. There is no such spatial
separation in the HgTe quantum well of type 1.

uncoupled, then all Landau levels from the valence band would
move upwards while all Landau levels from the conduction
band would move downwards, resulting in an accumulation
of Landau levels inside the zero-field band gap |E| < |Mj|.
Electron-hole coupling hybridizes the Landau levels from the
conduction and valence band [16], pushing them out of the gap.
In a type-I quantum well only a single pair of Landau levels
remains inside the gap [see Fig. 2(a)]. The spatial separation
of the electron-hole subbands in a type-1I quantum well does
allow for multiple Landau levels inside the gap, the more so
the larger |My| [compare Figs. 2(b) and 3].

To define the characteristic fields mentioned above, it is
convenient to set the electron-hole asymmetry parameter du
to zero, so that the Landau-level crossings are all in the middle
of the gap, at E = 0. As indicated in Fig. 3, the first and the
last level crossings then identify, respectively, B, and B.. As
we will now show, these two fields delimit a regime of bulk
conduction in a disordered type-II quantum well.

To study the effect of disorder we discretize the tight-
binding Hamiltonian (1) on a square lattice (lattice constant
a=2.5nm, size W x L =500 nm x 300 nm). Randomly
distributed dopants are introduced by adding a spin- and
layer-independent random potential U (r), fluctuating from site
to site in the interval (—Up/2,Up/2). We take either periodic
or hard-wall boundary conditions along the sides at y = 0,W
and attach the ends at x = 0, L to ballistic leads to obtain the
transmission matrix ¢ at the Fermi level Er. The conductance

TABLE I. Parameters of the tight-binding Hamiltonian (1) used
in the numerical simulations of quantum wells of type I (HgTe) and
type I (InAs/GaSb) [18]. The electron-hole asymmetry parameter 6
is set to zero in some of the calculations.

Type I Type I1

M, (eV) —0.01 —0.01
wo (eV A?) 68.6 81.9

Su (eV A?) 51.1 21.6

B (eV A) 3.65 0.72
Ao (eV) 0.0016 0.0003
A, (eV A) —0.128 0.0011
A_ (eV A) 0.211 0.0006
o (eV A) 0.0 0.16
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FIG. 2. (Color online) Landau-level spectrum in the two types
of quantum wells, calculated from the Hamiltonian (1) for the
parameters of Table I (nonzero §u and My, = —0.01 eV).

G = (¢?/h)Trtt' is averaged over 60 disorder realizations. All
calculations were performed using the KWANT tight-binding
code [19]. Results are presented in Figs. 4 and 5.

We first discuss Fig. 4, which shows data for the type-II
quantum well with electron-hole symmetry. The QSH regime
of helical edge conduction appears as a region of quantized
conductance G = 2¢?/ h in the low-field/weak-disorder corner
of Fig. 4(a) (hard-wall boundary conditions). The high-
field/weak-disorder corner is the QH regime, with G =0
because the Fermi level lies in the gap between the chiral edge
states of the conduction and valence band. The region between
the QSH and QH regimes has a nonquantized conductance
G > 2¢%/h. This is a regime of bulk conduction, since a
removal of the edge states by switching from hard-wall to
periodic boundary conditions makes no difference [compare
Figs. 4(a) and 4(b)]. We call this regime “quasimetallic” rather
than metallic, because in the limit of an infinite system all bulk
states should localize in a magnetic field.

The curves marked B, and B, in Fig. 4 are obtained as in
Fig. 3, with the effects of disorder accounted for as follows:
We replace the zero-field band gap M\ by the renormalized
gap M.(Up) in the Born approximation,

Mt = My — ¢ Ug, )

with ¢ = 0.39 eV~!. The band gap M of the clean system is
negative, so disorder increases the band gap, as in the topolog-
ical Anderson insulator [15]. There is no renormalization of
the Fermi energy for §iu = 0. The Landau-level broadening is
estimated at § E = Ug x 0.05 eV~!, so that the characteristic

FIG. 3. (Color online) Same as Fig. 2, for a type-II quantum well
with electron-hole symmetry (§u = 0) and for a larger zero-field gap
My = —0.0325 eV. The two characteristic fields B, and B, of the
first and last Landau-level crossing are indicated.

161403-2



RAPID COMMUNICATIONS

DISORDER AND MAGNETIC-FIELD-INDUCED BREAKDOWN ... PHYSICAL REVIEW B 89, 161403(R) (2014)

(a) hard-wall b.c. type II (symmetric) (b) periodic b.c.

16

—_
[\

magnetic field B [T]
~ 00

o

0 02 04

02 04

disorder strength Uy [eV]

FIG. 4. (Color online) Disorder-averaged conductance of a type-II quantum well with electron-hole symmetry (5 = 0, other parameters
as in Table I), calculated numerically from the tight-binding Hamiltonian (1), with (a) hard-wall boundary conditions or (b) periodic boundary
conditions. The Fermi level is set at Er = 8 x 107* eV, slightly displaced from the center of the bulk gap to avoid the minigap in the
spectrum of helical edge states. The disorder dependence of the characteristic fields B, and B, (white and green curves) is calculated from the
renormalization of the band gap in the Born approximation, as described in the text.

fields are determined by the first and last Landau-level crossing
with the line E = §E (rather than with £ = 0). As is evident
from Fig. 4, the resulting curves B.(Uy) and B/ (Uy) describe
quite well the boundaries of the quasimetallic regime, over a
broad range of magnetic fields and disorder strengths.

These are results for the electron-hole symmetric case
dpu = 0, but the appearance of the magnetic-field-induced
quasimetallic regime is a generic feature of inverted type-II
quantum wells, not tied to electron-hole symmetry—the weak
electron-hole coupling is the essential ingredient. This is
demonstrated in Fig. 5. Because of the nonzero §u, the Fermi
energy is renormalized by disorder, which we take into account
in the Born approximation,

Ep=—dU;. (3)

The coefficient d equals 0.12 and 0.27 eV ™!, respectively, in
the type-I and type-II quantum wells.

—_
=]

Comparing the results for the type-II quantum well (with
hard-wall boundary conditions), we see that Figs. 4(a) and
5(b) are qualitatively similar, the main effect of the broken
electron-hole symmetry being the appearance at weak disorder
of a regime of quantized chiral edge conductance (G = e?/ h).
As one can see in Fig. 2(b), the Landau levels depend
nonmonotonically on the magnetic field, and this shows up
in Fig. 5(b) as a nonmonotonic variation of the conductance
from2 — 1 — 2 — 1 — 0 x ¢/ h at weak disorder.

Both Figs. 4(a) and 5(b) show the regime of bulk conduction
at strong disorder, which is characteristic of an inverted
type-1I quantum well. This regime requires small electron-hole
coupling to allow for an accumulation of Landau levels near
the Fermi energy [compare Figs. 2(a) and 2(b)]. For that reason
the quasimetallic regime is absent in the type-I quantum well of
Fig. 5(a), which instead shows the expected [20,21] transition
to localized edge states at strong disorder.
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FIG. 5. (Color online) Disorder-averaged conductance of a quantum well of (a) type I and (b) type II, with hard-wall boundary conditions.
The parameters are those of Table I, including the effects of broken electron-hole symmetry (nonzero é4¢). The conductance is calculated at the
renormalized Fermi energy (5). The region of bulk conduction is present in the type-II quantum well, but not in type I, where instead a region
of localized edge states appears. (This region turns black for periodic boundary conditions, so we know there is no bulk conduction there.)
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FIG. 6. (Color online) Same as Fig. 4(b), but including the effects
of the Zeeman energy with the effective g factor —15.

So far we have focused on the orbital effect of a
perpendicular magnetic field. The effect of spin splitting
by the Zeeman energy gugB is shown in Fig. 6 for the
type-II quantum well with periodic boundary conditions and
electron-hole symmetry. We took the value g = —15 of
bulk InAs, and smaller absolute values may be expected
for a narrow InAs/GaSb quantum well [22]. A comparison
with Fig. 4(b) (where we had g = 0) shows a qualitatively
similar phase diagram, in particular, the regime of bulk
conduction persists. Due to electron-electron interactions or
geometry larger g-factors with more dramatic effects are
possible [23].

In summary, we have investigated how disorder affects the
breakdown of the QSH effect in a perpendicular magnetic
field. In inverted type-I quantum wells, such as HgTe, the
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characteristic breakdown field B, increases with disorder
strength, due to a renormalization of the band gap (becoming
more and more negative with increasing disorder). The same
effect is operative in broken-gap quantum wells of type II, such
as InAs/GaSb—howeyver, there it does not lead to an increased
robustness of helical edge conduction. The spatial separation of
the inverted electron-hole subbands leads to the accumulation
of Landau levels in the zero-field band gap, producing a regime
of bulk conduction that extends to lower and lower magnetic
fields with stronger disorder (see Fig. 4).

One implication of our findings (see Fig. 5) is that disorder
cannot explain the persistence of helical edge conduction up
to 8 T perpendicular fields, reported in Ref. [13]. This might
have been possible in a type-I quantum well, because of the
band-gap renormalization, but in the type-II quantum well of
Ref. [13] the bulk conduction is expected to take over at much
lower fields.

As directions for further research, it would be interest-
ing to explore the fate of the quasimetallic regime in the
thermodynamic limit. All two-dimensional bulk states should
localize in a magnetic field, but the numerics suggests a large
localization length. It would also be of interest to study the
effect of Landau-level accumulation on exciton condensation
in the electron-hole bilayer, considered recently in connection
with the QSH effect [24,25].
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