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Weighted kappa is higher than
Cohen’s kappa for tridiagonal agreement tables

Matthijs J. Warrens, Leiden University

Abstract. Cohen’s kappa and weighted kappa are two popular descriptive
statistics for measuring agreement between two observers on a nominal scale.
It has been frequently observed in the literature that, when Cohen’s kappa
and weighted kappa are applied to the same agreement table, the value of
weighted kappa is higher than the value of Cohen’s kappa. This paper proves
this phenomenon for tridiagonal agreement tables.

Key words. Cohen’s kappa; Cohen’s weighted kappa; Linear weights; Quadratic
weights; Nominal agreement; Ordinal agreement.
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1 Introduction

The kappa coefficient (Cohen, 1960; Brennan & Prediger, 1981; Zwick 1988;
Warrens, 2008, 2010a,b) and weighted kappa coefficient (Cohen, 1968; Fleiss
& Cohen, 1973; Brenner & Kliebsch, 1996; Schuster, 2004; Vanbelle & Albert,
2009; Mielke & Berry, 2009) are popular descriptive statistics for summariz-
ing the cross-classification of two nominal variables with n ∈ N≥2 identical
categories (Fleiss, Cohen & Everitt, 1969). An n × n table can for example
be obtained by cross-classifying the ratings of two observers that each have
classified a group of objects into n categories. In this case, the n×n table can
be referred to as an agreement table, since it reflects how the ratings of the
two observers agree and disagree. Agreement tables occur in various fields
of science, and applications of kappa and weighted kappa can therefore be
found in epidemiological and clinical studies (see, for example, Seddon et al.,
1990; Jakobsson & Westergren, 2005), diagnostic imaging (Kundel & Polan-
sky, 2003), map comparison (Visser & De Nijs, 2006) and content analysis
(Krippendorff, 2004).

Table 1: Color gradings of 324 iris photographs by two trained readers (Table
1 in Seddon et al., 1990).

Reader A Row
Reader B 1 2 3 4 5 totals
1 98 11 0 0 0 109
2 7 38 5 2 0 52
3 0 2 25 8 0 35
4 0 0 8 40 2 50
5 0 0 0 6 72 78
Column
totals 105 51 38 56 74 324

It has been frequently observed in the literature that, when Cohen’s kappa
and weighted kappa are applied to the same agreement table, the value of
weighted kappa is higher than the value of Cohen’s kappa. For example, con-
sider the data in Table 1 taken from a study in Seddon et al. (1990). In this
study two trained readers independently graded 324 iris photographs using a
five-grade classification system. Categories of iris color were distinguished on
the basis of the predominant color (blue, gray, green, light brown, or brown)
and the amount of brown or yellow pigment present in the iris. For these
data Cohen’s kappa equals 0.796, whereas weighted kappa using quadratic
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weights is equal to 0.965. A value of 1 would indicate perfect agreement
between the two readers.

The value of weighted kappa does not always exceed the value of Cohen’s
kappa. It turns out however that the inequality holds for a special kind of
agreement table. In this short paper we prove that the value of weighted
kappa exceeds that of Cohen’s kappa when the agreement table is tridiago-
nal. A tridiagonal table is a square matrix that has nonzero elements only
on the main diagonal, the first diagonal below this (subdiagonal) and the
first diagonal above this (superdiagonal). Note that Table 1 is almost tridi-
agonal. Agreement tables that are tridiagonal or approximately tridiagonal
are frequently encountered in applications. Examples can be found in Van
Swieten et al. (1987), Seddon et al. (1990) Eaton et al. (2000), Cai et al.
(2002) and Dirksen et al. (2002).

The paper is organized as follows. Weighted kappa is defined in the next
section. The conditional inequality is proved in Section 3. Section 4 contains
some conclusions.

2 Kappa and weighted kappa

In this section we define the weighted kappa statistic, which is usually de-
noted by κw. Cohen (1968) introduced weighted kappa as a generalization of
kappa (Cohen, 1960), which is usually denoted by κ. Weighted kappa allows
for assigning partial credit to the nominal categories by using weights.

Suppose that two observers each distribute m ∈ N≥1 given objects (indi-
viduals) among a set of n ∈ N≥2 mutually exclusive categories, that are de-
fined in advance. Let the agreement table T with entries tij (i, j ∈ {1, 2, . . . , n})
be the cross-classification of the ratings of the observers, where tij indicates
the number of objects placed in category i by the first observer and in cate-
gory j by the second observer. The elements on the main diagonal of T , tii
for i ∈ {1, 2, . . . , n}, are usually called the agreements because they reflect
the number of objects that the observers placed in the same categories. All
other elements, tij for i 6= j, are usually called the disagreements.

For notational convenience, let P be the agreement table of the same size
as T (n× n) with entries pij = tij/m. Row and column totals

pi =
n∑

j=1

pij and qj =
n∑

i=1

pij

are the marginal totals of P . The weighted kappa statistic can be defined as

κw =
pw

o − pw
e

1− pw
e

(1)
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where

pw
o =

n∑
i=1

n∑
j=1

wijpij and pw
e =

n∑
i=1

n∑
j=1

wijpiqj

with wij ∈ [0, 1] and wii = 1 for i, j ∈ {1, 2, . . . , n}. In (1) we assume that
pw

e < 1 to avoid the indeterminate case pw
e = 1.

Examples of weights for κw that have been proposed in the literature
are the linear weights (Cicchetti & Allison, 1971; Vanbelle & Albert, 2009;
Mielke & Berry, 2009) given by

wL
ij = 1− |i− j|

n− 1
, (2)

and the quadratic weights (Fleiss & Cohen, 1973; Schuster, 2004) given by

wQ
ij = 1−

(
i− j
n− 1

)2

. (3)

Using the weights in (2) we have pw
o = 0.959, pw

e = 0.555 and κw = 0.908
for the data in Table 1. Furthermore, using the weights in (3) we have
pw

o = 0.989, pw
e = 0.682 and κw = 0.965 for the data in Table 1.

If wij = 0 for i, j ∈ {1, 2, . . . , n} and i 6= j, then pw
o and pw

e become,
respectively,

po =
n∑

i=1

pii and pe =
n∑

i=1

piqi.

In this case, (1) is equivalent to

κ =
po − pe

1− pe

,

which is the ordinary or unweighted kappa statistic (Cohen, 1960). For the
data in Table 1, we have po = 0.843, pe = 0.229 and κ = 0.796. Using the
weights (2) or (3), the statistics κ and κw are equivalent if n = 2. Statistics
κ and κw are also equivalent if po = 1.

3 A conditional inequality

In the theorem below we prove an inequality between κ and κw. We first
consider a restriction on the weights of κw. In general, we have wij ∈ [0, 1]
for i, j ∈ {1, 2, . . . , n} and wii = 1 for i ∈ {1, 2, . . . , n} for the elements on
the main diagonal of P . Note that, if we were to use the weights in (2) or (3),
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the weights would be a decreasing function of the distance |i−j|, that is, dis-
agreements corresponding to adjacent categories would have higher weights
than disagreements corresponding to categories that are further apart.

Consider the structure of the agreement table presented in Table 2. Let
v ∈ (0, 1] and let w(ai) denote the weight corresponding to the element ai. In
the theorem below we require that the elements on the main diagonal have
weight 1, the elements on the superdiagonal and the subdiagonal have the
same weight v, and that all other weights are between 0 and v. Examples
of weights that satisfy these conditions are the weights presented in (2) and
(3).

Table 2: The form of a tridiagonal matrix of size n × n. The ai for i ∈
{1, 2, . . . , n} are the elements of the main diagonal, whereas the bi and ci for
i ∈ {1, 2, . . . , n− 1} are, respectively, the elements of the superdiagonal and
subdiagonal. All other elements are 0.

Reader A Row
Reader B 1 2 . . . . . . n− 1 n totals
1 a1 b1 p1

2 c1 a2 b2 p2
...

. . . . . . . . .
...

...
. . . . . . . . .

...
n− 1 cn−2 an−1 bn−1 pn−1

n cn−1 an pn

Column
totals q1 q2 · · · · · · qn−1 qn 1

Theorem. Suppose the agreement table has the form presented in Table
2, and suppose that not all bi and ci are 0. Let v ∈ (0, 1] and let the weights
of κw be given by

w(ai) = 1 for i ∈ {1, 2, . . . , n} ,
w(bi) = w(ci) = v for i ∈ {1, 2, . . . , n− 1} ,
wij ∈ [0, v) for i, j ∈ {1, 2, . . . , n} and |i− j| ≥ 2.

Then κw > κ.
Proof: We first show that (4) is equivalent to (6). Since 1 − pe and 1 − pw

e
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are positive numbers, we have κw > κ if and only if

pw
o − pw

e

1− pw
e

>
po − pe

1− pe

(4)

m
(pw

o − pw
e )(1− pe) > (po − pe)(1− pw

e )

m
pw

o − pw
e − pw

o pe + pw
e pe > po − pe − pop

w
e + pw

e pe. (5)

Under the conditions of the theorem pw
e > pe, that is, pw

e − pe is a positive
number. Subtracting pw

e pe from and adding pope to both sides of (5), we
obtain

(pw
o − po)(1− pe) > (pw

e − pe)(1− po)

m
pw

o − po

pw
e − pe

>
1− po

1− pe

. (6)

Next, consider Table 2. Since v is the common weight of all elements on the
superdiagonal and subdiagonal, we have

po =
n∑

i=1

ai and pw
o =

n∑
i=1

ai + v
n−1∑
i=1

(bi + ci)

and hence

pw
o − po = v

n−1∑
i=1

(bi + ci) and 1− po =
n−1∑
i=1

(bi + ci).

Thus, pw
o − po = v(1− po), and since 1− po (not all bi and ci are 0), pw

e − pe,
1− pe, and v are positive numbers, (6) holds if and only if

v(1− pe) > pw
e − pe. (7)

Because
n∑

i=1

n∑
j=1

piqj = 1,

(7) is equal to

v

(
n∑

i=1

n∑
j=1

piqj −
n∑

i=1

piqi

)
>

n∑
i=1

n∑
j=1

wijpiqj −
n∑

i=1

piqi. (8)

Inequality (8) holds since v > wij for i, j ∈ {1, 2, . . . , n} and |i− j| ≥ 2. This
completes the proof.
�
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4 Conclusions

It has been frequently observed in the literature that, when Cohen’s kappa
and weighted kappa are applied to the same agreement table, the value of
weighted kappa is higher than the value of Cohen’s kappa. In this short paper
we proved this phenomenon for tridiagonal agreement tables. A tridiagonal
table is a square matrix that has nonzero elements only on the main diagonal,
the first diagonal below this and the first diagonal above this. Agreement
tables that are tridiagonal or almost tridiagonal (see for example Table 1) are
frequently encountered in applications. Hence, tridiagonal agreement tables
are general enough to make this result useful.

In the theorem we require that the elements on the main diagonal have
weight 1, the elements on the first diagonals above and below the main di-
agonal have a weight v ∈ (0, 1], and all other weights are between 0 and
v. Examples of weights that satisfy these conditions are the linear weights
(Cicchetti & Allison, 1971; Vanbelle & Albert, 2009; Mielke & Berry, 2009)
and the quadratic weights (Fleiss & Cohen, 1973; Kundel & Polansky, 2003;
Schuster, 2004). In particular, the latter weights are frequently used in ap-
plications, although the weighted kappa statistic allows the use of weights of
other types (Cohen, 1968).
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