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The Josephson energy of two superconducting islands containing Majorana fermions is a 4π -periodic function
of the superconducting phase difference. If the islands have a small capacitance, their ground state energy is
governed by the competition of Josephson and charging energies. We calculate this ground-state energy in a ring
geometry, as a function of the flux � enclosed by the ring, and show that the dependence on the Aharonov-Bohm
phase 2e�/h̄ remains 4π periodic regardless of the ratio of charging and Josephson energies—provided that the
entire ring is in a topologically nontrivial state. If part of the ring is topologically trivial, then the charging energy
induces quantum phase slips that restore the usual 2π periodicity.
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The energy HJ of a tunnel junction between two super-
conductors (a Josephson junction) depends on the difference
φ of the phase of the order parameter on the two sides of
the junction. The derivative IJ = (2e/h̄)dHJ /dφ gives the
supercurrent flowing through the junction in the absence of an
applied voltage. In a ring geometry, the supercurrent depends
periodically on the flux � enclosed by the ring, with periodicity
h/2e. This familiar DC Josephson effect1,2 acquires a new twist
if the junction contains Majorana fermions.3–5

Majorana fermions are charge-neutral quasiparticles bound
to midgap states, at zero excitation energy, which appear in a
so-called topologically nontrivial superconductor.6,7 While in
the conventional Josephson effect only Cooper pairs can tunnel
(with probability τ � 1), Majorana fermions enable the tun-
neling of single electrons (with a larger probability

√
τ ). The

switch from 2e to e as the unit of transferred charge amounts
to a doubling of the fundamental periodicity of the Josephson
energy, from HJ ∝ cos φ to HJ ∝ cos(φ/2). In a ring geom-
etry, the period of the flux dependence of the supercurrent IJ

doubles from 2π to 4π as a function of the Aharonov-Bohm
phase8 ϕ0 = 2e�/h̄. This 4π -periodic Josephson effect has
been extensively studied theoretically5,9–14 as a way to detect
the (so far, elusive) Majorana fermions.15

Since the Majorana fermions in a typical experiment will be
confined to superconducting islands of small capacitance C,
the Coulomb energy HC = Q2/2C associated with a charge
difference 2Q across the junction competes with the Josephson
energy. The commutator [φ,Q] = 2ei implies an uncertainty
relation between charge and phase differences, so that a
nonzero HC introduces quantum fluctuations of φ in the ground
state.2 What is the fate of the 4π -periodic Josephson effect?

As we will show in this Rapid Communication, the
supercurrent through the ring remains a 4π -periodic function
of ϕ0, regardless of the relative magnitude of HC and HJ .
This Coulomb stability requires that all weak links in the ring
contain Majorana fermions. If the ring has a topologically triv-
ial segment, then quantum phase slips restore the conventional
2π periodicity of the Josephson effect on sufficiently long time
scales. We calculate the limiting time scale for the destruction
of the 4π -periodic Josephson effect by quantum phase slips
and find that it can be much shorter than the competing time
scale for the destruction of the 4π periodicity by quasiparticle
poisoning.5

We apply the general theory of Majorana-Josephson junc-
tion arrays of Xu and Fu16 to the DC SQUID geometry of
Fig. 1, consisting of two superconducting islands separated by
tunnel junctions. The islands have a charge difference 2Q =
Q1 − Q2, with Qn = −2ei∂/∂φn canonically conjugate to
the superconducting phase φn. The gauge invariant phase
differences across the two junctions are given by φ = φ1 − φ2

and ϕ0 − φ. Here we assume that the ring is sufficiently small
that the flux generated by the supercurrent can be neglected,
so the enclosed flux equals the externally applied flux.17

Each island contains a segment of a semiconductor
nanowire, driven into a topologically nontrivial supercon-
ducting state by the proximity effect.9,10 (Alternatively, the
nanowire could be replaced by the conducting edge of a two-
dimensional topological insulator.5) The Majorana fermions
appearing at the end points of each segment are represented by
anticommuting Hermitian operators γ1,γ2,γ3,γ4 that square to
unity,

γn = γ †
n , γnγm + γmγn = 2δnm. (1)

The Majorana fermions are coupled by the tunnel junction. We
distinguish two cases. In the first case (top panel in Fig. 1),
each of the two tunnel junctions couples a pair of Majorana
fermions. In the second case (bottom panel), one pair of
Majorana fermions is coupled by a Josephson junction, while
the other pair remains isolated.

The Hamiltonian H = HC + HJ,1 + HJ,2 is the sum of
charging and Josephson energies,

HC = 1

2C
(Q + qind)2, (2)

HJ,1 = EM,1
1 cos
φ

2
− EJ,1 cos φ, (3)

HJ,2 = EM,2
2 cos
ϕ0 − φ

2
− EJ,2 cos(ϕ0 − φ), (4)


1 = iγ2γ3, 
2 = iγ4γ1. (5)

The induced charge qind = CgVg accounts for charges on
nearby electrodes, controlled by a gate capacitance Cg and
gate voltage Vg . The energy scales EM,n and EJ,n quantify the
Josephson coupling strength of, respectively, single electrons
and electron pairs. With this Hamiltonian, we can describe
both cases considered, by putting EM,2 = 0 for the junction
without Majorana fermions.
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FIG. 1. (Color online) Geometry of a DC SQUID, consisting of
a superconducting ring (gray) interrupted by two tunnel junctions
(black) and threaded by a magnetic flux �. A semiconductor nanowire
(yellow) contains Majorana fermions at the end points (red dots). The
two panels distinguish the cases that Majorana fermions are present
at both junctions (top), or only at a single junction (bottom). The
4π -periodic Josephson effect is stable against quantum phase slips in
the first case, but not in the second case.

The eigenstates �(φ1,φ2) of H should satisfy the fermion
parity constraint18

�(φ1 + 2πn,φ2 + 2πm) = (−1)nq1 (−1)mq2�(φ1,φ2), (6)

qn = 1
2 (1 − pn), p1 = iγ1γ2, p2 = iγ3γ4. (7)

The operators qn and pn have, respectively, eigenvalues 0,1
and ±1, depending on whether island n contains an even or an
odd number of electrons. The constraint (6) enforces that the
eigenvalues of Qn are even multiples of e for qn = 0,pn = 1
and odd multiples of e for qn = 1,pn = −1.

It is possible to solve the eigenvalue problem H� = E�

subject to the constraint (6), along the lines of Ref. 16, but
alternatively one can work in an unrestricted Hilbert space.
The restriction is removed by the unitary transformation

� = U1U2�̃, Un = exp(iqnφn/2). (8)

The function �̃(φ1,φ2) is 2π periodic in each of its arguments,
so the constraint (6) is automatically satisfied. Now the
eigenvalues of Qn are all even multiples of e. The transformed
Hamiltonian H̃ = (U1U2)†HU1U2 becomes

H̃ = 1

2C

(
Q + eq1 − eq2

2
+ qind

)2

+ 1

2
[e−iq1φ1 (EM,1
1 + EM,2
2e

iϕ0/2)eiq2φ2 + H.c.]

−EJ,1 cos φ − EJ,2 cos(ϕ0 − φ), (9)

where we have used the identity

U †
n
meiφn/2 = 
mUn. (10)

Notice that the Hamiltonian has become 2π periodic in the
superconducting phases φ1,φ2, while remaining 4π periodic
in the flux ϕ0. Notice also that H̃ may depend on the φn’s
separately, not just on their difference. This does not violate
charge conservation, because the conjugate variables Qn now

count only the number of Cooper pairs on each island, not the
total number of electrons.

The four Majorana fermions encode a qubit degree of
freedom.19 The states of the qubit are distinguished by the
parity of the number of electrons on each island. If the total
number of electrons in the system is even (P = 1), the qubit
states are |11〉 and |00〉, while for an odd total number of
electrons (P = −1) the states are |10〉 and |01〉. In this qubit
basis, the products of Majorana operators appearing in the
Hamiltonian (9) are represented by Pauli matrices,

q1 = 1
2 + 1

2σz, q2 = 1
2 + 1

2Pσz, 
1 = −σx, 
2 = Pσx.

(11)

It is straightforward to calculate the eigenvalues of H̃ by
evaluating its matrix elements in the basis of eigenstates of Q.
The spectrum EP

n (ϕ0,qind) as a function of the enclosed flux
and the induced charge has two branches distinguished by the
total fermion parity P = ±1, with

E+
n (ϕ0,qind) = E−

n (ϕ0 + 2π,qind + e/2). (12)

We first consider the case that both junctions contain Majorana
fermions (top panel in Fig. 1).

A fully analytical calculation is possible in the limit that
the charging energy dominates over the Josephson energy
(EC ≡ e2/2C � EM,n,EJ,n). Only the two eigenstates of Q

with lowest charging energy Ē ± 1
2δ are needed in this limit,

and 2e tunnel processes may be neglected relative to e tunnel
processes (so we may set EJ,n = 0). We thus obtain the simple
expression

EP
± = Ē ± 1

2

[
δ2+E2

M,1 + E2
M,2 + 2PEM,1EM,2 cos

ϕ0

2

]1/2

.

(13)

The resulting 4π -periodic spectrum is shown in Fig. 2.
The crossing of the two branches E+

− and E−
− at ϕ0 = π is

protected, regardless of the value of EC , because the charging

FIG. 2. (Color online) Spectrum of the DC SQUID in the top panel
of Fig. 1, containing Majorana fermions at both Josephson junctions.
The curves are the result (13), in the limit that the charging energy
dominates over the Josephson energy. The parameters chosen are
EM,1 = EM,2 = δ. The level crossing is between states of different
fermion parity P , and therefore there can be no tunnel splitting due
to the Coulomb interaction (which conserves P).
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FIG. 3. (Color online) Spectrum of the DC SQUID in the bottom
panel of Fig. 1, containing Majorana fermions at only one of the
two Josephson junctions. The curves are a numerical calculation for
the full Hamiltonian, in the regime that the Josephson energy of the
trivial junction is the largest energy scale. The parameters chosen are
EJ,2 = 4EC = 10EM,1, EM,2 = 0 = EJ,1, and qind = 0. In contrast
to Fig. 2, a tunnel splitting  appears because the level crossing is
between states of the same fermion parity.

energy cannot couple states of different P . Quasiparticle
poisoning (the injection of unpaired electrons) switches the
fermion parity on a time scale Tp, which means that the
4π periodicity of the energy of the ring can be observed if
the enclosed flux is increased by a flux quantum in a time
T� � Tp.

We now turn to the case that one of the two Josephson
junctions does not contain Majorana fermions (lower panel in
Fig. 1). By putting EM,2 = 0, the Hamiltonian becomes 2π

periodic in ϕ0. In Fig. 3, we show the spectrum for a relatively
large Josephson energy of the trivial junction. The phase φ is
then a nearly classical variable, which in the ground state is
close to ϕ0 (mod 2π ). The charging energy opens a gap in the
spectrum near ϕ0 = π (mod 2π ), by inducing tunnel processes
from φ = ϕ0 to φ = ϕ0 ± 2π (quantum phase slips). A tunnel
splitting by the P-conserving charging energy is now allowed,
because the level crossing is between states of the same P .

A semiclassical calculation of the tunnel splitting due to
quantum phase slips at the trivial Josephson junction, along the
lines of Ref. 20, gives for EJ ≡ EJ,2 � EC � EM,1 ≡ EM

the spectrum

EP
± = −EJ +

√
2ECEJ ±

√
E2

M cos2(ϕ0/2) + 2, (14)

 = 16
(
ECE3

J /2π2)1/4
exp(−

√
8EJ /EC)

×
√

cos2(πq ′
ind/e) + π2E2

M

8ECEJ

sin2(πq ′
ind/e), (15)

where we have abbreviated q ′
ind = qind + (e/4)(1 − P). The

second term on the right-hand side of Eq. (14) describes the
effect of zero-point fluctuations of φ around the values ϕ0

and ϕ0 ± 2π . Tunnel processes φ = ϕ0 	→ ϕ0 + 2π and φ =
ϕ0 	→ ϕ0 − 2π produce the third term. The sine and cosine
factors in Eq. (15) account for interference between these two
quantum phase slip processes (Aharonov-Casher effect).21–25

The numerical calculation26 in Fig. 4 agrees quite well with
the semiclassical approximation (15).

FIG. 4. Tunnel splitting at ϕ0 = π as a function of the induced
charge. The dashed curve corresponds to Eq. (15), the solid curve to
numerical calculations for the full Hamiltonian, for EJ,2 = 5 EC =
25 EM,1 (with EM,2 = 0 = EJ,1).

The tunnel splitting  ensures that the energy of the ring
evolves 2π periodically if the flux � is increased by a flux
quantum h/2e in a time T�, which is long compared to T =
h̄EM,1/

2. For T� � T, there is a significant probability
exp(−T�/T) for a Landau-Zener transition through the gap,
resulting in a 4π -periodic evolution of the energy.

This limiting time scale T originating from quantum
phase slips can be compared with the time scale Tp for
quasiparticle poisoning. We require T� small compared to
both T and Tp to observe the 4π -periodic Josephson effect.
For  > (h̄EM,1/Tp)1/2, one has T < Tp, so quantum phase
slips govern. A recent experiment finds Tp � 2 ms in Al for
temperatures below 160 mK.27 Since EM,1 will be well below
1 meV, one has T < Tp if quantum phase slips occur with
a rate /h̄ higher than 30 MHz. Quantum phase slip rates
vary from the MHz to the GHz range,28,29 so  is one of the
limiting factors in the design of a DC SQUID that can measure the
4π -periodic Josephson effect. In contrast, for a conventional
DC SQUID the flux periodicity is unaffected by quantum phase
slips and  is not a crucial parameter.

In conclusion, we have shown that Coulomb charging
effects do not spoil the 4π -periodic Josephson effect in a
superconducting ring, provided that all weak links contain
Majorana fermions. Quantum phase slips at a weak link
without Majorana fermions restore the 2π periodicity on time
scales long compared to a time T, which may well be shorter
than the time scale for quasiparticle poisoning.

The origin of the protection of the 4π periodicity if
the entire ring is topologically nontrivial is conservation of
fermion parity.5 (See Ref. 30 for a more general perspective.)
This protection breaks down if part of the ring is a trivial
superconductor, because then the level crossing involves states
of the same fermion parity, and tunnel splitting by the charging
energy is allowed (see Fig. 3).

We note in closing that the different stability of the 4π -
periodic Josephson effect in the two geometries of Fig. 1,
examined here with respect to Coulomb charging, extends to
other parity-preserving perturbations of the Hamiltonian. For
example, overlap of the wave functions of two Majorana bound
states on the same island introduces a term Hoverlap = iεγ1γ2.
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For the lower panel of Fig. 1, this term leads to a tunnel
splitting  = 2ε which spoils the 4π periodicity.3 For the
upper panel of Fig. 1,  ≡ 0 because Hoverlap preserves fermion
parity.
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