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Photonic crystal slabs provide unique opportunities for the manipulation of light on semiconductor

chips. The patterns of holes in the slabs are typically designed to maximize the width, depth and symmetry

of a single photonic band gap. Quasicrystalline patterns are ideal from this point of view; here, we show

that, owing to the presence of multiple Bragg scattering length scales, they also have the desirable

property of supporting multiple photonic band gaps in the same slab. This opens up the possibility of

creating polychromatic cavities that could be used to extend the possibilities for single photons on optical

chips, including on-chip frequency conversion in III–V semiconductors. We study several quasicrystalline

structures which support high quality cavity modes at multiple resonant frequencies using 2D and

3D FDTD simulations.
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Advances in nanophotonics and photonic band gap en-
gineering have made it possible to confine photons to on-
chip wavelength-scale cavities and waveguides [1–4]. This
has opened the way to the realization of, among others,
integrated cavity quantum electrodynamics schemes [5–7]
and ultralow threshold lasers [8–10]. For these experi-
ments, the structures were optimized to obtain the largest
possible band gaps or highest quality cavity modes at a
single frequency. A structure that could support multiple
band gaps or cavity modes would fundamentally extend the
possibilities for single photons on optical chips, for ex-
ample, by allowing the exploration of on-chip nonlinear
optical interactions. In this Letter, we explore photonic
quasicrystals for this application. Previous work on pho-
tonic quasicrystals has concentrated primarily on the fact
that they support wide, uniform band gaps due to the
spherical symmetry of their Brillouin zones [11]. We
show that in addition they possess the special property of
supporting multiple photonic band gaps, with a small
enough frequency separation that they could be supported
in the same slab, because the quasiperiodicity provides two
or more Bragg scattering length scales. Furthermore, un-
like periodic structures, they offer a wider variety of sym-
metry centers for creating defect modes with different
geometries [12].

An example of an application for a polychromatic cavity
is on-chip frequency conversion at intensities down to the
single photon level. A recent proposal [13] for observing
strong coupling between single photons is illustrated in
Fig. 1(a). Coherent energy transfer between a photon in
cavity mode A with frequency !a and a photon in a
spatially overlapping cavity mode B with frequency !b

coupled by an optical nonlinearity can in principle be
observed if a third mode with frequency !a �!b is popu-
lated with a coherent state to make up the energy differ-
ence. The design of a cavity that can support two such

overlapping modes must begin with a search for a structure
that supports multiple photonic band gaps.
The formation of photonic band gaps in regular struc-

tures has been extensively studied [14]; understanding gap
formation in more general structures is an active area of
research [15,16]. The primary band gap formation mecha-
nism is destructive interference through Bragg scattering

FIG. 1 (color online). (a) Schematic illustrating the require-
ments for frequency conversion in photonic crystal cavities.
(b) Diagram of the triangular lattice. The dotted lines are the
periodic Bragg plane locations associated with the (1, 1) direc-
tion. (c) 2D TE band gap map at 0� for the triangular lattice
photonic crystal of air holes in a dielectric medium (� ¼ 11:4).
The color map is a logarithmic scale of normalized transmission
through the lattice. (d) Angular study of the transmission struc-
ture of the triangular lattice 2D photonic crystal at r=a ¼ 0:1.
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[17,18]. Additionally, there is a Mie resonance mechanism
for the formation of photonic band gaps which is only
relevant for TM waves in structures where the scattering
centers are formed from the higher index material [19].
The combination of these two effects was exploited in
Ref. [20] to find band gaps in the different polarizations.
Wewill concentrate on the Bragg scattering mechanism for
TE waves in 2D photonic crystals based on arrays of air
holes in a higher index substrate to show that photonic
quasicrystal lattices of this type possess multiple band gaps
at closely spaced frequencies, and could support multiple
spatially overlapping modes in 2D and 3D defect
structures.

We developed a transmission simulation method that
makes use of the FDTD modeling technique (implemented
with a commercial FDTD engine [21]), similar to that in
Ref. [22], to calculate band gap maps for general, including
nonperiodic, lattice structures. In our method, a broadband
plane wave source is placed at one end of a finite section of
the 2D photonic lattice, and the transmission is recorded in
the time domain at a series of points along a line at the
other end of the structure. The field components at each
point are Fourier transformed and the spectra are averaged
and normalized to the source and transmission profiles of a
bare dielectric background to obtain the transmission as a
function of frequency. A complete transmission map is
generated by running separate simulations for different
values of r=a, the ratio of the hole radius to the lattice
constant (defined to be the average nearest-neighbor dis-
tance for quasiperiodic lattices). The transmission for a
particular value of r=a can also be studied as a function of
angle by rotating the structure while keeping the source
and monitor locations constant. We verified our simulation
method by producing a transmission map [Fig. 1(c)] and
angular study [Fig. 1(d)] of the well-characterized triangu-
lar lattice of air holes [23].

We investigated several 2D photonic quasicrystal struc-
tures using this method. The holes were placed at the
vertices of tilings generated via the strip projection method
[24]. In this letter, wewill focus on two specific lattices: the
fivefold symmetric (or Penrose) lattice generated from a
five dimensional starting space, and the eightfold symmet-
ric lattice generated from a four dimensional starting space,
for which first evidence of photonic band gap formation is
given in Ref. [25]. Diagrams of the fivefold and eightfold
symmetric lattices are shown in Figs. 2(a) and 2(b), re-
spectively; higher starting dimensions resulted in lattices
with unrealistic fabrication parameters.

Figure 2(e) shows a band gap map calculated at zero
angle of incidence for the fivefold symmetric lattice. As
compared with Fig. 1(c), the transmission structure has
many more dips than that of a periodic lattice, especially
at low values of r=a. Figure 2(g) shows an angular study of
the transmission structure of the same lattice plotted for
r=a ¼ 0:1. Each of the transmission dips at small r=a can
be associated with Bragg scattering in a particular lattice
direction. The fivefold symmetric quasicrystal lattice has

Bragg planes with spacings that correspond to a Fibonacci
sequence with long (L) and short (S) components [see
Fig. 2(a)]. The Fibonacci sequence has a generation rule
(S ! L, L ! SL) and characteristic equation, �þ 1 ¼ �2,
with a solution, � that is equal to the golden mean,

ð ffiffiffi
5

p þ 1Þ=2 [26]. The ratio of the two Bragg plane spacings
(L=S) in the fivefold symmetric photonic quasicrystal is
equal to �, and, as a result, dips in transmission are found at

FIG. 2 (color online). (a) and (b) The 2D fivefold symmetric
and eightfold symmetric lattice structures with the Bragg planes
drawn in. The white sections correspond to the ‘‘Long’’ separa-
tion, green corresponds to the ‘‘Short’’ separation and pink
corresponds to ‘‘Long—Short.’’ (c) and (d) 1D simulation of
quasicrystals based on the Fibonacci lattice and the eightfold
symmetric quasicrystal generation rule with small scattering
layers at the positions of the plane boundaries. The frequencies
of the transmission dips (4 examples are labeled for comparison)
correspond to those in the 2D quasicrystals at small r=a. (e) and
(f) TE band gap maps for the fivefold symmetric and the eight-
fold symmetric 2D quasicrystal, respectively. The color map is a
logarithmic scale of transmission through the lattice. (g) and
(h) Angular studies of the transmission structures of the fivefold
symmetric and the eightfold symmetric 2D quasicrystals at small
r=a (r=a ¼ 0:1).
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frequencies spaced by this ratio with sets of dips corre-
sponding to different quasi-Brillouin zone lattice direc-
tions. The transmission structure at small values of r=a
can be confirmed by one-dimensional simulations of a
Bragg mirror in which small dielectric scattering layers
are interspersed with air gaps of long and short lengths
arranged in the Fibonacci sequence. The result is plotted in
Fig. 2(c). Transmission minima indeed appear at the same
frequencies as those in the 2D fivefold symmetric photonic
quasicrystal spectrum at small r=a (four dips are labeled
for comparison).

Because the fivefold symmetric quasicrystal lattice has
two characteristic Bragg scattering scales, with a ratio of
�� 1:6, band-gap-like features are spaced more closely
together in frequency than those in periodic lattices, where
complete band gap formation is possible at frequencies
with approximately integer ratios: !, 2!, 3!, etc. In order
to support two modes in the same slab photonic crystal
defect structure, the frequency difference between the
modes must be relatively small because the introduction
of a finite thickness in the third dimension causes the
closing of higher order band gaps. As discussed in
Ref. [27], if the slab thickness is greater than about a
wavelength in the material, then higher order vertical
modes in the slab can be created which will lie only
slightly above the lowest order slab guided mode, prevent-
ing the formation of an optical band gap. If the slab
thickness is less than about half a wavelength in the mate-
rial then the slab will provide only a weak perturbation on
the background dielectric constant; any optical band gap
will be minuscule. According to this criteria, the absolute
largest frequency difference between separate band gaps
that could be supported in the same slab would be !, 2!.
However, as Refs. [27,28] also discuss, the width of the
supported band gap is strongly dependent on slab thick-
ness, with the ideal thickness being closer to half a wave-
length in the material, providing clear motivation to look
for structures with band gaps spaced by ratios of less than
!, 2!.

The eightfold symmetric photonic quasicrystal trans-
mission structure [Fig. 2(f)] has similar features as the
fivefold symmetric case. There are also two characteristic
lengths associated with the Bragg plane spacings, gener-
ated by a generalized Fibonacci rule (S ! L, L ! SLL)
which is derived from the characteristic equation 2�þ 1 ¼
�2, resulting in � ¼ 1þ ffiffiffi

2
p � 2:4. The transmission dips

at small r=a in Figs. 2(f) and 2(h) occur at frequencies
corresponding to the lengths L, S, Lþ S, and L� S,
and are found at two sets of spacings given by the ratios
ðLþSÞ

L ¼ ðL�SÞ
S ¼ �� 1 ¼ ffiffiffi

2
p � 1:4, and L

ðL�SÞ ¼ �
ð��1Þ ¼

1þ 1ffiffi
2

p � 1:7.

We investigated several defect structures in the previ-
ously studied 2D eightfold symmetric photonic quasicrys-
tal lattice [29]. We will describe the results for the defect
cavity shown in Fig. 3(c). FDTD cavity ring down simu-
lations were performed at r=a ¼ 0:375 which was chosen

as a compromise between the presence of strong trans-
mission minima and the practicality of fabrication. The
mode intensity for a set of strongly confined modes is
shown in Figs. 3(d)–3(k) along with their associated 2D
quality factors. We can locate each of the modes in a
transmission minima as shown in Fig. 3(b). In order to
evaluate the modes based on their suitability for the fre-
quency conversion scheme, we calculated the spatial over-
lap of pairs of modes located in different transmission

minima features. The tensorial nature of the �ð2Þ interac-
tion must be taken into account by contracting the electric

field vectors of the cavity modes with the �ð2Þ tensor. In
GaAs, the lattice can be oriented, for example, such that the
polarizations of the two cavity modes and the weakly
confined third mode are aligned (TE) and the growth
direction is (111) [13]. The spatial overlap was calculated
in 2D by integrating the products of the field components
separately over the x-y plane, normalized such that

Z
ðExnExn þ EynEynÞdxdy ¼ 1: (1)

A value of 0.5 for any pair of components would indicate
maximum spatial overlap. Figures 3(l)–3(o) contain
plots of the products of the field components of modes 3
[Fig. 3(f)] and 6 [Fig. 3(i)]. The overlap of these mode
components ranges from 0.04 to 0.12, indicating an overlap
of 8%–24% of the maximum possible, which could lead to
a significant improvement in conversion efficiency over
previous schemes that used only one optimized cavity
mode [30,31].
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FIG. 3 (color online). (a) Band gap map for the eightfold
symmetric photonic quasicrystal. The white line indicates the
parameters used for the 2D mode simulation (r=aavg ¼ 0:375).

(b) 1D slice of the transmission (T) spectrum at r=aavg ¼ 0:375

with the positions of the eight confined modes marked.
(c) Diagram of the cavity defect structure. (d)–(k) Mode inten-
sity (arbitrary units) plots of the Hz field component for eight
confined modes. Simulated quality factors: (d) Mode 1: Q ¼
2� 108 (e) Mode 2: Q> 5� 107 (f) Mode 3: Q ¼ 2� 108

(g) Mode 4:Q ¼ 1� 107 (h) Mode 5:Q> 108 (i) Mode 6:Q>
108 ( j) Mode 7: Q ¼ 1� 106 (k) Mode 8: Q ¼ 6� 104 (l)–
(o) Plot of the overlap of the different field components of modes
3 and 6. (l) Ex3 � Ex6, (m) Ex3 � Ey6, (n) Ey3 � Ex6, (o) Ey3 � Ey6.
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3D FDTD simulations indicate that quality factors of at
least 103 can be maintained in pairs of modes in separate
band gaps after the introduction of a finite slab thickness.
The level of overlap of the two cavity mode components
can only marginally differ in 3D from its 2D value because
both modes display first order modal character in the third
dimension for any slab thickness which will support both
band gaps, as confirmed by 3D simulations. This allows us
to apply our results from 2D systems directly to the design
of 3D structures. There is a corresponding frequency shift
associated with the move to 3D that tends to reduce the
ratio of the mode frequencies (for instance, modes 2 and 5
can be maintained with a frequency ratio of 1.16 and
quality factors of 103 in the same slab, compared to a ratio
of 1.20 in 2D). Operation in the strong coupling regime
defined in Ref. [13] requires that the effective Rabi oscil-
lation period be greater than the effective photon cavity
lifetime. The Rabi oscillation frequency is given by [13]

@� ¼ �0

�
@

2�0

�
3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!a!b!c

n2an
2
bn

2
cVaVbVc

s Z
dV�ð2Þ

ijkE
i
aE

j
bE

k
c;

(2)

where �ð2Þ
ijk is the nonlinear susceptibility tensor, Ea;b;c and

Va;b;c represent the spatial parts of the modes a, b, c
normalized such that their maximum value is 1, and the
mode volumes, respectively. Making the same assumptions
as those given in Ref. [13] (Vc ¼ fcVa, fc is 1–100, �b �
1:5 �m), the Rabi oscillation period depends only on the
number of photons in the third (coherent state) mode, and
the effective photon lifetime can be calculated from the
cavity quality factors. This leads to the estimate that the
strong coupling regime could be reached in our cavities
with an average of 109 photons in the third mode, popu-
lated by a weakly confined laser beam. In this case,
the conversion efficiency for the photons at the frequency
of interest (i.e., those in mode a) is given by
�ab ¼ �b=ð�a þ �bÞ, where �ab is the efficiency with
which photons in mode a are converted to photons in
mode b, and �a;b is the decay rate of cavity a, b.

In conclusion, we have demonstrated that photonic crys-
tals based on quasiperiodic lattices can support multiple
band gaps at frequencies more closely spaced than those in
periodic lattices due to the presence of multiple Bragg
scattering length scales. By taking advantage of this unique
structure, we were able to identify defect cavities in the
eightfold symmetric quasicrystal lattice that possess mul-
tiple spatially overlapping modes, and apply our 2D results
to the design of full 3D slab structures. We expect that this
design can be further optimized by fine-tuning the hole
positions and sizes near the defect [32]. Once fabricated in
a highly nonlinear material such as GaAs or GaP, these
cavities are promising candidates for achieving efficient
on-chip frequency conversion.
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