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Based on the misleading expectation that weighted network properties always offer a more complete description
than purely topological ones, current economic models of the International Trade Network (ITN) generally aim
at explaining local weighted properties, not local binary ones. Here we complement our analysis of the binary
projections of the ITN by considering its weighted representations. We show that, unlike the binary case, all
possible weighted representations of the ITN (directed and undirected, aggregated and disaggregated) cannot be
traced back to local country-specific properties, which are therefore of limited informativeness. Our two papers
show that traditional macroeconomic approaches systematically fail to capture the key properties of the ITN. In
the binary case, they do not focus on the degree sequence and hence cannot characterize or replicate higher-order
properties. In the weighted case, they generally focus on the strength sequence, but the knowledge of the latter
is not enough in order to understand or reproduce indirect effects.
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I. INTRODUCTION

In this paper we extend our analysis of the binary projection
of the International Trade Network (ITN) reported in the
previous paper [1] to the weighted representation of the same
network. As in the binary case, we employ a recently proposed
randomization method [2] to assess in detail the role that
local properties have in shaping higher-order patterns of the
weighted ITN in all its possible representations (directed or
undirected, aggregated or disaggregated) and across several
years. In the weighted case, we employ a null model that
preserves on average the strengths of the vertices only. More
specifically, when the network is undirected, node strength is
preserved on average, whereas when the network is directed,
in- and out-strengths are conserved separately on average.
From a trade perspective, this means that the null model
controls for country total trade in the undirected case, and
for country total imports and exports (as a share of total world
yearly trade) in the directed case. This implies that degrees
are not preserved on average in either case. For example, in
the undirected case, a country preserves on average (over all
graphs accounted for by the null model) its total observed trade
flow, but not its observed number of partners. Preserving total
trade and number of partners simultaneously for each country
is a more severe constraint that goes beyond the scope of this
paper, since it would not allow us to compare our results with
well-established international-economics approaches that take
only total trade, and not the number of partners, into account.

We find that, unlike the binary case, higher-order patterns of
weighted (either directed or undirected, either aggregated or
disaggregated) representations of the ITN cannot be merely
traced back to local properties alone (i.e., node strength
sequences). In particular, when compared to its randomized

variants, the observed weighted ITN displays a different and
sparser topology (despite that the ITN is usually considered
denser than most studied networks), stronger disassortativ-
ity, and larger clustering. As sparser and less aggregated
commodity-specific representations are considered, the accor-
dance between the real and randomized networks gets even
worse. All these results hold for both undirected and directed
projections and are robust throughout the time interval we
consider (from year 1992 to 2002).

From an international-trade perspective, our results indicate
that a weighted network description of trade flows, by focusing
on higher-order properties in addition to local ones, captures
novel and fresh evidence. Therefore, traditional analyses
of country trade profiles focusing only on local properties
and country-specific statistics convey a partial description of
the richness and details of the ITN architecture. Moreover,
economic models and theories that aim at only explaining the
local properties of the weighted ITN (i.e., the total values of
imports and exports of world countries) are limited, as such
properties have no predictive power on the rest of the structure
of the network.

We refer the reader to the companion paper [1] for a
description of the data, the notation used, the meaning and
economic importance of local topological properties, and the
randomization method that we have adopted.

II. THE ITN AS A WEIGHTED UNDIRECTED NETWORK

The weighted representation of the ITN takes into account
the intensity (dollar value) of trade relationships and can be
either directed or undirected. The structure of the network
is completely specified by the weight matrix W, whose
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entries {wij } have been defined in Ref. [1] in the directed
and undirected case. In the weighted undirected case, an
edge between vertices i and j represents the presence of
at least one of the two possible trade relationships between
the two countries i and j , and the weight wij represents the
average trade value (or equivalently half the total bilateral trade
value) [1]. Clearly, if no trade occurs in either direction, then
wij = 0 and no link exists. The weight matrix W is therefore
symmetric: wij = wji . One can still define an adjacency matrix
A, describing the purely binary topology of the network, with
entries aij = �(wij ) where �(x) = 1 if x > 0 and �(x) = 0
otherwise. Clearly the symmetry of W implies the symmetry
of A.

In the case considered, the local constraints {Ca} are the
strengths of all vertices, i.e., the strength sequence {si} [1]. The
randomization method we adopted [2] proceeds in this case
by specifying the constraints {Ca} ≡ {si} (see Appendix A)
and yields the ensemble probability of any weighted graph G,
which now is uniquely specified by its generic weight matrix
W. For any weighted topological property X, it is therefore
possible to easily obtain the expectation value 〈X〉 across
the ensemble of weighted undirected graphs with specified
strength sequence. By construction, the expected strength 〈si〉
across the randomized ensemble is equal to the empirical
value si , and therefore in the weighted undirected case the
strength values {si} are the natural independent variables in
terms of which other weighted properties X can be visualized.
By contrast, other properties such as the degree of vertices,
and consequently the total number of links, are not preserved
on average.

In our analysis we first use the matrix W, and the strength
sequence {si} obtained from it, as the starting point for
the randomization method. However, as we mentioned in
the companion paper [1], in order to allow a consistent
temporal analysis we need to focus on the rescaled weights
w̃ij ≡ wij/wtot, where wtot = ∑

i

∑
j<i wij is the total yearly

weight. Consistently we define the rescaled strength

s̃i ≡
∑

j �=i

w̃ij = si

wtot
, (1)

and we similarly use w̃ij instead of wij in the definition of all
other weighted topological quantities. This procedure allows
for homogeneous comparisons between real and randomized
webs, and across different years and commodities. In particu-
lar, it filters out the increase of world trade in nominal terms.
Note that, across the randomized ensemble, wtot is a random
variable, since so are the weights wij . However, we can rewrite
wtot = ∑

i si/2, and since 〈si〉 = si we have

〈wtot〉 =
∑

i〈si〉
2

=
∑

i si

2
= wtot. (2)

The above result shows that the expectation value of the total
weight across the randomized ensemble is constrained by the
method to be strictly equal to the observed value wtot. In other
words, the constraint on the strengths is automatically reflected
also in a constraint on the total weight, and we can therefore
use the the latter to rescale all weights, both in the real network
and in its randomized variants.

In economic terms, specifying the strength sequence
amounts to investigating the properties of the trade network

once total trade of all countries is controlled for. It must be
noticed that, by controlling for the strength of vertices, one
automatically takes at least partially on board considerations
related to country-size effects. Indeed, it is common wisdom
that bilateral trade flows, and therefore weighted network
statistics, should depend on (at the very least) country-specific
variables like country gross-domestic product (GDP) and some
additional pairwise factors like geographical distance [3,4].
Since total trade (and total imports or exports) are known to
be positively and strongly correlated with country GDP, our
analysis already controls for some size effect. As we discuss in
the concluding remarks, a further exercise to be carried out may
concern understanding the extent to which other determinants
of trade (such as distance) may explain the observed properties
of the ITN, i.e., building more economically meaningful
models of trade that start explaining ITN properties rather
than statistically reproducing them only.

A. Edge weights

We start with the analysis of the completely aggregated
network (i.e., c = 0 according to our notation described
in Ref. [1]). Therefore, in the following formulas, we set
W ≡ W0 and drop the superscript for brevity. Our aim is
to understand how specifying the strength sequence affects
higher-order network properties. Therefore we will consider
the weighted counterparts of the topological properties we
have already studied in the binary case [1]. However, due to
the larger number of degrees of freedom, in the weighted case
there are also additional quantities to study that have no binary
analog. In particular, it is important to understand the effect that
the enforcement of local constraints (strength sequence) has
on the weights of the network, as well as on its purely binary
topology. It is useful to perform this analysis as a preliminary
step, before discussing other results.

To this end, we start by comparing the empirical weight
distribution with the expected one. Importantly, one should not
confuse the expected weight distribution with the distribution
of expected weights. In the spirit of our analysis, the empirical
network (and so its weight distribution) is regarded as a
particular possible realization of the null model with given
strengths, and the comparison with the expected properties
aims at assessing how unlikely that particular realization is.
Therefore the observed number of edges with weight equal to
w (i.e., the empirical weight distribution) should be compared
with the expected number of such edges in a single realization
(the expected weight distribution), rather than with the number
of edges whose expected weight across realizations is equal
to w (the distribution of expected weights). The difference
between the two expected quantities is evidenced by the fact
that the expected edge weight between vertices is always
positive (see Appendix A), whereas in a single realization
there are a number of zero-weight edges (i.e., missing links).

In Fig. 1(a) we therefore compare the cumulative distribu-
tion of observed weights P<(w) (the fraction of edge weights
smaller than w) with the expected number 〈P<(w)〉 (see Ap-
pendix A), both including missing links (w = 0) and therefore
normalized to the number of pairs of vertices. As an alternative,
in Fig. 1(b) we also compare the cumulative distribution of
positive weights P +

< (w) (which excludes missing links and is
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FIG. 1. (Color online) Edge weights in the weighted undirected ITN. (a) Cumulative distributions of edge weights, for all years from
1992 (top) to 2002 (bottom). Orange (upper curves): real network; blue (lower curves): expectation for the maximum-entropy null model with
specified strengths. (b) Same as the previous panel, but excluding zero weights (missing links). Orange (dark gray): real network; green (light
gray): null model. (c) Percentage of missing links as a function of time. Red (upper points): real network; blue (lower points): null model.

therefore normalized to the total number of links) with the
expected number 〈P +

< (w)〉 (see Appendix A). We find that, for
all years in our time window, the real distributions are always
different from the expected ones. To rigorously confirm this,
we have performed Kolmogorov-Smirnov and Lilliefors tests,
and for all years we always had to reject the hypothesis that real
and expected distributions are the same (5% significance level).
For the positive weight distributions P +

< (w) and 〈P +
< (w)〉 we

also separately tested the hypothesis of the log-normality of
the distributions, and again we always had to reject it (5%
significance level).

The above results, besides highlighting large differences in
the weighted structure of real and randomized networks, also
convey important information about remarkable deviations
in their topology. The largest difference between the curves
P<(w) and 〈P<(w)〉 is found at w = 0, and the corresponding
points P<(0) and 〈P<(0)〉 represent the fractions %zeros and
〈%zeros〉 of zero weights (missing links) in the network. In
Fig. 1(c) we show the evolution of these fractions over time.
We find that the fraction of missing links in the real network
decreases in time over the time interval considered (i.e., the
link density increases), but its value is always much larger than
the corresponding expected value. Thus, despite it is usually
considered a very dense graph, with more links per node than
most other real-world networks, we find that the ITN turns out
to be surprisingly sparser than random weighted networks with
the same strength sequence. This fixes a previously unavailable
benchmark for the density of the empirical ITN and implies
that the high percentage of missing trade relations among
world countries is not explained by size effects (i.e., the total

trade value of all countries). Note that this result would be
trivial if we were considering trade magnitudes as real-valued,
rather than integer-valued, weights. For real-valued weights,
the volume of the configuration space (the number of networks
in the ensemble) would be infinite, and the probability
of networks with zero-valued weights would be zero. So,
topologically, almost all networks in the random ensemble
would be complete graphs, making every real network sparser
than (or at most as sparse as) its randomized counterpart.
Instead, in our analysis we consider integer-valued weights
(as discussed in detail when presenting our data and methods
in the companion paper [1]) reflecting more correctly the fact
that money has indivisible units. This always gives a positive
probability qij (0) > 0 (see Appendix A) to missing links, and
as a result the expected density of links is always smaller than
one.

In what follows, we study the effects of the strength
sequence on higher-order topological properties, in analogy
with our binary analysis [1]. We first report detailed results
for the 2002 snapshot of the commodity-aggregated network
(Secs. II B and II C), then consider the temporal evolution
of the aggregated network (Sec. II D), and finally perform a
commodity-specific analysis (Sec. II E).

B. Average nearest-neighbor strength

We start with the weighted counterpart of the aver-
age nearest-neighbor degree (ANND), i.e., the average
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FIG. 2. (Color online) Average nearest-neighbor strength s̃nn
i

versus strength s̃i in the 2002 snapshot of the real weighted undirected
ITN (red points), and corresponding average over the maximum-
entropy ensemble with specified strengths (blue solid curve).

nearest-neighbor strength (ANNS) of vertex i, defined as

s̃nn
i ≡

∑
j �=i aij s̃j

ki

=
∑

j �=i

∑
k �=j aij w̃jk∑

j �=i aij

. (3)

The ANNS measures the average strength of the neighbors of
a given vertex. Similarly to the ANND, the ANNS involves
indirect interactions of length 2, however (as happens for
most weighted quantities), mixing both weighted and purely
topological information: in particular, terms of the type aij w̃jk

appear in the definition.
The correlations between the strength of neighboring

countries can be inspected by plotting s̃nn
i versus s̃i . This

is shown in Fig. 2. Even if the points are now significantly
more scattered, we find a decreasing trend as previously
observed for the corresponding binary quantities [1]. This
trend signals that highly trading countries trade typically with
poorly trading ones (and vice versa), confirming on a weighted
basis the disassortative character observed at the binary level.
However, in this case the null model behaves in a completely
different way: Over the randomized ensemble with specified
strength sequence, the expectation value 〈s̃nn

i 〉 of the ANNS
(see Appendix A) decreases over a much narrower range (see
Fig. 2) and is always different from the observed value.

This important results implies that, even if we observe
disassortativity in both cases (binary and weighted), we find
that in the binary case this property is completely explained
by the degree sequence, whereas in the weighted case it is not
explained by the strength sequence. This has implications for
economic models of international trade: While no theoretical
explanation is required in order to explain why poorly
connected countries trade with highly connected ones on a
binary basis (once the number of trade partners is specified),
additional explanations are required in order to explain the
same phenomenon at a weighted level, even after controlling
for the total trade volumes of all countries. This result could
look counterintuitive, as a simple visual inspection would
suggest that in the binary case the disassortative behavior is in
absolute terms less noisy, and sometimes more pronounced,
than in the weighted one.
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FIG. 3. (Color online) Weighted clustering coefficient c̃i versus
strength s̃i in the 2002 snapshot of the real weighted undirected ITN
(red points), and corresponding average over the maximum-entropy
ensemble with specified strengths (blue solid curve).

C. Weighted clustering coefficient

We now consider the weighted version of the clustering
coefficient. In particular, we choose the definition proposed
in Ref. [5], which has a more direct extension to the directed
case [6]. According to that definition, the (rescaled) weighted
clustering coefficient c̃i represents the intensity of the triangles
in which vertex i participates:

c̃i ≡
∑

j �=i

∑
k �=i,j (w̃ij w̃jkw̃ki)1/3

ki(ki − 1)
,

(4)

=
∑

j �=i

∑
k �=i,j (w̃ij w̃jkw̃ki)1/3

∑
j �=i

∑
k �=i,j aij aik

.

Note that c̃i takes into account indirect interactions of length
3, corresponding to products of the type w̃ij w̃jkw̃ki appearing
in the above formula. In Fig. 3 we plot c̃i versus s̃i . This
time we find an increasing trend of c̃i as a function of s̃i ,
indicating that countries with larger total trade participate in
more intense trade triangles. We also show the trend followed
by the randomized quantity 〈c̃i〉 (see Appendix A), which is
found to approximately reproduce the empirical data. Despite
the partial accordance between the clustering profile of real
and randomized networks, the total level of clustering of the
real ITN is, however, larger than its randomized counterpart,
as we show below (Sec. II D) for all the years considered.

D. Evolution of weighted undirected properties

The results we have reported above are qualitatively similar
for each of the 11 snapshots of the ITN from year 1992 to
2002. As for our binary analyses [1], we can therefore com-
pactly describe the temporal evolution of weighted undirected
properties in terms of simple indicators.

We start with the analysis of the ANNS (Fig. 4). In Fig. 4(a)
we report the average (across vertices) and the associated
95% confidence interval of both real and randomized values
({s̃nn

i } and {〈s̃nn
i 〉}) as a function of time. We find that the

average of s̃nn
i has been first decreasing rapidly and has then

remained almost constant. This behavior is already clean from
trends in the total volume of trade, since all weights have
been rescaled and divided by wtot. By contrast, the average
of the randomized quantity 〈s̃nn

i 〉 displays a constant trend
throughout the time interval considered, and its value is always
significantly smaller than the empirical one. Thus, unlike the
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FIG. 4. (Color online) Temporal evolution of the properties of the (rescaled) average nearest-neighbor strength s̃nn
i in the 1992–2002

snapshots of the real weighted undirected ITN and of the corresponding null model with specified strengths. (a) Average of s̃nn
i across all

vertices (red, upper symbols: real data; blue, lower symbols: null model). (b) Standard deviation of s̃nn
i across all vertices (red, upper symbols:

real data; blue, lower symbols: null model). (c) Correlation coefficient between s̃nn
i and s̃i (red, upper symbols: real data; blue, lower symbols:

null model). (d) Correlation coefficient between s̃nn
i and 〈s̃nn

i 〉. The 95% confidence intervals of all quantities are represented as vertical bars.
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FIG. 5. (Color online) Temporal evolution of the properties of the (rescaled) weighted clustering coefficient c̃i in the 1992–2002 snapshots
of the real weighted undirected ITN and of the corresponding null model with specified strengths. (a) Average of c̃i across all vertices (red,
upper symbols: real data; blue, lower symbols: null model). (b) Standard deviation of c̃i across all vertices (red, upper symbols: real data; blue,
lower symbols: null model). (c) Correlation coefficient between c̃i and s̃i (red, initially lower symbols: real data; blue, initially upper symbols:
null model). (d) Correlation coefficient between c̃i and 〈c̃i〉. The 95% confidence intervals of all quantities are represented as vertical bars.
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binary case, the null model does not reproduce the average
values of the correlations considered and does not capture
their temporal evolution. A similar behavior is observed for
the evolution of the standard deviation of the ANNS across
vertices [Fig. 4(b)]. In Fig. 4(c) we show the correlation
coefficient between the empirical quantities {s̃nn

i } and {s̃i},
whose value (fluctuating around −0.4) compactly summarizes
the disassortativity of the noisy scatter plot that we have shown
previously in Fig. 2, and the correlation coefficient between the
randomized quantities {〈s̃nn

i 〉} and {〈s̃i〉} = {s̃i}, which instead
displays a different value close to −1 (due to the noise-free,
even if much weaker, decrease of the randomized curve in
Fig. 2). The discrepancy between the null model and the real
network is finally confirmed by the small correlation between
{s̃nn

i } and {〈s̃nn
i 〉} [Fig. 4(d)], which is in marked contrast with

the perfect correlation between {knn
i } and {〈knn

i 〉} we found in
the binary case.

In Fig. 5 we report a similar analysis for the evolution
of the weighted clustering coefficient. We find that, despite
the partial accordance of the real and randomized clustering
profiles shown in Fig. 3, the average level of clustering of
the real network is always higher than its randomized variant
[Fig. 5(a)], even if the two values have become closer through
time. The same is true for the standard deviation of the
weighted clustering coefficient [Fig. 5(b)]. We also find that
the correlation coefficient between the empirical quantities
{c̃i} and {s̃i} [Fig. 5(c)] has rapidly increased between the
years 1992 and 1995 (from about 0.5 to more than 0.95) and
has then remained stable in time. This indicates that the scatter
plot shown in Fig. 3 for the year 2002 becomes noisier in the
first snapshots of our time window, as we confirmed through
an explicit inspection (not shown). By contrast, the correlation
coefficient between the randomized quantities {〈c̃i〉} and
{〈s̃i〉} = {s̃i} displays much smaller variations about the value
0.85 and is therefore initially larger, and eventually smaller,
than the corresponding empirical value. Finally, in Fig. 5(d) we
show the correlation coefficient between {c̃i} and {〈c̃i〉}. The
increasing trend confirms the growing agreement between the
real and randomized clustering coefficients, already suggested
by the previous plots. Note, however, that even two perfectly
correlated lists of values (correlation coefficient equal to 1)
are equal only if their averages are the same (otherwise they
are simply proportional to each other). Thus large correlation
coefficients between two quantities can be interpreted only in
conjunction with a comparison of the average values of the
same quantities. While in the binary case we simultaneously
found perfect correlation and equal average values between
real and randomized quantities [1], in this case we find
large correlation but different average values, systematically
confirming only a partial accordance between the real network
and the null model.

E. Commodity-specific weighted undirected networks

We now focus on the disaggregated commodity-specific
versions of the weighted undirected ITN, representing the
trade of single classes of products. We therefore repeat the
previous analyses after setting W ≡ Wc for various individual

commodities c > 0. As we did for the binary case [1], we show
our results for a subset of 6 commodities taken from the top
14 categories, namely, the two commodities with the smallest
traded volume (c = 93,9), two ones with intermediate volume
(c = 39,90), the one with the largest volume (c = 84), plus the
aggregation of all the top 14 commodities (similar results hold
also for the other commodities). Together with the completely
aggregated data (c = 0) considered above, this data set consists
of seven networks with increasing trade volume and level of
aggregation.

In Fig. 6 we show the scatter plot of the average nearest-
neighbor strength as a function of the strength. Similarly, in
Fig. 7 we report the scatter plot for the weighted clustering
coefficient. Both are shown for the 2002 snapshots of the
six commodity-specific networks. When compared with the
aggregated network (shown previously in Figs. 2 and 3),
these results lead to interesting conclusions. In general, as
happens in the binary case [1], we find that commodities
with a lower traded volume feature more dispersed scatter
plots, with larger fluctuations of the empirical data around
the average trend. The effect is more pronounced here than
in the binary case. However, while in the latter the real
networks are always well reproduced by the null model, in
the weighted case the disagreement between empirical and
randomized data remains strong across different levels of
commodity aggregation. Moreover, the weighted clustering
coefficient is the quantity that displays the largest differences
between aggregated and disaggregated networks. We see
that, for all commodity classes considered, the observed
weighted clustering coefficient is generally larger than its
randomized counterpart. However, the deviation is larger for
sparser commodities, and decreases as commodity classes
with larger trade volumes and higher levels of aggregation
are considered. This shows that the partial agreement between
real and randomized networks in the completely aggregated
case (see Fig. 3) is not robust to disaggregation. In other
words, the accordance between empirical data and null model,
which according to our discussion in Sec. II D is already
incomplete in the aggregated case, becomes even worse for
sparser commodity-specific networks.

The above results confirm that, unlike the binary case,
the properties of the weighted undirected version of the ITN
are not completely reproduced by simply controlling for the
local properties. The presence of higher-order mechanisms
is required as an explanation for the onset and evolution of
the observed patterns. This result holds across different years
and is enhanced as lower levels of commodity aggregation
are considered. This shows that a weighted network approach
to the analysis of international trade conveys additional
information with respect to traditional economic studies that
describe trade in terms of local properties alone (total trade,
openness, etc.) [7]. Interestingly, a major deviation between
the real network and the null model is in the topology implied
by local constraints. This confirms, from a different point
of view, that in order to properly understand the structure
of the international trade system is essential to reproduce
its binary topology, even if one is interested in a weighted
description.

046118-6



RANDOMIZING WORLD TRADE. II. A WEIGHTED . . . PHYSICAL REVIEW E 84, 046118 (2011)

10 5 0.001 0.1

0.05

0.10

0.15

0.20

0.25

s

snn
,

snn

(a)

10 7 10 6 10 5 10 40.0010.01 0.1
     0

0.02

0.04

0.06

0.08

0.10

0.12

s

snn
,

snn

(b)

10 6 10 4 0.01
     0

0.02

0.04

0.06

0.08

0.10

s

snn
,

snn

(c)  

10 7 10 5 0.001 0.1

0.05

0.10

0.15

0.20

s

snn
,

snn

(d)

10 7 10 6 10 5 10 4 0.001 0.01 0.1

0.02

0.04

0.06

0.08

s

snn
,

snn

(e)

10 6 10 5 10 4 0.001 0.01 0.1

0.02

0.03

0.04

0.05

s

snn
,

snn

(f)

     0

FIG. 6. (Color online) Average nearest-neighbor strength s̃nn
i versus strength s̃i in the 2002 snapshots of the commodity-specific

(disaggregated) versions of the real weighted undirected ITN (red points), and corresponding average over the maximum-entropy ensemble
with specified strengths (blue solid curves). (a) Commodity 93; (b) commodity 09; (c) commodity 39; (d) commodity 90; (e) commodity 84;
(f) aggregation of the top 14 commodities (see Ref. [1] for details). From (a) to (f), the intensity of trade and level of aggregation increases.

III. THE ITN AS A WEIGHTED DIRECTED NETWORK

We now turn to the weighted directed analysis of the ITN. A
single graph G in the ensemble of weighted directed networks
is completely specified by its generic weight matrix W, which
is in general not symmetric, and whose entry wij represents
the intensity of the directed link from vertex i to vertex j

(wij = 0 if no directed link is there). The binary adjacency A,
with entries aij = �(wij ), is in general not symmetric as well.
The out-strength sequence {sout

i } and the in-strength sequence
{s in

i } represent the local constraints {Ca} in the weighted
directed case [1]. The randomization method [2] yields the
expectation value 〈X〉 of a property X across the maximally
random ensemble of weighted directed graphs with in-strength
and out-strength sequences equal to the observed ones (see
Appendix B). The quantities {sout

i } and {s in
i } (or combinations

of them) are now the natural independent variables against
which other properties can be visualized in both the real and

randomized case, since their expected value coincides with the
observed one by construction.

As for the weighted undirected case, we will consider the
rescaled weights w̃ij = wij/wtot (where wtot = ∑

i

∑
j �=i wij )

in order to wash away trends due to an overall change in the
volume of trade across different years. Correspondingly we
consider the rescaled strengths:

s̃out
i ≡

∑

j �=i

w̃ij = sout
i

wtot
, (5)

s̃ in
i ≡

∑

j �=i

w̃ji = s in
i

wtot
, (6)

and we analogously use w̃ij instead of wij in the definition
of all quantities. Note that wtot = ∑

i s
in
i = ∑

i s
out
i , and since

〈s in
i 〉 = s in

i and 〈sout
i 〉 = sout

i we have

〈wtot〉 =
∑

i

〈
s in
i

〉 =
∑

i

s in
i = wtot. (7)
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FIG. 7. (Color online) Weighted clustering coefficient c̃i versus strength s̃i in the 2002 snapshots of the commodity-specific (disaggregated)
versions of the real weighted undirected ITN (red points), and corresponding average over the maximum-entropy ensemble with specified
strengths (blue solid curves). (a) Commodity 93; (b) commodity 09; (c) commodity 39; (d) commodity 90; (e) commodity 84; (f) aggregation
of the top 14 commodities (see Ref. [1] for details). From (a) to (f), the intensity of trade and level of aggregation increases.

Therefore, as for the undirected case, the expected value of
wtot coincides with its empirical value, and the total weight
can therefore be safely used to rescale the weights of both real
and randomized networks.

A. Directed edge weights

As we did in Sec. II A for the weighted undirected case, we
first study the consequences that the specification of the in-
and out-strength sequences has on the weights of the network
and on its density.

In Fig. 8(a) we show the cumulative distribution of
observed weights P<(w) (including missing links with w = 0)
and its randomized counterpart 〈P<(w)〉 (see Appendix B).
Similarly, in Fig. 8(b) we show the cumulative distribution of
observed positive weights P +

< (w) (excluding missing links)
and the randomized one 〈P +

< (w)〉 (see Appendix B). As in
the undirected case, we find that the empirical distributions
are always different from the randomized ones, and we
confirmed that the hypothesis of equality of real and expected
distributions is always rejected by both Kolmogorov-Smirnov

and Lilliefors tests (5% significance level). Similarly, the
hypothesis of log-normality of the positive weight distributions
P +

< (w) and 〈P +
< (w)〉 is always rejected (5% significance

level).
In this case too, we can monitor the important difference

between the topological density of the real and randomized
ITN by plotting the fractions of missing links %zeros = P<(0)
and 〈%zeros〉 = 〈P<(0)〉 as a function of time [Fig. 8(c)]. Even
if the difference is smaller than in the undirected case, we can
confirm on a directed basis that, despite it is usually considered
a dense graph, the observed ITN is surprisingly sparser than
random directed weighted networks with the same in- and out-
strength sequences. Thus the density of (missing) links in the
real trade network is not accounted for by size considerations
(total imports and total exports of world countries). Again, our
use of integer-valued weights ensures that this is not a trivial
effect, since the probability qij (0) of missing links is always
positive (see Appendix B), and the expected density of links
is always strictly smaller than one.

As usual, in what follows we compare higher-order topo-
logical properties of the ITN with our null model. We first
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FIG. 8. (Color online) Edge weights in the weighted directed ITN. Red (light gray, upper curves and points): real network; blue (dark
gray, lower curves and points): expectation for the maximum-entropy ensemble with specified out-strengths and in-strengths. (a) Cumulative
distributions of edge weights in all years from 1992 (top) to 2002 (bottom). (b) Same as the previous panel, but excluding zero weights (missing
links). (c) Percentage of missing links as a function of time.

consider the aggregated snapshot for year 2002 in more detail,
then discuss the temporal evolution of the results, and finally
perform a study of disaggregated networks.

B. Directed average nearest-neighbor strengths

We consider four generalizations of the definition of the
average nearest-neighbor strength of a vertex in a directed
weighted network:

s̃ in/in
i ≡

∑
j �=i aji s̃

in
j

kin
i

=
∑

j �=i

∑
k �=j ajiw̃kj∑

j �=i aji

, (8)

s̃ in/out
i ≡

∑
j �=i aji s̃

out
j

kin
i

=
∑

j �=i

∑
k �=j ajiw̃jk∑

j �=i aji

, (9)

s̃out/in
i ≡

∑
j �=i aij s̃

in
j

kout
i

=
∑

j �=i

∑
k �=j aij w̃kj∑

j �=i aij

, (10)

s̃out/out
i ≡

∑
j �=i aij s̃

out
j

kout
i

=
∑

j �=i

∑
k �=j aij w̃jk∑

j �=i aij

. (11)

Indirect interactions due to chains of length two (products
of the type aij w̃kl) contribute to the above quantities. A
fifth aggregated quantity, which is the natural analog of the
undirected ANNS, is based on the (rescaled) total strength
s̃ tot
i ≡ s̃ in

i + s̃out
i :

s̃ tot/tot
i ≡

∑
j �=i(aij + aji)s̃ tot

j

ktot
i

. (12)

As in the binary case [1], it must be noted that the total (in+out)
directed quantities such as s̃ tot

i and s̃ tot/tot
i are not trivially

related to, and carry more information than, the corresponding
undirected properties s̃i and s̃nn

i . In this case, the difference
between them is given by the weighted reciprocity structure
of the network. Unfortunately, there are no well-established
measures of reciprocity in the weighted case, and introducing
a weighted theory of reciprocity is beyond the scope of the
present paper. However, as in the binary case, it is still possible
for us to assess, by comparing undirected and total directed
weighted properties, whether the reciprocity structure of the
directed network changes the results obtained in the undirected
case.

In Fig. 9 we show s̃ tot/tot
i , together with its randomized value

〈s̃ tot/tot
i 〉 (obtained as in Appendix B), as a function of s̃ tot

i in the
aggregated snapshot for year 2002. There are no significant
differences with respect to Fig. 2, apart from a “double” series
of randomized values due to the two possible directions (the
terms aij and aji) that contribute to the definition of s̃ tot/tot

i

in Eq. (12). Thus we still observe a disassortative behavior
in the empirical network, which is not paralleled by the null
model. We now turn to the four directed versions of the ANNS
defined in Eqs. (8)–(11), as well as their randomized values
(see Appendix B). As shown in Fig. 10, we find that the four
empirical quantities all display the same disassortative trend,
whereas the four randomized ones are always approximately
flat (and no longer switch between two trends as in Fig. 9).
These results show that, as in the undirected representation,
the correlation properties of the directed weighted ITN deviate
significantly from the ones displayed by the null model with
specified strength sequences. In particular, the pronounced
disassortativity of the real network is a true signature of
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FIG. 9. (Color online) Total average nearest-neighbor strength
s̃ tot/tot
i versus total strength s̃ tot

i in the 2002 snapshot of the real
weighted directed ITN (red, upper points), and corresponding average
over the null model with specified out-strengths and in-strengths
(blue, lower points).

negative correlations between the total trade values (in any
direction) of neighboring countries, even after controlling for
the heterogeneities in the total trade values themselves. This
is in marked contrast with the binary case, where we showed
that the observed disassortativity is completely explained by
controlling for the empirical degree sequence [1].

C. Directed weighted clustering coefficients

In Figs. 11 and 12 we report a similar analysis for the
clustering coefficient. The four weighted versions of the

inward, outward, cyclic, and middleman directed clustering
coefficients considered in Ref. [1] read [6]

c̃in
i ≡

∑
j �=i

∑
k �=i,j (w̃kiw̃jiw̃jk)1/3

kin
i

(
kin
i − 1

) , (13)

c̃out
i ≡

∑
j �=i

∑
k �=i,j (w̃ikw̃jkw̃ij )1/3

kout
i

(
kout
i − 1

) , (14)

c̃
cyc
i ≡

∑
j �=i

∑
k �=i,j (w̃ij w̃jkw̃ki)1/3

kin
i kout

i − k↔
i

, (15)

c̃mid
i ≡

∑
j �=i

∑
k �=i,j (w̃ikw̃jiw̃jk)1/3

kin
i kout

i − k↔
i

. (16)

The above quantities capture indirect interactions of length
3 according to their directionality, appearing as products of the
type w̃ij w̃klw̃mn. A fifth measure aggregates all directions:

c̃tot
i ≡

∑
j �=i

∑
k �=i,j

(
w̃

1/3
ij +w̃

1/3
ji

)(
w̃

1/3
jk +w̃

1/3
kj

)(
w̃

1/3
ki +w̃

1/3
ik

)

2
[
ktot
i

(
ktot
i − 1

) − 2k↔
i

] .

We show the latter in Fig. 11, and the four directed quantities
defined in Eqs. (13)–(16) in Fig. 12. All properties are shown
together with their randomized values (see Appendix B),
and plotted against the natural independent variables (or
combinations of them). Again, there is no significant difference
with respect to the weighted undirected plot (Fig. 3), apart from
the switching behavior of 〈c̃tot

i 〉 between two trends as already
discussed for 〈s̃ tot/tot

i 〉. We find an approximate agreement
between real and randomized clustering profiles.
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FIG. 10. (Color online) Directed average nearest-neighbor strengths versus vertex strengths in the 2002 snapshot of the real weighted
directed ITN (red points), and corresponding averages over the null model with specified out-strengths and in-strengths (blue solid curves). (a)
s̃ in/in
i versus s̃ in

i ; (b) s̃ in/out
i versus s̃ in

i ; (c) s̃out/in
i versus s̃out

i ; (d) s̃out/out
i versus s̃out
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FIG. 11. (Color online) Total weighted clustering coefficient c̃tot
i

versus total strength s̃ tot
i in the 2002 snapshot of the real weighted

directed ITN (red, lighter points), and corresponding average over
the null model with specified out-strengths and in-strengths (blue,
darker points).

D. Evolution of weighted directed properties

In Figs. 13–16 we show the temporal evolution of the
structural properties considered. Figure 13 reports the average,
standard deviation, and correlation coefficients for s̃ tot/tot

i as a
function of time, and Fig. 14 reports (for brevity) only the
average of the four directed variants s̃ in/in

i , s̃ in/out
i , s̃out/in

i , s̃out/out
i .

We find that the detailed description offered by the directed
structural properties portrays a different picture with respect
to the undirected results shown in Fig. 4. In particular, we find
that the empirical trends are not always decreasing and the
randomized trends are not always constant, in contrast with
what previously observed for the undirected ANNS. Both the
empirical and randomized values of s̃ tot/tot

i [Fig. 13(a)] and
s̃out/in
i [Fig. 14(c)] display decreasing averages, whereas s̃ in/in

i

[Fig. 14(a)] and s̃ in/out
i [Fig. 14(b)] display constant randomized

values and first increasing, then slightly decreasing empirical
values. In addition, s̃out/out

i [Fig. 14(d)] displays a different
behavior where both real and randomized averages first
increase and then decrease. These fine-level differences are
all washed away in the undirected description considered in
Sec. II, signaling a loss of information like the one we also
observed in the binary case [1]. However, while in the latter
the null model was always in agreement with the empirical
data, here we always observe large deviations. In particular, the
averages and standard deviations of all empirical quantities are
different from their randomized counterparts, and the analysis
of the correlation coefficients confirms that the disassortative
behavior of the real network is robust in time, and its intensity
is systematically not reproduced by the null model.

Different considerations apply to the evolution of the
weighted directed clustering coefficients c̃tot

i , c̃in
i , c̃out

i , c̃cyc
i and

c̃mid
i , shown in Figs. 15 and 16. In this case we find that the

undirected trend we observed in Fig. 5 is still not representative
of the individual trends of the directed coefficients studied
here. However, the empirical and randomized values of the
latter are found to be closer here than in the undirected case,
and to follow similar temporal behaviors. The null model is
however only marginally consistent with the real network, and
the knowledge of the strength sequences remains of limited
informativeness.

E. Commodity-specific weighted directed networks

We finally come to the analysis of disaggregated
commodity-specific representations of the weighted directed
ITN. We show results for the usual subset of six commodity
classes ordered by increasing trade intensity ad level of
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FIG. 12. (Color online) Weighted clustering coefficients versus vertex strengths in the 2002 snapshot of the real weighted directed ITN (red
points), and corresponding averages over the null model with specified out-strengths and in-strengths (blue solid curves). (a) c̃in

i versus s̃ in
i ; (b)
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i versus s̃out

i ; (c) c̃
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i versus s̃ in
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FIG. 13. (Color online) Temporal evolution of the properties of the (rescaled) total average nearest-neighbor strength s̃ tot/tot
i in the 1992–2002

snapshots of the real weighted directed ITN and of the corresponding null model with specified out-strengths and in-strengths. (a) Average of
s̃ tot/tot
i across all vertices (red, upper symbols: real data; blue, lower symbols: null model). (b) Standard deviation of s̃ tot/tot

i across all vertices
(red, upper symbols: real data; blue, lower symbols: null model). (c) Correlation coefficient between s̃ tot/tot

i and s̃ tot
i (red: real data; blue: null

model, indistinguishable from real data). (d) Correlation coefficient between s̃ tot/tot
i and 〈s̃ tot/tot

i 〉. Vertical bars are 95% confidence intervals.

commodity aggregation, to which we can add the completely
aggregated case already discussed (again, we found similar
results for all commodities).

Figures 17 and 18 report the total average nearest-neighbor
strength and total weighted clustering coefficient as functions
of the total strength, for the six selected commodity classes
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FIG. 14. (Color online) Averages and their 95% confidence intervals (across all vertices) of the directed average nearest-neighbor strengths
in the 1992–2002 snapshots of the real weighted directed ITN (red, upper symbols), and corresponding averages over the maximum-entropy
ensemble with specified out-strengths and in-strengths (blue, lower symbols). (a) s̃ in/in

i ; (b) s̃ in/out
i ; (c) s̃out/in

i ; (d) s̃out/out
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FIG. 15. (Color online) Temporal evolution of the properties of the (rescaled) total weighted clustering coefficient c̃tot
i in the 1992–2002

snapshots of the real weighted directed ITN and of the corresponding null model with specified out-strengths and in-strengths. (a) Average of
c̃tot
i across all vertices (red, upper symbols: real data; blue, lower symbols: null model). (b) Standard deviation of c̃tot

i across all vertices (red,
upper symbols: real data; blue, lower symbols: null model). (c) Correlation coefficient between c̃tot

i and s̃ tot
i (red, upper symbols: real data; blue,

lower symbols: null model). (d) Correlation coefficient between c̃tot
i and 〈c̃tot

i 〉. The 95% confidence intervals of all quantities are represented
as vertical bars.

in year 2002. The corresponding plots for the aggregated
networks were shown previously in Figs. 9 and 11. We find
once again that, as more intensely traded commodities and

higher levels of aggregation are considered, the empirical
data become less scattered around their average trend. In
this case, the same effect holds also for the randomized
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FIG. 16. (Color online) Averages and their 95% confidence intervals (across all vertices) of the directed weighted clustering coefficients
in the 1992–2002 snapshots of the real weighted directed ITN (red, upper symbols), and corresponding averages over the null model with
specified out-strengths and in-strengths (blue, lower symbols). (a) c̃in

i ; (b) c̃out
i ; (c) c̃

cyc
i ; (d) c̃mid

i .
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FIG. 17. (Color online) Total average nearest-neighbor strength s̃ tot/tot
i versus total strength s̃ tot

i in the 2002 snapshots of the commodity-
specific (disaggregated) versions of the real weighted directed ITN (red, upper points), and corresponding average over the maximum-entropy
ensemble with specified out-strengths and in-strengths (blue, lower points). (a) Commodity 93; (b) commodity 09; (c) commodity 39; (d)
commodity 90; (e) commodity 84; (f) aggregation of the top 14 commodities (see Ref. [1] for details). From (a) to (f), the intensity of trade
and level of aggregation increases.

data. As for the weighted undirected case, and unlike the
binary representation, there is no agreement between empirical
networks and the null model. The accordance becomes even
worse as commodity classes with smaller trade volume and
lower level of aggregation are considered.

The above results extend to the directed case what we found
in the analysis of weighted undirected properties. In particular,
unlike the binary case, the knowledge of local properties
conveys only limited information about the actual structure of
the network. Higher-order properties are not explained by local
constraints, and indirect interactions cannot be decomposed to
direct ones. This holds irrespective of the commodity aggre-
gation level and the particular year considered. This implies
that a weighted network approach captures more information
than simpler analyses focusing on country-specific local
properties. Moreover, simple purely topological properties

such as link density are not reproduced by the null model. This
implies that, even in weighted analyses, the binary structure is
an important property to explain, because it is responsible of
major departures of the empirical network from the null model.
Therefore, both binary and weighted analyses highlight, for
completely different reasons, the importance of reproducing
the ITN topology and devoting it more consideration in models
of trade.

IV. CONCLUSIONS

In this paper and in the preceding one [1] we have derived
a series of results about the structure of the ITN and the role
that local topological properties have in constraining it. Our
findings are a priori unpredictable without a comparison with
a null model and can be summarized as follows.
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FIG. 18. (Color online) Total weighted clustering coefficient c̃tot
i versus total strength s̃ tot

i in the 2002 snapshots of the commodity-specific
(disaggregated) versions of the real weighted directed ITN (red, upper points), and corresponding average over the maximum-entropy ensemble
with specified our-strengths and in-strengths (blue, lower points). (a) Commodity 93; (b) commodity 09; (c) commodity 39; (d) commodity
90; (e) commodity 84; (f) aggregation of the top 14 commodities (see Ref. [1] for details). From (a) to (f) the intensity of trade and level of
aggregation increases.

In the binary description (in both the directed and
undirected cases), we found that specifying the degree
sequence(s) (a first-order topological property) is enough
to explain higher-order properties [1]. This result has two
consequences. First, it implies that all the observed patterns
(disassortativity, clustering, etc.) should not be interpreted
as genuine higher-order stylized facts and do not require
additional explanations besides those accounting for the
different specific numbers of trade partners of all countries.
Second, it indicates that the degree sequence encodes virtually
all the binary information and is therefore a key structural
property that economic models of trade should try to explain
in detail.

By contrast, in the weighted description (again, both in
the directed and undirected cases) specifying the strength
sequence(s) is not enough in order to reproduce the other
properties of the network. Therefore the knowledge of total

trade volumes of all countries is of limited informativeness.
A weighted network description of trade, by taking into
account indirect interactions besides direct ones, succeeds in
conveying additional, nontrivial information with respect to
standard economic analyses that explain international trade in
terms of local country-specific properties only. In particular,
in this case the disassortative character of the network and
the high level of clustering cannot be simply traced back
to the observed local trade volumes and require additional
explanations. Moreover, the purely binary topology of the
real trade network is different and sparser (despite the ITN
is traditionally considered an unusually dense network) than
the one predicted by the null model with the same strength
sequence.

Our results bear important consequences for the theory
of international trade. The most commonly used modeling
framework, i.e., that of gravity models [3,4], relies on the
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assumption that the intensity of trade between countries i and
j depends only on individual properties of i and j (e.g.,
their GDP) and on additional pairwise quantities relevant
to i and j alone (the distance between them plus other
factors either favoring or impeding trade). The irreducibility
of weighted indirect interactions to direct ones, that we have
shown above, implies that even if gravity models succeed in
reproducing the magnitude of isolated interactions, they may
fail to capture the complexity of longer chains of relationships
in the network. And in any case, gravity models generally
predict a fully connected network, i.e., no missing links.
As we have shown, much of the deviation between real
and randomized networks in the weighted case is precisely
due to differences in the bare topology. This means that,
in order to successfully reproduce the weighted properties
of the ITN, it is essential to correctly replicate its binary
structure, confirming (from a completely different perspective)
the importance of the latter. This explains why in other studies
the weighted properties of the aggregated ITN have been
replicated by specifying the strength and the degree of all
vertices simultaneously [8]. Even if it is not the focus of the
present work, the effects of a simultaneous specification of the
strength sequence and of the degree sequence can be studied
in more detail applying the same maximum-likelihood method
used here [2] by exploiting the analytical results available for
the corresponding maximum-entropy ensemble of weighted
graphs [9].

In the light of the above considerations, it is interesting to
mention a recent interesting analysis [10] where the weighted
properties of the ITN have been related to the GDP of
world countries, in analogy with the similar study carried
out by Garlaschelli and Loffredo [11] in the binary case.
In Ref. [10], it was shown that the empirical weights of
the ITN can be approximately replicated by a model which
exploits the GDP of a country to predict its strength. Such
a model is the continuous limit of the null model used here,
where the fundamental unit of weight approaches zero and
weights become real-valued, rather than integer-valued. As
we discussed above, such a model predicts fully connected
weighted networks, and its structure becomes therefore similar
to gravity models. Taken together, the results we presented
here and in the companion paper [1] clearly suggest that
a satisfactory minimal model relating the properties of the
weighted ITN to the GDP of world countries must not only
replicate the strengths (and weights) of vertices, but also the
degree sequence (and topology), and should therefore be a
combination of the models in Refs. [10] and [11]. Again, this
suggests the use of a maximum-entropy ensemble of weighted
graphs with fixed strength and degree sequences [9].

In general, our results indicate that theories and models
of international trade are incomplete if they focus only on
bilateral trade volumes and local weighted properties as in the
case of gravity models, and if they do not include the binary
topology of the ITN among the main empirical properties to
replicate.
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APPENDIX A: WEIGHTED UNDIRECTED PROPERTIES

In the weighted undirected case, each graph G is completely
specified by its (symmetric) non-negative weight matrix W.
The entries wij of this matrix are integer-valued, since so are
the trade values we consider [1]. The randomization method
we are adopting [2] proceeds by

(1) Specifying the strength sequence as the constraint:
{Ca} = {si}. The Hamiltonian therefore reads

H (W) =
∑

i

θisi(W) =
∑

i

∑

j<i

(θi + θj )wij , (A1)

and one can show [9] that this allows to write the graph
probability as

P (W) =
∏

i

∏

j<i

qij (wij ), (A2)

where

qij (w) = (xixj )w(1 − xixj ) (A3)

(with xi ≡ e−θi ) is the probability that a link of weight w exists
between vertices i and j in the maximum-entropy ensemble
of weighted undirected graphs, subject to specifying a given
strength sequence as the constraint.

(2) Solving the maximum-likelihood equations, by setting
the parameters {xi} to the values that maximize the likelihood
P (W∗) [2] to obtain the real network. These values can be
found as the solution of the following set of N coupled
nonlinear equations [12]:

〈si〉 =
∑

j �=i

xixj

1 − xixj

= si(W∗) ∀i, (A4)

where {si(W∗)} is the empirical strength sequence of the
particular real network W∗. With this choice, Eq. (A3) yields
the exact value of the connection probability in the ensemble of
randomized weighted networks with the same average strength
sequence as the empirical one.

(3) Computing the probability coefficients qij (w), by insert-
ing the maximum-likelihood values {xi} into Eq. (A3), which
allows one to easily compute the expectation value 〈X〉 of any
topological property X analytically, without generating the
randomized networks explicitly [2]. Equation (A4) shows that,
by construction, the strengths of all vertices are special local
quantities whose expected and empirical values are exactly
equal: 〈si〉 = si .

(4) Computing he expectation values of higher-order topo-
logical properties, as in Table I. The expressions are derived
exploiting the fact that 〈wij 〉 = ∑

w wqij (w) = xixj /(1 −
xixj ), and that different pairs of vertices are statistically
independent, which implies 〈wijwkl〉 = 〈wij 〉〈wkl〉 if (i − j )
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and (k − l) are distinct pairs of vertices, whereas 〈wijwkl〉 =
〈w2

ij 〉 if (i − j ) and (k − l) are the same pair of vertices. Note
that we calculate the expected value of the power of the weight
between vertices i and j analytically as follows:

〈
wα

ij

〉 ≡
∑

w

wαqij (w) = (1 − xixj )Li−α(xixj ), (A5)

where Lin(z) denotes the polylogarithm function defined as

Lin(z) ≡
∞∑

l=1

zl

ln
. (A6)

In this paper, we use the above exact expression instead of
the approximation 〈wα

ij 〉 ≈ 〈wij 〉α suggested in the original
paper introducing the method [2]. The adjacency matrix
representing the existence of a link (irrespective of its intensity)
between vertex i and vertex j is derived from the weight
matrix by setting aij = �(wij ), where �(x) = 1 if x > 0 and
�(x) = 0 otherwise. The probability that vertices i and j are
connected, irrespective of the edge weight, is now 〈aij 〉 =
pij ≡ 1 − qij (0) = xixj . In analogy with the expectation
values of products of weights, we have 〈aij akl〉 = pijpkl if
(i − j ) and (k − l) are distinct pairs of vertices, whereas
〈aij akl〉 = 〈a2

ij 〉 = 〈aij 〉 = pij if (i − j ) and (k − l) are the
same pair of vertices. Finally note that we are interested in
studying the quantities obtained using the rescaled weights
w̃ij = wij/wtot. This does not introduce complications, since
〈wtot〉 = wtot as we have shown in Eq. (2). However, the
parameters {xi} are computed as in Eq. (A4) before rescaling
the strengths, since the original integer weights wij are the
actual degrees of freedom.

APPENDIX B: WEIGHTED DIRECTED PROPERTIES

In the weighted directed case, the above results can be
generalized as follows. Each graph G is completely specified
by its non-negative (integer-valued) weight matrix W, which
now is in general not symmetric. The maximum-likelihood
randomization method [2] proceeds in this case by

(1) Specifying both the in-strength and the out-strength se-
quences as the constraints: {Ca} = {s in

i ,sout
i }. The Hamiltonian

takes the form

H (W) =
∑

i

[
θ in
i s in

i (W) + θout
i sout

i (W)
]
. (B1)

The above choice leads to the graph probability [2]

P (W) =
∏

i

∏

j �=i

qij (wij ), (B2)

where

qij (w) = (xiyj )w(1 − xiyj ) (B3)

(with xi ≡ e−θout
i and yi ≡ e−θ in

i ) is the probability that a link
of weight w exists from vertex i to vertex j in the maximum-
entropy ensemble of weighted directed graphs with specified
in- and out-strength sequences.

(2) Solving the maximum-likelihood equations, by setting
the parameters {xi} and {yi} are to the values that maximize
the likelihood P (W∗) [2] to obtain the real network. These
values are found as the solution of the following set of 2N

coupled nonlinear equations [12]:

〈
sout
i

〉 =
∑

j �=i

xiyj

1 − xiyj

= sout
i (W∗) ∀i, (B4)

〈
s in
i

〉 =
∑

j �=i

xj yi

1 − xjyi

= s in
i (W∗) ∀i, (B5)

where {s in
i (W∗)} and {sout

i (W∗)} are the empirical in- and
out-strength sequences of the particular real directed weighted
network W∗. Then Eq. (B3) yields the exact value of the
connection probability in the ensemble of randomized directed
weighted graphs with the same average strength sequences as
the empirical ones.

(3) Computing the probability coefficients qij (w), by in-
serting the maximum-likelihood values {xi} and {yi} into
Eq. (B3), which allows one to obtain the expectation value
〈X〉 of any topological property X analytically, avoiding the
numerical generation of the random ensemble [2]. Now, by
construction, the in-strengths and out-strengths of all vertices
are special local quantities whose expected and empirical
values are exactly equal: 〈s in

i 〉 = s in
i and 〈sout

i 〉 = sout
i as shown

in Eq. (B5).
(4) Computing the expectation values of higher-order topo-

logical properties as in Table I, obtained using the same
prescriptions as in the undirected case, with two differences.
The first one is that now

〈
wα

ij

〉 ≡
∑

w

wαqij (w) = (1 − xiyj )Li−α(xiyj ), (B6)

where Lin(z) is still the polylogarithm function defined in
Eq. (A6). Thus 〈wij 〉 = xiyj /(1 − xiyj ) and 〈aij 〉 = pij ≡
1 − qij (0) = xiyj , where aij = �(wij ). The expectation val-
ues of other powers of the weight change accordingly. Again,
these exact expressions replace the approximation prescribed
in the paper introducing the method [2]. The second one
is that, as in the binary directed case, (i − j ) and (j − i)
are different (and statistically independent) directed pairs
of vertices. Therefore 〈wijwji〉 = 〈wij 〉〈wji〉 and 〈aij aji〉 =
pijpji . Again, we have 〈wtot〉 = wtot as we have shown in
Eq. (7). Therefore we can still easily obtain the quantities built
on the rescaled weights w̃ij = wij/wtot. As for the weighted
undirected case, the parameters {xi} and {yi} are, however,
computed using Eq. (B5) before rescaling the strengths,
preserving the original integer weights wij as the actual
degrees of freedom.
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TABLE I. Expressions for the empirical and expected properties in the weighted (undirected and directed) representations of the network.

Empirical undirected properties Expected undirected properties

wij 〈wij 〉 = xi xj

1−xi xj

w̃ij = wij

wtot
〈w̃ij 〉 = 〈wij 〉

〈wtot〉 = 〈wij 〉
wtot

aij = �(wij ) 〈aij 〉 = pij = xixj

s̃i = ∑
j �=i w̃ij = si

wtot
〈s̃i〉 = s̃i

ki = ∑
j �=i aij 〈ki〉 = ∑

j �=i pij

s̃nn
i =

∑
j �=i aij s̃j

ki
〈s̃nn

i 〉 =
∑

j �=i pij s̃j

〈ki 〉

c̃i =
∑

j �=i

∑
k �=i,j w̃

1/3
ij

w̃
1/3
jk

w̃
1/3
ki∑

j �=i

∑
k �=i,j aij aik

〈c̃i〉 =
∑

j �=i

∑
k �=i,j 〈w̃1/3

ij
〉〈w̃1/3

jk
〉〈w̃1/3

ki
〉

∑
j �=i

∑
k �=i,j pij pik

P<(w) 〈P<(w)〉 = 1 −
∑

i

∑
j<i pw

ij

N(N−1)/2

P +
< (w) 〈P +

< (w)〉 = 1 −
∑

i

∑
j<i pw

ij∑
i

∑
j<i pij

Empirical directed properties Expected directed properties

wij 〈wij 〉 = xi yj

1−xi yj

w̃ij = wij

wtot
〈w̃ij 〉 = 〈wij 〉

〈wtot〉 = 〈wij 〉
wtot

aij = �(wij ) 〈aij 〉 = pij = xiyj

s̃ in
i = ∑

j �=i w̃ji = sin
i

wtot
〈s̃ in

i 〉 = s̃ in
i

s̃out
i = ∑

j �=i w̃ij = sout
i

wtot
〈s̃out

i 〉 = s̃out
i

s̃ tot
i = s̃ in

i + s̃out
i 〈s̃ tot

i 〉 = 〈s̃ in
i 〉 + 〈s̃out

i 〉 = s̃ tot
i

kin
i = ∑

j �=i aji 〈kin
i 〉 = ∑

j �=i pji

kout
i = ∑

j �=i aij 〈kout
i 〉 = ∑

j �=i pij

ktot
i = kin

i + kout
i 〈ktot

i 〉 = 〈kin
i 〉 + 〈kout

i 〉 = ktot
i

k↔
i = ∑

j �=i aij aji 〈k↔
i 〉 = ∑

j �=i pijpji

s̃ in/in
i =

∑
j �=i aji s̃

in
j

kin
i

〈s̃ in/in
i 〉 =

∑
j �=i pji s̃

in
j

〈kin
i

〉
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〉
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j
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j
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〉
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j
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〉
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〉−∑
j �=i pij pji

c̃mid
i =

∑
j �=i

∑
k �=i,j w̃

1/3
ik

w̃
1/3
jk

w̃
1/3
ji

kin
i

kout
i

−k↔
i

〈c̃mid
i 〉 =

∑
j �=i

∑
k �=i,j 〈w̃1/3

ik
〉〈w̃1/3

jk
〉〈w̃1/3

ji
〉

kin
i

kout
i

−∑
j �=i pij pji

c̃tot
i =

∑
j �=i

∑
k �=i,j (w̃1/3
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+w̃
1/3
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)
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i
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−1)−2k↔
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∑
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∑
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ij
+w̃

1/3
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+w̃
1/3
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1/3
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〉
2[

∑
j �=i

∑
k �=i,j (pjipki+pij pik )+2(kin

i
kout
i

)−2
∑

j �=i pij pji ]

P<(w) 〈P<(w)〉 = 1 −
∑

i

∑
j �=i pw

ij

N(N−1)/2

P +
< (w) 〈P +

< (w)〉 = 1 −
∑

i

∑
j �=i pw

ij∑
i

∑
j �=i pij

046118-18



RANDOMIZING WORLD TRADE. II. A WEIGHTED . . . PHYSICAL REVIEW E 84, 046118 (2011)

[1] T. Squartini, G. Fagiolo, and D. Garlaschelli, Phys. Rev. E 84,
046117 (2011).

[2] T. Squartini and D. Garlaschelli, New J. Phys. 13, 083001
(2011).

[3] P. van Bergeijk and S. Brakman, eds., The Gravity Model in
International Trade (Cambridge University Press, Cambridge,
UK, 2010).

[4] G. Fagiolo, J. Econ. Interact. Coord. 5, 1
(2010).
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