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Abstract. Proposals to measure non-Abelian anyons in a superconductor
by quantum interference of vortices suffer from the predominantly classical
dynamics of the normal core of an Abrikosov vortex. We show how to avoid this
obstruction using coreless Josephson vortices, for which the quantum dynamics
has been demonstrated experimentally. The interferometer is a flux qubit in a
Josephson junction circuit, which can non-destructively read out a topological
qubit stored in a pair of anyons—even though the Josephson vortices themselves
are not anyons. The flux qubit does not couple to intra-vortex excitations, thereby
removing the dominant restriction on the operating temperature of anyonic
interferometry in superconductors.
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1. Introduction

A topological quantum computer makes use of a non-local way of storing quantum information
in order to protect it from errors [1, 2]. One promising way to realize the non-locality is to store
the information inside the Abrikosov vortices that form when magnetic field lines penetrate a
superconductor. Abrikosov vortices can trap quasiparticles within their normal core [3], which
in special cases are anyons having non-Abelian statistics [4, 5]. For this to happen, the vortex
should have a midgap state of zero excitation energy, known as a Majorana bound state. While
vortices in a conventional s-wave superconductor lack Majorana bound states, they are expected
to appear [6]–[9] in the chiral p-wave superconductors that are currently being realized using
topological states of matter.

The method of choice to read out a non-locally encoded qubit is interferometry [10, 11].
A mobile anyon is split into a pair of partial waves upon tunneling, which interfere after
encircling an even number of stationary anyons. (There is no interference if the number is odd.)
The state of the qubit encoded in the stationary anyons can be read out by measuring whether the
interference is constructive or destructive. The superconducting implementation of this anyonic
interferometry has been analyzed in different setups [12]–[15], which suffer from one and the
same impediment: Abrikosov vortices are massive objects that do not readily tunnel or split into
partial waves.

The mass of an Abrikosov vortex is much larger than the bare electron mass because it traps
a large number of quasiparticles. (The enhancement factor is k3

Fξ
2d being with d the thickness of

the superconductor along the vortex, ξ the superconducting coherence length and kF the Fermi
wave vector [16].) There are other ways to make Majorana bound states in a superconductor (at
the end-points of a semiconducting wire or electrostatic line defect [17]–[20]), but these also
involve intrinsically classical objects. If indeed Majorana bound states and classical motion go
hand in hand, it would seem that anyonic interferometry in a superconductor is ruled out—which
would be bad news indeed.

Here we propose an alternative way to perform the interferometric readout, using quantum
Josephson vortices instead of classical Abrikosov vortices as the mobile particles. A Josephson
vortex is a 2π twist of the phase of the order parameter, at constant amplitude. Unlike an
Abrikosov vortex, a Josephson vortex has no normal core, so it is much less massive. Its
mass is determined by the electrostatic charging energy and is typically less than 1% of
the electron mass [21]. Quantum tunneling and interference of Josephson vortices have been
demonstrated experimentally [22, 23]. This looks promising for anyonic interferometry, but
since the Josephson vortex itself need not be an anyon (it may lack a Majorana bound state),
one might object that we are attempting anyonic interferometry without anyons. Let us see how
this can be achieved, essentially by using a non-topological flux qubit [24, 25] to read out the
topological qubit.

2. The basic mechanism of the flux qubit readout of a topological qubit

2.1. The Aharonov–Casher effect

We consider a Josephson junction circuit (see figure 1) that can exist in two degenerate states
|L〉, |R〉, distinguished by the phases φL

i , φR
i of the order parameter on the islands. The

supercurrent flows to the left or to the right in state |L〉 and |R〉, so the circuit forms a flux
qubit (or persistent current qubit). This is a non-topological qubit.
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Figure 1. Circuit of three Josephson junctions a, b, c, two superconducting
islands 1, 2, and a superconducting ring (enclosing a flux8). A persistent current
can flow clockwise or counterclockwise. This flux qubit can read out the state of
a topological qubit stored in one of the two islands (white discs). Dashed arrows
indicate the Josephson vortex tunneling events that couple the two states of the
flux qubit, leading to a tunnel splitting that depends on the state of the topological
qubit.

The topological qubit is formed by a pair of non-Abelian anyons in a superconducting
island, for example the midgap states in the core of a pair of Abrikosov vortices. The two states
|0〉, |1〉 of the topological qubit are distinguished by the parity of the number np of particles in
the island. For np odd there is a zero-energy quasiparticle excitation shared by the two midgap
states. This qubit is called topological because it is insensitive to local sources of decoherence
(since a single vortex cannot tell whether its zero-energy state is filled or empty).

To measure the parity of np and hence read out the topological qubit, we make use of the
suppression of macroscopic quantum tunneling by the Aharonov–Casher (AC) effect [25, 26].
Tunneling from |L〉 to |R〉 requires quantum phase slips. If the tunneling can proceed along
two pathways, distinguished by a 2π difference in the value of φR

1 , then the difference between
the two tunneling paths amounts to the circulation of a Josephson vortex around the island
containing the topological qubit (dashed arrows in figure 1).

According to the AC effect, a vortex encircling a superconducting island picks up a
phase increment ψAC = πq/e determined by the total charge q coupled capacitively to the
superconductor [27]. (The charge may be on the superconducting island itself, or on a nearby
gate electrode.) If q is an odd multiple of the electron charge e, the two tunneling paths interfere
destructively, so the tunnel splitting vanishes, while for an even multiple the interference is
constructive and the tunnel splitting is maximal. A microwave measurement of the splitting of
the flux qubit thus reads out the topological qubit.

Since we only need to distinguish maximal from minimal tunnel splitting, the flux qubit
does not need to have a large quality factor (limited by 1/ f charge noise from the gate
electrodes). Moreover, the readout is insensitive to subgap excitations in the superconductor—
since these do not change the fermion parity np and therefore do not couple to the flux
qubit. This parity protection against subgap excitations is the key advantage of flux qubit
readout [28].
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Figure 2. Contour plot of the potential energy (1) of the flux qubit for α = 1.3 and
8=80/2 (white is high potential and black is low potential). The red and blue
dots indicate the minima of clockwise or counterclockwise persistent current. All
red dots and all blue dots are equivalent, because the phase differences δφa, δφc

across the Josephson junctions are defined modulo 2π . Tunneling between two
inequivalent minima occurs predominantly along the two pathways indicated by
the arrows.

2.2. Tunnel splitting

Following [25] we assume that the ring is sufficiently small that the flux generated by the
supercurrent can be neglected, so the enclosed flux 8 equals the externally applied flux.
Junctions a and c are assumed to have the same critical current Icrit, while junction b has
critical current α Icrit. Because the phase differences across the three junctions a, b and c sum
to δφa + δφb + δφc = 2π8/80 (with 80 = h/2e the flux quantum), we may take δφa and δφc as
independent variables. The charging energy EC = e2/2C of the islands (with capacitance C) is
assumed to be small compared to the Josephson coupling energy EJ =80 Icrit/2π , to ensure that
the phases are good quantum variables. The phase on the ring is pinned by grounding it, while
the phases on the islands can change by Josephson vortex tunneling events (quantum phase
slips).

The superconducting energy of the ring equals

UJ = −E J[cos δφa + cos δφc +α cos(2π8/80 − δφa − δφc)]. (1)

The states |L〉 and |R〉 correspond in the potential energy landscape of figure 2 to the minima
indicated by red and blue dots, respectively. Because phases that differ by 2π are equivalent, all
red dots represent equivalent states and so do all blue dots. For α > 1, the minima are connected
by two tunneling paths (arrows), differing by an increment of +2π in δφa and −2π in δφc. The
difference amounts to the circulation of a Josephson vortex around both islands 1 and 2. The
two interfering tunneling paths have the same amplitude, because of the left–right symmetry of
the circuit. Their phase difference is ψAC = πq/e, with q =

∑
i=1,2(en(i)p + q (i)ext) being the total

charge on islands and gate capacitors.
The interference produces an oscillatory tunnel splitting of the two levels ±

1
21E of the flux

qubit,

1E = Etunnel|cos(ψAC/2)|. (2)
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Figure 3. Register of topological qubits, read out by a flux qubit in a
superconducting ring. The topological qubit is encoded in a pair of Majorana
bound states (white dots) at the interface between a topologically trivial (blue)
and a topologically non-trivial (red) section of an InAs wire. The flux qubit is
encoded in the clockwise or counterclockwise persistent current in the ring. Gate
electrodes (gray) can be used to move the Majorana bound states along the wire.

Tiwari and Stroud [25] have calculated Etunnel ≈ 100µeV ' 1 K for parameter values
representative of experimentally realized flux qubits [24] (EJ = 800µeV, EC = 10µeV). They
conclude that the tunnel splitting should be readily observable by microwave absorption at
temperatures in the 100 mK range.

To read out the topological qubit one would first calibrate the charge q (1)ext + q (2)ext on the
two gate capacitors to zero, by maximizing the tunnel splitting in the absence of vortices in
the islands. A vortex pair in island 1 can bind a quasiparticle in the midgap state, allowing for
a non-zero n(1)p (while n(2)p remains zero without vortices in island 2). A measurement of the
tunnel splitting then determines the parity of n(1)p (vanishing when n(1)p is odd) and hence reads
out the topological qubit.

3. Implementation

To implement this readout scheme the absence of low-energy excitations near the Josephson
junction is desirable in order to minimize decoherence of the Josephson vortex as it passes
along the junction. The metallic edge states of a topological superconductor are a source of
low-energy excitations that one would like to keep away from the junction. So for the flux qubit
we would choose a conventional (non-topological) s-wave superconductor such as Al or Nb.

Since a vortex in a non-topological superconductor has no Majorana bound states, we turn
to one of the vortex-free alternatives [17]–[20]. The ‘Majorana wire’ [19, 20] seems particularly
suitable: a single-mode semiconducting InAs nanowire in a weak (0.1 T) parallel magnetic field
is driven into a chiral p-wave superconducting state by the interplay of spin–orbit coupling,
Zeeman effect and the proximity to an s-wave superconductor. A pair of Majorana bound states
is formed at the end points of the wire, provided it is long compared to ξ . For that reason Nb
(ξ . 40 nm) is to be preferred over Al as a superconducting substrate.
New Journal of Physics 12 (2010) 125002 (http://www.njp.org/)
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A long InAs wire running through a Josephson junction circuit could conveniently form a
register of topological qubits, as illustrated in figure 3. Gate electrodes (gray) deplete sections
of the wire (blue) such that they enter a topologically trivial phase, producing a pair of Majorana
bound states (white dots) at the end points of the topologically non-trivial sections (red). Each
pair encodes one topological qubit, which can be reversibly moved back and forth along the wire
by adjusting the gate voltage. (The wire is not interrupted by the tunnel barriers, of thickness
� ξ .) Once inside the circuit, the tunnel splitting of the flux qubit measures the state of the
topological qubit.

4. Conclusion

For a universal quantum computation the flux qubit readout discussed here should be combined
with the ability to exchange adjacent Majorana bound states, using two parallel registers [29].
This is the topologically protected part of the computation. In addition, one needs to perform
single-qubit rotations, which as a matter of principle lack topological protection [2]. In the
appendix, we show how the flux qubit can be used for parity-protected single-qubit rotations
(by slowly increasing the flux through the ring from zero to a value close to 80/2 and back to
zero).

In comparison with existing readout schemes [1, 7], [12]–[15], [30], there are key
differences with the flux qubit readout proposed here. Unlike proposals based on the fusion
of vortices, our scheme is non-destructive and can perform a joint parity measurement on any
even number of Majorana bound states. (These requirements are both needed for the realization
of a two-qubit controlled-not (CNOT) gate, see the appendix.)

Moreover, our use of coreless vortices to perform the interferometry provides protection
against subgap excitations. This parity protection is essential because the operating temperature
would otherwise be restricted to unrealistically small values (below 0.1 mK for a typical
Abrikosov vortex [3]). The characteristic temperature scale for flux qubit readout is larger by
up to three orders of magnitude.
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Appendix. How a flux qubit enables parity-protected quantum computation with
topological qubits

A.1. Overview

In the main text, we discussed the readout of a topological qubit by coupling it to a flux qubit
through the AC effect. This readout is non-destructive (the topological qubit remains available
after the readout) and insensitive to subgap excitations (since these do not change the fermion
parity). In this appendix we show, in section A.3, how flux qubit readout supplemented by
braiding operations [29] provides the topologically protected part of a quantum computation (in
the form of a CNOT gate acting on a pair of qubits).
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For a universal quantum computer, one needs additionally to be able to perform single-
qubit rotations of the form

|0〉 + |1〉 7→ e−iθ/2
|0〉 + eiθ/2

|1〉. (A.1)

(Such a rotation over an angle θ is also called a θ/2 phase gate.) In general (for θ not equal to
a multiple of π/2), this part of the quantum computation is not topologically protected. A more
limited protection against subgap excitations, which do not change the fermion parity, is still
possible [28]. We will show in section A.4 how the flux qubit provides a way of performing
parity-protected rotations.

In order to make this appendix self-contained, we first summarize in section A.2 some
background information on topological quantum computation with Majorana fermions [2]. Then
we discuss the topologically protected CNOT gate and the parity-protected single-qubit rotation.

A.2. Background information

A.2.1. Encoding of a qubit in four Majorana fermions. In the main text, we considered a qubit
formed out of a pair of Majorana bound states. The two states |0〉 and |1〉 of this elementary
qubit differ by fermion parity, which prevents the creation of a coherent superposition. For a
quantum computation we combine two elementary qubits into a single logical qubit, consisting
of four Majorana bound states. Without loss of generality we can assume that the joint fermion
parity is even. The two states of the logical qubit are then encoded as |00〉 and |11〉. These two
states have the same fermion parity, so coherent superpositions are allowed.

The four Majorana operators γi (i = 1, 2, 3, 4) satisfy γ
†
i = γi , γ 2

i =
1
2 and the

anticommutation relation {γi , γ j} = δi j . They can be combined into two complex fermion
operators,

a1 =
γ1 + iγ2

√
2
, a2 =

γ3 + iγ4
√

2
, (A.2)

which satisfy {ai , a†
j } = δi j . The fermion parity operator

2a†
1a1 − 1 = 2iγ1γ2 (A.3)

has eigenvalues −1 and +1 in states |0〉 and |1〉, respectively.
Pauli operators in the computational basis |00〉, |11〉 can be constructed as usual from the

a, a† operators and then expressed in terms of the γ operators as follows:

σx = −2iγ2γ3, σy = 2iγ1γ3, σz = −2iγ1γ2. (A.4)

A.2.2. Measurement in the computational basis. An arbitrary state |ψ〉 of the logical qubit has
the form

|ψ〉 = α|00〉 +β|11〉, |α|
2 + |β|

2
= 1. (A.5)

A measurement in the computational basis projects |ψ〉 on the state |00〉 or |11〉. This is a
fermion parity measurement of one of the two fundamental qubits that encode the logical qubit.

Referring to the geometry of figure 3, one would perform such a non-destructive projective
measurement (called a quantum non-demolition measurement) by moving the Majorana
fermions γ1, γ2 along the InAs wire into the Josephson junction circuit while keeping the
Majorana fermions γ3, γ4 outside of the circuit. Readout of the flux qubit would then measure
the fermion parity of the first fundamental qubit, thereby projecting the logical qubit onto the
state |00〉 or |11〉.

New Journal of Physics 12 (2010) 125002 (http://www.njp.org/)
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A.2.3. Braiding of Majorana fermions. The Majorana bound states in the geometry of figure 3
are separated by insulating regions on a single InAs wire, so they cannot be exchanged.
The exchange of Majorana fermions, called ‘braiding’, is needed for demonstrating their
non-Abelian statistics. It is also an essential ingredient of a topologically protected quantum
computation. In order to be able to exchange the Majorana bound states one can use a
second InAs wire, running parallel to the first and connected to it by side branches. Braiding
of Majorana fermions in this ‘railroad track’ geometry has been studied recently by Alicea
et al [29]. We refer to their paper for details of this implementation and in the following we just
assume that adjacent Majorana bound states can be exchanged as needed.

The counterclockwise exchange of Majorana fermions j < j ′ implements the
operator [4, 5]

ρ j j ′ = 2−1/2(1 − 2γ jγ j ′)= e(iπ/4)(2iγ jγ j ′ ). (A.6)

In view of equation (A.4), braiding can therefore generate the unitary operations
exp[±(iπ/4)σk] (k = x, y, z). These π/2 rotations (or π/4 phase gates) are the only single-
qubit operations that can be generated in a topologically protected way [2].

A.3. Topologically protected controlled-not (CNOT) gate

The CNOT two-qubit gate can be carried out in a topologically protected way by a combination
of braiding and fermion parity measurements, along the lines set out by Bravyi and Kitaev [34].

The computational basis, constructed from the first logical qubit formed by Majorana
operators γ1, γ2, γ3, γ4 and the second logical qubit γ5, γ6, γ7, γ8, consists of the four states

|00〉|00〉, |00〉|11〉, |11〉|00〉, |11〉|11〉. (A.7)

The first and second kets represent the first and second logical qubits, respectively, and the two
states within each ket represent the two fundamental qubits. In this basis, the CNOT gate has
the matrix form

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

. (A.8)

In words, the second logical qubit (the target) is flipped if the first logical qubit (the control) is
in the state |11〉; otherwise it is left unchanged.

For a topologically protected implementation one needs an extra pair of Majorana fermions
γ9, γ10 (ancillas), which can be measured jointly with the Majorana fermions γ1, . . . , γ8.
The CNOT gate can be constructed from π/2 rotations (performed by braiding), together
with measurements of the fermion parity operator (2iγiγ j)(2iγkγl) of sets of four Majorana
fermions [34]. Because the measurements include Majorana fermions from the computational
set γ1, . . . , γ8 (not just the ancillas), it is essential that they are non-destructive.

Referring to figure 3, such a non-destructive joint parity measurement can be performed
by moving the four Majorana bound states i, j, k and l into the Josephson junction circuit. (The
double-wire geometry of [29] would be used to bring the bound states in the required order.)
Readout of the flux qubit then projects the system onto the two eigenstates of (2iγiγ j)(2iγkγl)

of definite joint parity.

New Journal of Physics 12 (2010) 125002 (http://www.njp.org/)
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A.4. Parity-protected single-qubit rotation

A.4.1. From topological protection to parity protection. There is a relatively small set of
unitary operations that one needs in order to be able to perform an arbitrary quantum
computation. One needs the CNOT two-qubit gate, which can be done in a topologically
protected way by braiding and readout as discussed in section A.3. One needs π/2 single-qubit
rotations (π/4 phase gates), which can also be done with topological protection by braiding
(section A.2.3). These so-called Clifford gates can be efficiently simulated on a classical
computer and are therefore not sufficient.

One more gate is needed for a quantum computer, the π/4 single-qubit rotation (π/8
phase gate). This operation cannot be performed by braiding and readout—at least not
without changing the topology of the system during the operation [31, 32] and incurring both
technological and fundamental obstacles2 [33]. As an alternative to full topological protection,
we propose here a parity-protected π/4 rotation.

Braiding and readout are topologically protected operations, which means, firstly, that they
are insensitive to local sources of decoherence and, secondly, that they can be carried out exactly.
(As discussed in section A.2.3, exchange of two Majorana fermions rotates the qubit by exactly
π/2.) The π/4 rotation lacks the second benefit of topological protection, so it is an approximate
operation, but the first benefit can remain to a large extent if we use a flux qubit to perform the
rotation in a parity-protected way, insensitive to subgap excitations.

The straightforward approach to single-qubit rotations is partial fusion, which lacks parity
protection: one would bring two vortices close together for a short time t , and let the tunnel
splitting δE impose a phase difference θ = tδE/h̄ between the two states |0〉 and |1〉. The result
is the rotation (A.1) but only if the vortices remain in the ground state. The minigap in a vortex
core is smaller than the bulk superconducting gap 10 by a large factor kFξ , so this is a severe
restriction (although there might be ways of increasing the minigap3 [35, 36]). An alternative
to partial fusion using edge state interferometry has been suggested [37] in the context of the
Moore–Read state of the ν = 5/2 quantum Hall effect [38], where parity protection may be less
urgent.

Like the parity-protected readout discussed in the main text, our parity-protected π/4
rotation uses the coupling of a flux qubit to the topological qubit. The coupling results from
the AC effect, so it is insensitive to any other degree of freedom of the topological qubit than
its fermion parity. The operation lacks topological protection and is therefore not exact (the
rotation angle is not exactly π/4). It can be combined with the distillation protocol of Bravyi
and Kitaev [39, 40], which allows for error correction with a relatively large tolerance (error
rates as large as 10% are permitted).

2 As was first shown by Bravyi and Kitaev [42] in an abstract formulation, a topologically protected π/4 rotation
of a single qubit can be performed in higher genus topologies (such as a torus). To use this approach in condensed
matter systems is problematic for obvious technological reasons, but also because of a more subtle and fundamental
obstacle: topological superconductors of a higher genus lack a degenerate ground state [33].
3 In a semiconductor–superconductor multilayer there may be ways of increasing the minigap if one can somehow
control the strength of the proximity effect and the work function difference between the semiconductor and the
superconductor [35]. In p-wave superfluids the minigap may be increased by going to the regime of small chemical
potential, near the transition to a strongly paired phase [36].

New Journal of Physics 12 (2010) 125002 (http://www.njp.org/)

http://www.njp.org/


10

A.4.2. Method. As explained in section A.2.1, we start from a logical qubit encoded as |00〉,
|11〉 in the four Majorana fermions γ1, γ2, γ3 and γ4. We bring the Majorana bound states 1 and
2 into the Josephson junction circuit, keeping 3 and 4 outside. The effective Hamiltonian of the
Josephson junction circuit is

H = −
1
2ε τz + 1

21E τx , (A.9)

with energy levels

E± = ±
1
2

√
ε2 +1E2. (A.10)

The Pauli matrices τi act on the two states |L〉, |R〉 of the flux qubit (states of clockwise and
counterclockwise circulating persistent currents). In the absence of tunneling between these
two states, their energy difference ε = ε0(8/80 − 1/2) (with ε0 = 4πEJ

√
1 − 1/4α2) vanishes

when the flux 8 through the ring equals half a flux quantum 80 = h/2e. Tunneling leads to a
splitting 1E given by equation (2).

Parity protection means that the Majorana bound states 1 and 2 appear in H only through
their fermion parity np, which determines 1E =1E(np) through the AC phase. Subgap
excitations preserve fermion parity, so they do not enter into H and cannot cause errors.

To perform the single-qubit rotation, we start at time t = 0 from a flux 8 far from 80/2,
when |ε| �1E . Then the state |L〉 is the ground state of the flux qubit and the coupling to
the topological qubit is switched off. The flux 8(t) is changed slowly to values close to 80/2
at t = tf/2 and then brought back to its initial value at time t = tf. The variation of 8 should
be sufficiently slow (adiabatic) that the flux qubit remains in the ground state, so its final state
is |L〉 times a dynamical phase eiϕ(np) dependent on the fermion parity of the first of the two
topological qubits that encode the logical qubit.

The initial state |9i〉 = (α|00〉 +β|11〉)|L〉 of the flux qubit and the logical qubit is
therefore transformed into

|9i〉 7→ |9f〉 = (eiϕ(0)α|00〉 + eiϕ(1)β|11〉)|L〉. (A.11)

By adjusting the variation of8(t), we can ensure that ϕ(1)−ϕ(0)= π/8, thereby realizing the
desired π/4 rotation.

A.4.3Example. As an example, we vary the flux linearly in time according to

8(t)

80
−

1

2
= −

E0 + λ|t − tf/2|

ε0
, (A.12)

⇒ E± = ±
1
2

√
(E0 + λ|t − t f /2|)2 +1E2. (A.13)

We assume that qext = 0, so 1E(1)= 0 and 1E(0)= Etunnel. We take E0 � Etunnel, for weak
coupling between the flux qubit and the topological qubit. The condition for the adiabatic
approximation [41] then takes the form∣∣∣∣ h̄

2E2
−

dE−

dt

∣∣∣∣
t=tf/2

≈
h̄λ

E2
0

� 1. (A.14)

From time t = 0 to t = tf, the flux qubit accumulates the dynamical phase factor

ϕ(np)= h̄−1

∫ tf

0
dt E−(t, np). (A.15)
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To leading order in the small parameter Etunnel/E0, we find that

φ(1)−φ(0)=
E2

tunnel

2h̄λ
ln(1 + λtf/2E0). (A.16)

By choosing

tf =
2E0

λ

[
exp

(
1
4π h̄λ/E2

tunnel

)
− 1

]
(A.17)

we implement a π/4 rotation.
In order to maximally decouple the flux qubit from the topological qubit at the start and

the end of the operation, we take 8(t)= 0 at t = 0 and t = tf. In view of equation (A.12), this
requires that λtf = ε0 − 2E0. Substituting into equation (A.17) gives the desired optimal value
of λ,

λopt = (4/π h̄)E2
tunnel ln(ε0/2E0), (A.18)

still consistent with the adiabaticity requirement (A.14). For Etunnel � E0 � ε0 the entire
operation then has a duration of the order of h̄ε0/E2

tunnel, up to a logarithmic factor. The quality
factor of the flux qubit should thus be larger than (ε0/Etunnel)

2
' EJ/EC (typically ' 102).

References

[1] Kitaev A Y 2003 Ann. Phys. 303 2
[2] Nayak C, Simon S, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083
[3] Caroli C, de Gennes P G and Matricon J 1964 Phys. Lett. 9 307
[4] Read N and Green D 2000 Phys. Rev. B 61 10267
[5] Ivanov D A 2001 Phys. Rev. Lett. 86 268
[6] Volovik G E 1999 JETP Lett. 70 609
[7] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[8] Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. Lett. 104 040502
[9] Alicea J 2010 Phys. Rev. B 81 125318

[10] Stern A and Halperin B I 2006 Phys. Rev. Lett. 96 016802
[11] Bonderson P, Kitaev A and Shtengel K 2006 Phys. Rev. Lett. 96 016803
[12] Fu L and Kane C L 2009 Phys. Rev. Lett. 102 216403
[13] Akhmerov A R, Nilsson J and Beenakker C W J 2009 Phys. Rev. Lett. 102 216404
[14] Grosfeld E, Seradjeh B and Vishveshwara S 2010 arXiv:1004.2295
[15] Sau J D, Tewari S and Das Sarma S 2010 arXiv:1004.4702
[16] Volovik G E 1997 JETP Lett. 65 217
[17] Kitaev A Y 2001 Phys.—Usp. 44 131
[18] Wimmer M, Akhmerov A R, Medvedyeva M V, Tworzydło J and Beenakker C W J 2010 Phys. Rev. Lett.

105 046803
[19] Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
[20] Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002
[21] Fazio R and van der Zant H 2010 Phys. Rep. 355 235
[22] Wallraff A, Lukashenko A, Lisenfeld J, Kemp A, Fistul M V, Koval Y and Ustinov A V 2003 Nature 425 155
[23] Elion W J, Wachters I I, Sohn L L and Mooij J E 1993 Phys. Rev. Lett. 71 2311
[24] van der Wal C H, Ter Haar A C J, Wilhelm F K, Schouten R N, Harmans C J P M, Orlando T P, Lloyd S and

Mooij J E 2000 Science 290 773
[25] Tiwari R P and Stroud D 2007 Phys. Rev. B 76 220505
[26] Friedman J R and Averin D V 2002 Phys. Rev. Lett. 88 050403

New Journal of Physics 12 (2010) 125002 (http://www.njp.org/)

http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1016/0031-9163(64)90375-0
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1134/1.568223
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevB.81.125318
http://dx.doi.org/10.1103/PhysRevLett.96.016802
http://dx.doi.org/10.1103/PhysRevLett.96.016803
http://dx.doi.org/10.1103/PhysRevLett.102.216403
http://dx.doi.org/10.1103/PhysRevLett.102.216404
http://arxiv.org/abs/1004.2295
http://arxiv.org/abs/1004.4702
http://dx.doi.org/10.1134/1.567299
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1103/PhysRevLett.105.046803
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1016/S0370-1573(01)00022-9
http://dx.doi.org/10.1038/nature01826
http://dx.doi.org/10.1103/PhysRevLett.71.2311
http://dx.doi.org/10.1126/science.290.5492.773
http://dx.doi.org/10.1103/PhysRevB.76.220505
http://dx.doi.org/10.1103/PhysRevLett.88.050403
http://www.njp.org/


12

[27] Stern A 2008 Ann. Phys. 323 204
[28] Akhmerov A R 2010 Phys. Rev. B 82 020509
[29] Alicea J, Oreg Y, Refael G, von Oppen F and Fisher M P A 2010 arXiv:1006.4395
[30] Stone M and Chung S-B 2006 Phys. Rev. B 73 014505
[31] Freedman M, Nayak C and Walker K 2006 Phys. Rev. B 73 245307
[32] Bonderson P, Das Sarma S, Freedman M and Nayak C 2010 arXiv:1003.2856
[33] Ran Y, Hosur P and Vishwanath A 2010 arXiv:1003.1964
[34] Bravyi S B and Kitaev A Y 2002 Ann. Phys. 298 210
[35] Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. B 82 094522
[36] Möller G, Cooper N R and Gurarie V 2010 arXiv:1006.0924
[37] Bonderson P, Clarke D J, Nayak C and Shtengel K 2010 Phys. Rev. Lett. 104 180505
[38] Moore G and Read N 1991 Nucl. Phys. B 360 362
[39] Bravyi S and Kitaev A Y 2005 Phys. Rev. A 71 022316
[40] Bravyi S 2006 Phys. Rev. A 73 042313
[41] Landau L D and Lifshitz E M 1977 Quantum Mechanics (Amsterdam: Elsevier)
[42] Bravyi S and Kitaev A Y 2001 unpublished

New Journal of Physics 12 (2010) 125002 (http://www.njp.org/)

http://dx.doi.org/10.1016/j.aop.2007.10.008
http://dx.doi.org/10.1103/PhysRevB.82.020509
http://arxiv.org/abs/1006.4395
http://dx.doi.org/10.1103/PhysRevB.73.014505
http://dx.doi.org/10.1103/PhysRevB.73.245307
http://arxiv.org/abs/1003.2856
http://arxiv.org/abs/1003.1964
http://dx.doi.org/10.1006/aphy.2002.6254
http://dx.doi.org/10.1103/PhysRevB.82.094522
http://arxiv.org/abs/1006.0924
http://dx.doi.org/10.1103/PhysRevLett.104.180505
http://dx.doi.org/10.1016/0550-3213(91)90407-O
http://dx.doi.org/10.1103/PhysRevA.71.022316
http://dx.doi.org/10.1103/PhysRevA.73.042313
http://www.njp.org/

	1. Introduction
	2. The basic mechanism of the flux qubit readout of a topological qubit
	2.1. The Aharonov--Casher effect
	2.2. Tunnel splitting

	3. Implementation
	4. Conclusion
	Acknowledgments
	Appendix.  How a flux qubit enables parity-protected quantum computation with topological qubits
	A.1 . Overview
	A.2 . Background information
	A.3 . Topologically protected controlled-not (CNOT) gate
	A.4 . Parity-protected single-qubit rotation

	References

