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K. S. Lyakhova, A. V. Zvelindovsky, G. J. A. Sevink, and J. G. E. M. Fraaije
Leiden Institute of Chemistry, University of Leiden, Einsteinweg 55, P.O. Box 9502 2300, RA Leiden,
The Netherlands

~Received 13 June 2002; accepted 11 February 2003!

Polymer morphologies can be analyzed by various experimental projection methods. Since most
structures live in three dimensions the problem is to extrapolate the underlying 3D morphology from
the projection. We propose an approach in which the free energy functional of a 3D sample is
minimized to fit experimental 2D information, serving as an additional constraint. The method is
very general and can be applied to any physical system described in terms of a density functional
theory. © 2003 American Institute of Physics.@DOI: 10.1063/1.1565328#

I. INTRODUCTION

Morphological structures in block copolymer melts,
blends and concentrated solutions are receiving increasing
attention.1–3 In the area of block copolymer melts and solu-
tions, there is a limited number of methods to reconstruct
bulk three-dimensional~3D! morphologies from experimen-
tal series of 2D density profiles, such as electron microscopy,
atomic force microscopy,4 and laser scanning confocal
microscopy.5 In this paper we propose a generally applicable
inverse mappingtheory for refinement and extension of the
experimental reconstructions. To demonstrate the principle
we carry out a series of toy simulations in lower dimensional
systems~1D and 2D!, and conclude with realistic calcula-
tions for a defected lamelar 3D system, and recent experi-
mental observations from the Bayreuth group on defected
cylindrical phases in thin films.6

From a theoretical point of view, the problem of recon-
structing of volume structures from 2D images was ad-
dressed some time ago in stereology. The stereological tech-
nique deals, for example, with the derivation of information
on the bulk of an ensemble of isotropically arranged mono-
disperse objects from measurements made on the cross sec-
tion through the ensemble.7,8 However, experimental struc-
tures of block copolymer systems often are far from perfect.
Rather, the key novelty in our method is to combine a proper
free energy functional for polymer system directly with the
experimental data. The method does not restrict the symme-
try of the system, nor does it require a perfect geometry: it is
soft and flexible.

II. THEORY

The block copolymer melt is modeled as a system of
Gaussian chain molecules in a mean field environment. The
free energy functional is9–11

F@r#52kT ln
Fn

n!
2(
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E

V
UI~r !r I~r !dr1Fnid@r#, ~1!

wheren is the number of polymer molecules,F is the in-
tramolecular partition function for ideal Gaussian chains,I is
an index for S components (S5$1, . . . ,S%) and V is the
system volume. The external potentialsUI are conjugate to

the densitiesr I via the Gaussian chain density functional.9

The nonideal free energyFnid describes the mean-field inter-
action between chemically different blocks.10 In thermody-
namic equilibrium, the morphology is implicitly determined
by the self-consistent-field conditionm I[dF/dr I50 with
Frr.0. In the usual case there are many such equilibria,
each corresponding to a different metastable morphology.

We include the experimental constraining field by fol-
lowing the method of Lagrange.12 We suppose that in a cer-
tain domainV#V the densitiesr I

0 of the componentsI in
the subsets (s#S) are known. The constraining functional is

E5(
I Ps

E
V
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wherel I is the Lagrange multiplier field for theI th compo-
nent.

The mathematical problem is reduced to finding the ex-
tremum of R5F1E, such thatRr I

[dR/dr I50 and Rl I

5dR/dl I50, by variation of bothr I(r ) and l I(r ). The
determinantRrrRll2Rrl

2 52Rrl
2 is negative and hence the

extremum is a saddle point in$r,l% space—this is a funda-
mental property of the Lagrange method. If the saddle point
coincides with the true equilibriumm I50, the Lagrange
multiplier field is zero too (l I50), otherwise the Lagrange
multiplier field will have a finite value. One can give a physi-
cal interpretation tol I , such as a selective pressure field
which forces the componentI in the desired morphology in
the domainV. However, we believe that physical nature
should be determined by the experimental environment,
when such field cannot physically be present,l I is simply a
mathematical artifice.

In the spirit of earlier work the extremum ofR is found
in a quasidynamical fashion, by adaption of the external po-
tential dynamics algorithms.13 An equation of motion for the
auxiliary field UI is derived from the collective dynamics of
concentration fieldsr I ; for propagation of thel I the equa-
tion that corresponds to the dynamics of nonconserving
property,

]UI

]t
1MI

rDRr I
1h I50, ~3!
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whereMI
(r,l) is a positive mobility coefficient, andh I

(r,l) is
a small random field~white noise!. The random field is not
essential, but it helps in small barrier crossings. The con-
strained intrinsic chemical potential isRr I

[dR/dr I5m I

1vl I , with v.0 a shape field determined by the domain
V, and the constraining potential isRl I

[dR/dl I5v(r I

2r I
0). The dynamical equation forl I does not in any way

suggest a model for a physically realistic process. Here, it is
merely a convenient numerical technique for finding the so-
lution for a very large set of nonlinear equations.

III. STABILITY ANALYSIS

We limit the analysis to a one-component system, omit
the noise, and use compact symbolic notation for spatial op-
erator products. The relaxation matrix of the dynamical sys-
tem is

S M rDPFrr 2M rDRrl

2MlPRlr 0 D , ~5!

where we have usedRrU52PRrr52PFrr , with P the
polymer correlation matrixP[2dr/dU.0. All eigenval-
ues are negative when the saddle point coincides with a
minimum in the free energy (Frr.0): the saddle point is
then a stable stationary point in the time-iteration. If the
saddle point coincides with an unstable point of the free
energy~at least one eigenvalue ofFrr negative!, the system
of equations may diverge in pathological cases. It is rather
cumbersome to find an exact measure for such behavior from
the stability analysis; there is a bit of trial-and-error inherent
in selecting the proper values for mobility coefficients and
free energy parameters. In practice we have found that with
Ml!M r the system also converges when the Lagrange
multiplier fields remain within reasonable limits, correspond-
ing to roughly the thermal energykT per computational cell.

By construction ofR and the quasidynamical equations,
nothing definite can be said about the sign of the time-
evolution ofR or F. During the course of the iteration both
may go up and down—indeed they should have precisely
this behavior, since the starting configuration may either be

below or above the saddle point. This is in contrast to the
original external potentials algorithm which guarantees a de-
crease in free energy always.

IV. DEMONSTRATION: TOY PROBLEMS

We first discuss a few simple examples of constrained
diblock polymer phases in 1D, 2D, and 3D. For all these
simulations the Flory–Huggins parameter was chosen as
xN520, slightly above the order–disorder transition. The
other numerical parameters and integration method are as we
used before,9 with M r51 andMl50.05.

~1D! Polymer A8B8 on a line of 30 grid points with
periodic boundary conditions. In the middle of the line the
density of the A component is fixed (rA

0 (x0515)50.2), and
the proper constraining fieldl ~which is in this case only one
scalar! and concentration fieldsr I are calculated. The posi-
tion of the constrained value of the A component is denoted
as a black dot on the slope of the oscillatory density profile
in Fig. 1.

~2D! Polymers A6B10 and A8B8 in a rectangular box
(30330) with constraining mask—a rectangle of 438 grid
points. Inside of the rectangle the concentration of the A
component is constrained torA

0 50.9. The system outside of
rectangle is free of any constraints, see Fig. 2. The symmet-
ric polymer forms perturbed lamellae, and the asymmetric

FIG. 1. Density profile of the A8B8 block copolymer with fixed density of
the A component in the pointx0515 ~shown as a dot!.

FIG. 2. For the time stept5500 in the 2D box:~a! the constraining mask:
rA

0 50.9 in a black rectangle;~b! l field for the A8B8 block copolymer;~c!
morphology for the A6B10 block copolymer;~d! morphology for the A8B8

block copolymer.

FIG. 3. The time evolution of the order parameterP ~1! and theL2 norm of
Lagrange multiplierl ~2! for the A8B8 block copolymer@see Fig. 2~d!#.
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polymer 2D micelles. Figure 3 shows the time evolution of

the order parameter for the A componentP5(rA2r Ā)̄2 and
the norm of Lagrange multiplier field (l5uul(x,y)uu2) for
the symmetric case of Fig. 2~d!. The constraining fieldl is 0
at the beginning of calculation. Since the constrained rect-
angle is not a natural morphology of this particular polymer
system, the stationary value ofl is nonzero.

~3D! Polymer A7B9 in a box of 51351351 grid points.
First we fixed in thexy plane atz51 the density of compo-
nent A torA

0 50.99, and left the remainder of the box uncon-
strained. The final state is a perfectly lamellar structure@Fig.
4~a!#; this is a true free energy minimum of the system. In
reality such lamellar systems often contain defects or undu-
lations. Likewise, 2D images of such lamellar systems con-
tain holes. With the method presented here, we can study the
influence of the undulations on the underlying 3D morphol-
ogy. In order to do this we performed the simulation using a
single lamella with a hole defect as a constraint in the first
layer @Fig. 4~b!#. In this case an artificial set of experimental
data r0(x,y) was used to constrain on thexy plane atz
51. The constraining field consists of a lamellar structure
with a hole defect. The circles that make up the hole are
centered around the midpointx5y525 andz51. The inner
circle has a radiusr 156; the radius of the outer circler 2

58. The concentration is constrained torA
0 (0,r ,r 1)

50.01 andrA
0 (r .r 2)50.99. The system is unconstrained in

the ring betweenr 1 and r 2 and in the remainder of the box.

The schematic overview of the constraint is presented in Fig.
4~c!.

From Fig. 4~d! one clearly sees how the defect carries
through the whole box. The block copolymer still forms a
lamellar structure but because of the undulation in the con-
straint surface, adjacent parallel lamellae possess hole de-
fects as well. In Fig. 4~e! the spatial distribution of thel
field is shown. Since the constraint is confined to the first
layer z51, l is only defined in this layer;l is also unde-
fined in the unconstrained open part between the inner and
outer circle@in Fig. 4~e! l is given the value zero in this
region for visualization purposes#. The Lagrange multiplier
field is negative in the outer region (rA50.99) and positive
in the inner region (rA50.01), reflecting the additional po-
tential which a hole defect brings to the system. On the edges
of the constraint region the field has wiggly wings; these
intricate effects are related to the mathematical properties of
the inverse polymer density functional.

V. DEMONSTRATION: AN EXPERIMENTAL SYSTEM

The important application of the presented method is the
reconstruction of 3D structures of block copolymers from a
set of 2D experimental data. Figure 5~a! shows an example
of such experimental image of a cylinder forming system
obtained by TM-AFM,6 a thin film of polystyrene–block–
butadiene–block–polystyrene~SBS! triblock copolymer. A
simulation was done in a box 32332320 with the experi-
mental image as a constraint and the block copolymer mod-
eled as a Gaussian chain A3B12A3.14 The experimental data
were laterally scaled to match the microdomain distances of
the experiments and simulations and were positioned in the

FIG. 4. Simulation of the A7B9 block copolymer in the 3D box with the 2D
constraint in a top layer.~a! Isosurface for density of A-beads for the case
when a plane with uniform density serves as a constraint;~b! Isosurface for
density of A-beads for the case when a uniform density of the constraint
contains a hole;~c! constraint with hole;~d! defect propagation in a bulk for
~b!; ~e! l field at the constraint plane.~Isodensity level is 0.5.!

FIG. 5. The A3B12A3 triblock copolymer in 3D box with experimental data
serving as a constraint.~a! The scaled experimental image used as a con-
straint; ~b! Isosurface for the A3B12A3 block copolymer with constraint at
z510. ~c! simulation without constraint;~d!,~e!,~f! the slices through the
middle of the layers of cylinders from~b!. ~Isodensity level 0.5;t
55000.)
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middle of the simulation box (z510). The final 3D structure
is presented in Fig. 5~b!; in Figs. 5~d!–5~f! slices through the
middle of the layers of the cylinders are shown. One can see
that the cylinders in the system with the constraint are situ-
ated in layers while the unconstrained system@Fig. 5~c!# has
random orientation of cylinders. The slice through the
middle layer is identical to the constraint structure while the
layers above and beneath the constraint layer contain defects
which are rather symmetrical.

VI. DISCUSSION

An important question is the uniqueness of the predicted
morphology. In the general case the information enhanced
self-consistent-field equations have many solutions. How-
ever, a few interesting limits are apparent:~a! When the sys-
tem is highly symmetrical the symmetry can impose unique-
ness~Fig. 4!. In experimental system this might be the case
when one measures a slice through a perfect domain struc-
ture, for example.~b! When multiple constraints are in-
cluded, each such constraint will reduce the space of solu-
tions. Clearly, in the limit where a 3D experimental image is
used as a constraint, the equations have only one solution,
namely the constraint itself. The method is powerful, but
must be used with care, and the predictions are more accu-
rate given a realistic molecular model and an experimental
image of high symmetry.

VII. CONCLUSIONS

In this paper we have introduced a method for the simu-
lations of a bulk structure of block copolymers with given

constraining condition at a lower dimensional hypersurface.
The method is able to illustrate the extent of surface defects
in the bulk. The method can be used ‘‘to grow’’ observed
experimental data into three dimensions. The method is very
general and can be applied to any physical system described
in terms of a density functional theory.
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