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Maxwell-Bloch approach to excess quantum noise
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To meet recent experimental advances, we generalize the intuitively appealing nonorthogonal-mode theory
of excess quantum noise by introducing a Maxwell-Bloch description of the gain medium. The resulting
equations extend the nonorthogonal-mode approach beyond the class A linear-gain regime providing a general
starting point for theoretical descriptions of excess quantum noise. As an illustration of our theory, we derive
rate equations describing excess quantum noise in class B lasers and obtain the non-Lorentzian spectrum due
to the coloring of excess noise in class A lasers accounting for gain satuf&idb0-29479)03106-9

PACS numbes): 42.50.Lc, 42.55-f, 42.60.Da

Excess quantum noise is an intriguing effect that has beea-number counterparts of the quantum-mechanical operators
demonstrated recently in several types of laggrs3]. Since instead of the operators themselves. The equivalent
Petermann first predicted[i#], much effort was put in trying c-number Langevin equations are obtained by choosing the
to understand this effefs—7]. In 1989, Siegman proposed a normal ordering and neglecting thermal noise in the field as
semiclassical theory that derives excess noise as a univerdalRef.[18]. This procedure retains quantum correlations but
consequence of mode nonorthogonaliy7]. In addition to ~ only up to second moments of the dynamical variables.
providing experimentalists with an appealing semiclassicafssuming that spatial and spectral hole burning can be ne-
picture of excess noise, this “geometricdl8] theory is also  glected[19] and that the pumping is spatially uniform, we
a powerful calculational tool. This theory was developed forobtain the following Maxwell-Bloch equations for lasers
class A laserd9], where the atomic variables relax much with nonorthogonal modes:
faster than the field, within the linear isotropic gain approxi-

mation[7]. However, the presence of relaxation oscillations . clny,| o c?

in the lasers(HeXe and Nd*:YVO,) where excess noise  Can(t)= lognt = 5 Can(t) =1 52 WckoPan(l),
was observed so farl—3] shows that none of them are ' ' (13
strictly class A[10]. Moreover, although the “geometrical”

theory derives excess noise as white noise, it was recently 2

fou,r,1d to be coloredl11]. Here, we show how the “geometri- bqn(t)Z{i (@a— @c) = ¥, }Pgn(t) +i ﬁp(t)cqn(tH Fan(t),

cal” theory can be extended to meet these new experimental v

challengeg12]. (1b)
The approach taken here parallels that of ordinary laser .

theory where the combined dynamics of electric field and . ! na’ %

atomic variables is generally described by Maxwell-Bloch D(t)==»D(t)+ Ao+ 2% E, . Tng' {Pan(t)Cqq ()

equationg 13]. We incorporate the formalism of biorthogo- nand

nal modes into these Maxwell-Bloch equations. After de- —pg,n,(t)cqn(t)}Jr Fo(t), (10

scribing the theory we will illustrate it with two applications:

an example of a nonclass A laser, and a class A laser WheWherecqn(t) andpg(t) are the expansion coefficients of the

both gain saturation and the dynamics of nonlasing modesiowly varying electric fieldwith the laser central frequency

are taken into account. The latter case will give rise to they = B.c/n, separated oltand polarization, respectively, in

recently discovered phenomenon of the Coloring of excesthe paraxia| approximation Corresponding to q‘lb |0ngitu_

noise[11]. . . dinal mode and thath transverse mode. Hegds the speed
The microscopic model we adopt consists of a system 0pf |ight in vacuum and 0UC,(t) and pgn(t) correspond to

homogeneously broadened two-level atofid] of reso- Jpc ; -
. : PCqn(t)eXplawgqt) and yppgn(t)explwgd), respectively, in
nance frequency, and dipole strengtiu, embedded in a Refs.[6,7], with p being the cavity round-trip length and the

dlelec.tnc host of refractlvg |r.1de|xt and Interacting W'th. th? mode frequencies, being relative to the central frequency
guantized electromagnetic field in a cavity. The cavity is a

) . . wc. The other symbols stand for the following?(t)
single-ended output laser cavity as in Ref] and we adopt =N,(t) = Ny(t) is the spatially uniform inversiony is the
the same notation and normalization conventions used the

for the cavity biorthogonal modes. The atoms are aIso‘Fﬁomlc population in leve, Ao is the pumping ratey'is the

e . cavity volume, and the dimensionless “weighted overlap
coupled to reservoirs yielding the decay rajgsfor the in- b N 312D E T\ (p ), o~
version andy, for the polarization together with their asso- factor” Tnq' =JdrLqq (v vn)' UnUy,/p, with un(r)
ciated noise fluctuations. To avoid the complications of ex-being thenth transverse modey, the corresponding com-
panding quantized fields into nonorthogonal cavity modegplex eigenvaluel,,=exgi(q' —g)27}, and the integration
[15-17, we reduce the quantum Langevin equations tdbeing over the cavity volume. The Langevin forces are fully
equivalentc-number Langevin equations and expand thedefined by their second-order moment$;(t)F;(t"))
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=2Dl§(t—t') and (Fi(t)F}‘(t’)>=25f s(t—t') with all
other moments vanishind.3]. The diffusion coefficient®!
andD! are given by

1. T
=q'n’ 41“‘.:—217L ‘y” AO Trn]qq Kn/n
eV R T | E s DI
vl My Tag
2
q’n’:' Ta mksl
an ! v k%s ann’q'ckmpls, (2b)
p__ Y Ag
an_ 2 | 1+ _’yj\/] Pgn . (20
D ﬂ _AOD |_ "
op 2 [N N Zhann;q, Thq PgnCqrns TC.C.,
(2d)

where the tensorial overlap factor in E¢{Rb) is given

by Thgwa=(VIP AT BrlimnUs, N=Np+ A

is the total number of atoms, an], = [d*s¢* b,

in Eg. (29 is the transverse Petermann factor between

mode n’ and n, with s being a position on the trans-
verse reference plane and,(r) the nth adjoint mode
[6,7. The abbreviations above stand foly.,(2)
E(qurlq’)(ZIP)(‘;’n;’n’;’r:]l;’Q l)(27 PP and Tnn’
=[d?su,U’, is the “transverse overlap factor.”

To test our general theory, we will now show that for
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when we discuss the coloring of excess npisi¥e end up
with the following rate equations for the average number of
photons in the lases(t)=ThninZ[Cqn(t)| (25w C?u0) and
the inversionD(t),

- cInf|
s=) yBD+2 D s+ KRgp+ T, (53
r
D=Ao—y/D{1+2Bs}—2KRs,—2f + 5. (5b)

The factors of 2 appearing in the inversion Efb) are a
consequence of our two-level descriptionld], B
=c%wcuipo!(nFhy, v V) is the spontaneous emission fac-
tor [20], andRg,= v BN, is the ordinary spontaneous emis-
sion contribution to the laser field, which is enhanced in Egs.
(5) by the excess noise factdét for the lasing mode. The
Langevin force f(t) describes the spontaneous emission
noise, with(f(t)f(t"))=2KRss8(t—t"). The other Lange-
vin force in Eqg.(5b), fp(t), describes the inversion noise
which, in this regime ¢, > 1)), is not correlated td(t) but
only to itself, (fp(t)fp(t"))=2D 6(t—t"), whereD = y{ N
[AoDI(yN)]—2BsD}.

Rate equations similar to Eq&5) have been postulated
before to describe bad-cavity lasdrsee Eq.(1) of Ref.
[21]]. A bad-cavity laser is a laser Wher)ei_1 is not small
compared to the lifetime of a photon in the cavity. To com-
pare our rate equatior(§) with those used in Ref21], we

notice that the cavity loss rate c In[y,)/(n,p) has to be re-
placed by a “dressed” cavity loss rate dependent on the

class A lasers in the linear isotropic gain approximation, wehversion[22]. Then Egs(5) coincide with the rate equations
recover Siegman’s equations for the field-expansion coeffiused in Ref[21] apart from the last three terms on the right-

cients[7]. In this case, we adiabatically eliminaﬁan(t)

qun(t)exp(—iqut)/\/ﬁ and D(t) in Egs. (1) neglecting
saturation. Then we obtain the following single equation o
motion for the field:

| a+

wherea=,uo,u;cCocAo/(2nrthL 7)) is the linear gain and
the noisepy(t) = —icZweueeXp(—imgt)Fon(D)/(2n7y,) has
the following correlation function derived from E¢Ra):

In[7,|

c = N
= T an(t)+pqn(t):

n

Can(t) &)

~2
Nzcgwcﬂo "1

Dnd pyainy,|

(PA(DPAX (1)) =2K] frax S(t—t").

(4)

Thus, we have recovered the result of R&.with the noise
polarization correlation functiod) derived now from the
Maxwell-Bloch noise correlation functiof2a), whereas Ref.
[7] obtains it by a heuristic argument.

hand side of the equation of motion for the inversidib)
describing the spontaneous emission depletion of the inver-

fsion (—2KRgp) and the two Langevin forces. Inversion

noise is often neglected in the literatlfer,22,23 but it was
suggested that it can become important in class B |48dis

To the best of our knowledge, the total noise in the inversion
described by the last terms on the right-hand side of(&).

has not been derived before for class B lasers with both
transverse and longitudinal excess quantum noise.

It has been discovered recently that excess noise is not
just a geometrical effect of mode nonorthogonality. The dy-
namical evolution of the noise-driven nonlasing modes also
plays a role in the generation of excess noise. The signature
of this dynamical contribution is the coloring of excess noise
recently demonstrated in an experim¢ffl]. As a second
illustration of our theory, we use the Maxwell-Bloch ap-
proach presented here to calculate the optical spectrum of the
laser and demonstrate this coloring as a deviation from the
normal Lorentzian spectrupil]. We do so by reducing the
Maxwell-Bloch Egs.(1) to a Lamb third-order equation for
the electric field, this time taking into account the nonlasing

Equations(1) describe excess quantum noise in any lasemodes, unlike in Eqgs(5). For simplicity, we consider the
where the inversion can be assumed not to depend on posiase where only one longitudinal mode, e@s 1, is rel-

tion. It is interesting to reduce Eqggl) to simple cases other

evant(short cavity and every transverse mode experiences

than class A. As a first illustration of our general theory, letthe same gaind,— w.— w1,<7, for everyn); the lasing

us apply it to class B lasef®]. In such a laser the polariza-
tion can be adiabatically eliminated but not the invergi@h

mode being the one with the smallest cavity loss rate. We
calculate the spectrum using the Wiener-Khintchine theorem

For simplicity, we will also assume that all the nonlasingand by linearizing the equations around the steady state.

modes are strongly dampéithis assumption will be dropped

Then the lasing mode amplitude is expressed d$) ={r
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+or(t)lexplip(t)}, wherer? is the stabilized laser intensity,

Sr represents an in-phase fluctuation in the lasing mode am-
plitude (which determines the intensity fluctuationand ¢

is the phase of the lasing mode. The coloring arises from
time correlations such gexg{i é(t)}ch (t+ 7)) with n# L that,

due to mode nonorthogonality, also have to be accounted for
in addition to the ordinary time correlatigexp|i[ ¢(t)— ¢(t
+7)1}), which is alone responsible for the laser linewidth in 10°8
lasers with orthogonal modes. Our calculation yields the fol-
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FIG. 1. In(a), we plot the spectrurtfull line) in a log scale for
wheret; are the amplitude transmissivities of the cavity out- ¥n.=10 andA, =1.In (b), we plot the spectrum in a linear scale

. . ~ ~ . . for y,.=0.2 andA, =0.8. All rates are in units oD, /r?. We
put ‘r‘mrro'r,, 7“'-.=C In|y|_/_yn|/(nr ) is the dlffergnce between also plot in the same figures the Lorentzian spectrum for the laser
the qud CaV'tY damp."ﬁg of thenth nonlasing mode and mode alonddotted ling that one would obtain if the coloring were
the lasing modéit specifies how much below threshold ev- negligible.
ery nonlasing mode JsA,, is the detuning between thh
nonlasing-mode frequencw, and the lasing-mode fre- a double-peak spectrum of the usual sort that is associated
quencyw, , D, /r? is the excess-noise-enhanced linewidthwith the superposition of two modes. The close-to-threshold
of the lasing mode alone, and D2,=i(c2w.u,/ Nonlasing mode considered here is diitllowthreshold and
is notlasing. For the numerical values used in the plot of Fig.
1(a), the intensity of the nonlasing mode is about 100 times
- . 9%eaker than that of the lasing mode, and for those of Fig.
are much larger than thi€-enhanced laser linewidth there is 1) “1¢ times weaker. So in a laser resonator where these
no colo_rlng and thg spectrum_ls simply given by the first,ndes were orthogonal the nonlasing mode waubd be
Lorentzian on the right-hand side of E@). In Fig. 1, we \jsiple in the spectrum as in these plots. Moreover, as can be
pIoF the spectrum for the case where all but one of the NONseen from Eq(6), the spectrum ivota sum of Lorentzians
lasing modes have a loss rate much larger than the ordinagy in the case of two lasing modes but rather a product of
K-enhanced laser linewidth, so that only one nonlasing modgorentzians as in Refl11].
contributes to the line shape. In Fig(al the net loss rate To conclude, we have presented a unifying framework for
vnL Of the nonlasing mode has been chosen as ten times thexcess noise, based on a Maxwell-Bloch approach, from
ordinary K-enhanced laser linewidt® , /r2. Then devia- which previous theoretical descriptions can be derived in a
tions from the normal Lorentzian spectrum only start appeareonsistent way. We have shown how this theoretical frame-
ing as one moves towards the wings of the spectfiig.  work can be used to derive corrections to previous descrip-
1(a) is in logarithmic scalgin agreement with the time- tions and also to explain phenomena such as the recently
domain argumenf11]: large frequencies mean small times discovered coloring of excess noigk].

before the fluctuations in the nonlasing mode become com- g\ p. would like to thank J. Steinberg for an interesting
pletely damped. One way to bring these deviations closer t@jscussion. This work is part of the research program of the
the central part of the spectrum is to increase the cavity life«stichting voor Fundamenteel Onderzoek der Materie”
time of the nonlasing mode. In fact, as we can see from FigieOM), the European Union ESPRIT Project No. 20029
1(b) where we have decreaseq), by a factor of 50, devia- (ACQUIRE), and the TMR network No. ERB4061
tions from the Lorentzian shape become visible even in @1.951021(Microlasers and Cavity QED The research of
normal linear scale in the central part of the spectrum. WeN. J. van Druten has been made possible by the “Konin-
would like to stress that the spectrum seen in Fi§) Is not  klijke Nederlandse Akademie van Wetenschappen.”
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