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Maxwell-Bloch approach to excess quantum noise

S. M. Dutra, K. Joosten, G. Nienhuis, N. J. van Druten, A. M. van der Lee, M. P. van Exter, and J. P. Woerdm
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~Received 9 December 1998!

To meet recent experimental advances, we generalize the intuitively appealing nonorthogonal-mode theory
of excess quantum noise by introducing a Maxwell-Bloch description of the gain medium. The resulting
equations extend the nonorthogonal-mode approach beyond the class A linear-gain regime providing a general
starting point for theoretical descriptions of excess quantum noise. As an illustration of our theory, we derive
rate equations describing excess quantum noise in class B lasers and obtain the non-Lorentzian spectrum due
to the coloring of excess noise in class A lasers accounting for gain saturation.@S1050-2947~99!03106-6#

PACS number~s!: 42.50.Lc, 42.55.2f, 42.60.Da
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Excess quantum noise is an intriguing effect that has b
demonstrated recently in several types of lasers@1–3#. Since
Petermann first predicted it@4#, much effort was put in trying
to understand this effect@5–7#. In 1989, Siegman proposed
semiclassical theory that derives excess noise as a univ
consequence of mode nonorthogonality@6,7#. In addition to
providing experimentalists with an appealing semiclass
picture of excess noise, this ‘‘geometrical’’@8# theory is also
a powerful calculational tool. This theory was developed
class A lasers@9#, where the atomic variables relax muc
faster than the field, within the linear isotropic gain appro
mation @7#. However, the presence of relaxation oscillatio
in the lasers~HeXe and Nd31:YVO4) where excess nois
was observed so far@1–3# shows that none of them ar
strictly class A@10#. Moreover, although the ‘‘geometrical’
theory derives excess noise as white noise, it was rece
found to be colored@11#. Here, we show how the ‘‘geometri
cal’’ theory can be extended to meet these new experime
challenges@12#.

The approach taken here parallels that of ordinary la
theory where the combined dynamics of electric field a
atomic variables is generally described by Maxwell-Blo
equations@13#. We incorporate the formalism of biorthogo
nal modes into these Maxwell-Bloch equations. After d
scribing the theory we will illustrate it with two applications
an example of a nonclass A laser, and a class A laser w
both gain saturation and the dynamics of nonlasing mo
are taken into account. The latter case will give rise to
recently discovered phenomenon of the coloring of exc
noise@11#.

The microscopic model we adopt consists of a system
homogeneously broadened two-level atoms@14# of reso-
nance frequencyva and dipole strengthma embedded in a
dielectric host of refractive indexnr and interacting with the
quantized electromagnetic field in a cavity. The cavity is
single-ended output laser cavity as in Ref.@7# and we adopt
the same notation and normalization conventions used t
for the cavity biorthogonal modes. The atoms are a
coupled to reservoirs yielding the decay ratesg i for the in-
version andg' for the polarization together with their ass
ciated noise fluctuations. To avoid the complications of
panding quantized fields into nonorthogonal cavity mod
@15–17#, we reduce the quantum Langevin equations
equivalent c-number Langevin equations and expand
PRA 591050-2947/99/59~6!/4699~4!/$15.00
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c-number counterparts of the quantum-mechanical opera
instead of the operators themselves. The equiva
c-number Langevin equations are obtained by choosing
normal ordering and neglecting thermal noise in the field
in Ref. @18#. This procedure retains quantum correlations b
only up to second moments of the dynamical variables@18#.
Assuming that spatial and spectral hole burning can be
glected@19# and that the pumping is spatially uniform, w
obtain the following Maxwell-Bloch equations for lase
with nonorthogonal modes:

ċqn~ t !5H ivqn1
c lnug̃nu

nrp
J cqn~ t !2 i

c2

2nr
2 vcm0pqn~ t !,

~1a!

ṗqn~ t !5$ i ~va2vc!2g'%pqn~ t !1 i
ma

2

\V
D~ t !cqn~ t !1Fqn~ t !,

~1b!

Ḋ~ t !52g iD~ t !1L01
i

2\ (
nqn8q8

Tnq
n8q8$pqn~ t !cq8n8

* ~ t !

2pq8n8
* ~ t !cqn~ t !%1FD~ t !, ~1c!

wherecqn(t) andpqn(t) are the expansion coefficients of th
slowly varying electric field~with the laser central frequenc
vc5bcc/nr separated out! and polarization, respectively, in
the paraxial approximation corresponding to theqth longitu-
dinal mode and thenth transverse mode. Herec is the speed
of light in vacuum and ourcqn(t) andpqn(t) correspond to
Apc̃qn(t)exp(ivqnt) andApp̃qn(t)exp(ivqnt), respectively, in
Refs.@6,7#, with p being the cavity round-trip length and th
mode frequenciesvqn being relative to the central frequenc
vc . The other symbols stand for the following:D(t)
5N2(t)2N1(t) is the spatially uniform inversion,Nj is the
atomic population in levelj, L0 is the pumping rate,V is the
cavity volume, and the dimensionless ‘‘weighted overl

factor’’ Tnq
n8q8[*d3rGqq8

z/p (g̃n8
* g̃n)(p2z)/pũnũn8

* /p, with ũn(r )

being thenth transverse mode,g̃n the corresponding com
plex eigenvalue,Gqq8[exp$i(q82q)2p%, and the integration
being over the cavity volume. The Langevin forces are fu
defined by their second-order momentŝFi(t)F j (t8)&
4699 ©1999 The American Physical Society
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52Di
jd(t2t8) and ^Fi(t)F j* (t8)&52D̄ i

jd(t2t8) with all
other moments vanishing@13#. The diffusion coefficientsDi

j

and D̄ i
j are given by

D̄qn
q8n85

4ma
2g'

V HN22
g i

4g'
FD2

L0

g i
G J Tnq

n8q8Kn8n
T

g̃ng̃n8
* Gqq8

, ~2a!

Dqn
q8n85 i

ma
2

\V (
kmls

Tnqn8q8
mksl ckmpls , ~2b!

Dqn
D 52

g i

2 H 11
L0

g iNJ pqn , ~2c!

DD
D5

g i

2 HN2
L0D
g iN J 1

i

2\ (
nqn8q8

Tnq
n8q8pqncq8n8

* 1c.c.,

~2d!

where the tensorial overlap factor in Eq.~2b! is given
by Tnqn8q8

mksl [(V/p2)*d3rPnqn8q8
mksl f̃nũmf̃n8ũs , N5N21N1

is the total number of atoms, andKn8n
T [hnn8

21 *d2sf̃n8
* f̃n

in Eq. ~2a! is the transverse Petermann factor betwe
mode n8 and n, with s being a position on the trans
verse reference plane andf̃n(r ) the nth adjoint mode
@6,7#. The abbreviations above stand for:Pnqn8q8

mksl (z)

[(GkqG lq8)
(z/p)(g̃ng̃n8g̃m

21g̃s
21)(z2p)/p and hnn8

[*d2sũnũn8
* is the ‘‘transverse overlap factor.’’

To test our general theory, we will now show that f
class A lasers in the linear isotropic gain approximation,
recover Siegman’s equations for the field-expansion coe
cients @7#. In this case, we adiabatically eliminatep̃qn(t)
[pqn(t)exp(2ivqnt)/Ap and D(t) in Eqs. ~1! neglecting
saturation. Then we obtain the following single equation
motion for the field:

c8 qn~ t !5
c

nr
H a1

lnug̃nu
p J c̃qn~ t !1 p̃qn

N ~ t !, ~3!

wherea5m0ma
2cvcL0 /(2nr\Vg'g i) is the linear gain and

the noisep̃qn
N (t)52 ic2vcm0exp(2ivqnt)Fqn(t)/(2nr

2g') has
the following correlation function derived from Eq.~2a!:

^ p̃qn
N ~ t ! p̃qn

N* ~ t8!&52Knn
T \a

N 2c3vcm0

Dnr
3

g̃n
221

pg̃n
2 lnug̃nu

d~ t2t8!.

~4!

Thus, we have recovered the result of Ref.@7# with the noise
polarization correlation function~4! derived now from the
Maxwell-Bloch noise correlation function~2a!, whereas Ref.
@7# obtains it by a heuristic argument.

Equations~1! describe excess quantum noise in any la
where the inversion can be assumed not to depend on p
tion. It is interesting to reduce Eqs.~1! to simple cases othe
than class A. As a first illustration of our general theory,
us apply it to class B lasers@9#. In such a laser the polariza
tion can be adiabatically eliminated but not the inversion@9#.
For simplicity, we will also assume that all the nonlasi
modes are strongly damped~this assumption will be droppe
n

e
-

f

r
si-

t

when we discuss the coloring of excess noise!. We end up
with the following rate equations for the average number
photons in the lasers(t)[Tnq

nqnr
2uc̃qn(t)u2/(2\vcc

2m0) and
the inversionD(t),

ṡ5H g ibD12
c lnug̃nu

nrp
J s1KRsp1 f , ~5a!

Ḋ5L02g iD$112bs%22KRsp22 f 1 fD . ~5b!

The factors of 2 appearing in the inversion Eq.~5b! are a
consequence of our two-level description@14#, b
[c2vcma

2m0 /(nr
2\g'g iV) is the spontaneous emission fa

tor @20#, andRsp[g ibN2 is the ordinary spontaneous emi
sion contribution to the laser field, which is enhanced in E
~5! by the excess noise factorK for the lasing mode. The
Langevin force f (t) describes the spontaneous emiss
noise, with^ f (t) f (t8)&52KRspsd(t2t8). The other Lange-
vin force in Eq. ~5b!, fD(t), describes the inversion nois
which, in this regime (g'@g i), is not correlated tof (t) but
only to itself, ^ fD(t) fD(t8)&52Dd(t2t8), whereD5g i$N
2@L0D/(g iN)#22bsD%.

Rate equations similar to Eqs.~5! have been postulate
before to describe bad-cavity lasers†see Eq.~1! of Ref.
@21#‡. A bad-cavity laser is a laser whereg'

21 is not small
compared to the lifetime of a photon in the cavity. To com
pare our rate equations~5! with those used in Ref.@21#, we
notice that the cavity loss rate2c lnug̃nu/(nrp) has to be re-
placed by a ‘‘dressed’’ cavity loss rate dependent on
inversion@22#. Then Eqs.~5! coincide with the rate equation
used in Ref.@21# apart from the last three terms on the righ
hand side of the equation of motion for the inversion~5b!
describing the spontaneous emission depletion of the in
sion (22KRsp) and the two Langevin forces. Inversio
noise is often neglected in the literature@17,22,23# but it was
suggested that it can become important in class B lasers@24#.
To the best of our knowledge, the total noise in the invers
described by the last terms on the right-hand side of Eq.~5b!
has not been derived before for class B lasers with b
transverse and longitudinal excess quantum noise.

It has been discovered recently that excess noise is
just a geometrical effect of mode nonorthogonality. The d
namical evolution of the noise-driven nonlasing modes a
plays a role in the generation of excess noise. The signa
of this dynamical contribution is the coloring of excess no
recently demonstrated in an experiment@11#. As a second
illustration of our theory, we use the Maxwell-Bloch ap
proach presented here to calculate the optical spectrum o
laser and demonstrate this coloring as a deviation from
normal Lorentzian spectrum@11#. We do so by reducing the
Maxwell-Bloch Eqs.~1! to a Lamb third-order equation fo
the electric field, this time taking into account the nonlasi
modes, unlike in Eqs.~5!. For simplicity, we consider the
case where only one longitudinal mode, e.g.,q51, is rel-
evant ~short cavity! and every transverse mode experienc
the same gain (va2vc2v1n!g' for every n); the lasing
mode being the one with the smallest cavity loss rate.
calculate the spectrum using the Wiener-Khintchine theor
and by linearizing the equations around the steady st
Then the lasing mode amplitude is expressed ascL(t)5$r
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1dr(t)%exp$if(t)%, wherer 2 is the stabilized laser intensity
dr represents an in-phase fluctuation in the lasing mode
plitude ~which determines the intensity fluctuations!, andf
is the phase of the lasing mode. The coloring arises fr
time correlations such as^exp$if(t)%cn* (t1t)& with nÞL that,
due to mode nonorthogonality, also have to be accounted
in addition to the ordinary time correlation̂exp$i@f(t)2f(t
1t)#%&, which is alone responsible for the laser linewidth
lasers with orthogonal modes. Our calculation yields the
lowing expression for the laser spectrum outside the cavit
the position of the exit mirror,

S~v!5
utLu2DLL /p

~v2vL!21DLL
2 /r 4

3H 112(
nÞL

ReS F12
gnL1 iDnL

gnL2 i ~v2vn!G
3

tLtn* hLn

utLu2

DLn

DLL
D J , ~6!

wheret j are the amplitude transmissivities of the cavity o
put mirror, gnL[c lnug̃L /g̃nu/(nrp) is the difference between
the ‘‘cold’’ cavity damping of thenth nonlasing mode and
the lasing mode~it specifies how much below threshold e
ery nonlasing mode is!, DnL is the detuning between thenth
nonlasing-mode frequencyvn and the lasing-mode fre
quencyvL , DLL /r 2 is the excess-noise-enhanced linewid
of the lasing mode alone, and 2DLn[ i (c2vcm0/
2nr

2g')2D̄1n
1L .

We notice that if the net loss rates of the nonlasing mo
are much larger than theK-enhanced laser linewidth there
no coloring and the spectrum is simply given by the fi
Lorentzian on the right-hand side of Eq.~6!. In Fig. 1, we
plot the spectrum for the case where all but one of the n
lasing modes have a loss rate much larger than the ordi
K-enhanced laser linewidth, so that only one nonlasing m
contributes to the line shape. In Fig. 1~a!, the net loss rate
gnL of the nonlasing mode has been chosen as ten times
ordinary K-enhanced laser linewidthDLL /r 2. Then devia-
tions from the normal Lorentzian spectrum only start appe
ing as one moves towards the wings of the spectrum@Fig.
1~a! is in logarithmic scale# in agreement with the time
domain argument@11#: large frequencies mean small time
before the fluctuations in the nonlasing mode become c
pletely damped. One way to bring these deviations close
the central part of the spectrum is to increase the cavity l
time of the nonlasing mode. In fact, as we can see from F
1~b! where we have decreasedgnL by a factor of 50, devia-
tions from the Lorentzian shape become visible even i
normal linear scale in the central part of the spectrum.
would like to stress that the spectrum seen in Fig. 1~b! is not
-
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a double-peak spectrum of the usual sort that is associ
with the superposition of two modes. The close-to-thresh
nonlasing mode considered here is stillbelow threshold and
is not lasing. For the numerical values used in the plot of F
1~a!, the intensity of the nonlasing mode is about 100 tim
weaker than that of the lasing mode, and for those of F
1~b!, 10 times weaker. So in a laser resonator where th
modes were orthogonal the nonlasing mode wouldnot be
visible in the spectrum as in these plots. Moreover, as can
seen from Eq.~6!, the spectrum isnot a sum of Lorentzians
as in the case of two lasing modes but rather a produc
Lorentzians as in Ref.@11#.

To conclude, we have presented a unifying framework
excess noise, based on a Maxwell-Bloch approach, fr
which previous theoretical descriptions can be derived i
consistent way. We have shown how this theoretical fram
work can be used to derive corrections to previous desc
tions and also to explain phenomena such as the rece
discovered coloring of excess noise@11#.
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FIG. 1. In ~a!, we plot the spectrum~full line! in a log scale for
gnL510 andDnL51. In ~b!, we plot the spectrum in a linear sca
for gnL50.2 andDnL50.8. All rates are in units ofDLL /r 2. We
also plot in the same figures the Lorentzian spectrum for the la
mode alone~dotted line! that one would obtain if the coloring wer
negligible.
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