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The conductance of a two-dimensional electron gas at the transition from one quantum Hall plateau to the next
has sample-specific fluctuations as a function of magnetic field and Fermi energy. Here we identify a universal
feature of these mesoscopic fluctuations in a Corbino geometry: The amplitude of the magnetoconductance
oscillations has an e2/h resonance in the transition region, signaling a change in the topological quantum number
of the insulating bulk. This resonance provides a signed scaling variable for the critical exponent of the phase
transition (distinct from existing positive definite scaling variables).
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I. INTRODUCTION

A two-dimensional electron gas in a strong perpendicular
magnetic field has an insulating bulk and a conducting edge.
While the conductance Gedge for transport along the edge is
quantized in units of e2/h, the conductance Gbulk for transport
between opposite edges is strongly suppressed. This is the
regime of the (integer) quantum Hall effect.1 Upon variation
of magnetic field or Fermi energy, a transition occurs in
which Gedge varies from one quantized plateau to the next,
accompanied by a peak in Gbulk.

The quantum Hall plateau transition is not smooth, but
exhibits fluctuations reminiscent of the universal conductance
fluctuations in metals.2–8 In small samples the fluctuations take
the form of sharp peaks, due to resonant scattering between
opposite edges mediated by quasibound states in the bulk.9

In larger samples the intermediate states form a percolating
network at the plateau transition, resulting in a smooth peak in
Gbulk with rapid fluctuations superimposed.10

The conductance fluctuations are typically analyzed in a
context that emphasises their random, sample-specific nature.7

Here we wish to point out one feature of these fluctuations that
has a sample-independent topological origin.

The quantum Hall plateau transition is a topological phase
transition, because a topological quantum number Q changes
from one plateau to the next.11 We show that a change
in Q is associated with a resonance in the amplitude �G

of the magnetoconductance oscillations in a ring (Corbino)
geometry. Each unit increment of Q corresponds to a resonant
amplitude �G = e2/h (times spin degeneracies). Our analysis
relies on a scattering formula for the topological quantum
number, which relates Q to the winding number of the
determinant of the reflection matrix.12,13

The analytical considerations in Sec. II are supported by
numerical calculations in Sec. III. These show, in particular,
that the plateau transition in a disordered system is reentrant:
There are multiple increments of Q, alternatingly +1 and
−1, each associated with an e2/h resonance in �G. We
conclude in Sec. IV by showing that the critical exponent of
the phase transition can be extracted from the sample-size
dependence of the width of the resonance, in a way that
preserves information on which side of the phase transition
one is located. The appendices contain details of the numerical
calculations.

II. TOPOLOGICAL QUANTUM NUMBER AND
CONDUCTANCE RESONANCE

To isolate Gbulk from Gedge we consider a Corbino geometry
(see Fig. 1) consisting of a ring-shaped two-dimensional
electron gas (2DEG) connected to an electrode at the inner and
outer perimeters. The two-terminal conductance G = Gbulk

is then fully due to the current I through the bulk, without
contributions from the currents circulating along the edges.

We assume that the outer electrode, at a voltage V relative
to the inner electrode, is connected via an N -mode lead to
the 2DEG. (For simplicity we do not include spin as a separate
degree of freedom.) The reflection amplitudes rmn from mode
n to mode m are contained in the N × N reflection matrix
r . The conductance G = I/V (in units of the conductance
quantum G0 = e2/h) follows from

G = G0 Tr (1 − rr†) = G0

∑
n

(1 − Rn), (1)

with 1 the N × N unit matrix. The reflection eigenvalues Rn ∈
[0,1] are eigenvalues of the Hermitian matrix product rr†.
Away from the plateau transition all Rn’s are close to unity
and G � e2/h.

The topological quantum number Q ∈ Z of the quantum
Hall effect in a translationally invariant system is the Chern
number of the bands below the Fermi level.11 An alternative
formulation,12,13 applicable also to a finite disordered system,
obtains Q as the winding number of the determinant of the
reflection matrix,

Q = 1

2πi

∫ 2π

0
dφ

d

dφ
ln det r(φ), (2)

where � ≡ φ × h̄/e is the magnetic flux enclosed by the inner
perimeter of the ring. To define the winding number one needs
to vary φ at constant magnetic field in the 2DEG, so that r(φ) is
2π periodic. The conductance (1) then oscillates periodically
as a function of φ, with amplitude �G. (We will examine
in the next section to what extent this applies to the realistic
situation of a uniform magnetic field.)

If the φ dependence of r is continued analytically to
arbitrary complex z = eiφ , the winding number,

Q = nzero − npole, (3)
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FIG. 1. Corbino geometry consisting of a ring-shaped two-
dimensional electron gas (2DEG, gray) in a perpendicular magnetic
field B. A pair of electrodes (black), at a voltage difference V , is
attached to the inner and outer edges of the ring.

equals the difference of the number of zeros and poles of det r
inside the unit circle |z| = 1. A pole may annihilate a zero,
but the difference nzero − npole can only change when a pole or
zero crosses the unit circle. Unitarity of the scattering matrix
requires | det r(φ)| � 1 for real φ, so poles cannot cross the
unit circle. A topological phase transition, corresponding to a
change in Q, is therefore signaled by a zero of det r crossing
the unit circle13 (see Fig. 2).

We conclude that at the transition point det r(φ) = 0 for
some real value of φ, which implies that (at least) one of
the Rn’s vanishes. If the zeros are well separated, and all
other Rn’s remain close to unity, the conductance oscillation
amplitude �G would thus show a peak of e2/h whenever Q
changes by ±1. This transport signature of a topological phase
transition is the analog for a two-dimensional (2D) system of
the one-dimesnional (1D) signature of Ref. 14.

III. NUMERICAL SIMULATIONS IN A
DISORDERED SYSTEM

We have searched for the predicted conductance resonances
in a numerical simulation. The Corbino disk is discretized

FIG. 2. (Color online) Example of a path taken in the complex
plane z = eiφ by a zero (blue dot) of det r , as the system is driven
through a phase transition in which Q → Q − 1. At the transition,
the zero crosses the unit circle and a reflection eigenvalue vanishes
for some flux φ0. The speed at which the zero crosses the unit circle
determines the critical exponent of the quantum Hall phase transition
(see Sec. IV).

on a square lattice (lattice constant a, nearest-neighbor
hopping energy t). Electrostatic disorder is introduced as an
uncorrelated random on-site potential, drawn uniformly from
the interval (−ε0,ε0). A uniform perpendicular magnetic field
B is introduced by the Peierls substitution, with f = Ba2e/h

the flux through a unit cell in units of the flux quantum.
Referring to Fig. 1 we take parameters Rout = 200 a, Rin =

150a, W = 60 a. For f = 0.005 we have a magnetic length
lm = (h̄/eB)1/2 = 5.6 a, sufficiently small that the edge states
at opposite edges do not overlap. These parameter values are
representative for a μm-size GaAs Corbino disk in a field of
5 T. The disorder strength was fixed at ε0 = 0.2 t .

We calculate the reflection matrix r at energy μ as a function
of the flux f using the recursive Green function technique.
This gives the conductance G via Eq. (1). The topological
quantum number Q is calculated from Eq. (3), by locating the
zeros and poles of det r in the complex flux plane using the
method of Ref. 13. (We summarize this method in Appendix
A.) Results are shown in Fig. 3. Since we are interested in
mesoscopic, sample-specific effects, this is data for a single
disorder realization, without ensemble averaging.

The left panels show that we can access regions with a
different topological quantum number by varying flux and
Fermi energy. This represents a wide sweep in parameter space,
with plateau regions of constant Q = 1,2,3,4,5 separated by
transition regions of fluctuating Q. The conductance G, which
in the Corbino geometry is the bulk conductance, vanishes on
the plateau regions and fluctuates in the transition regions.

The right panels zoom in on the Q = 0 to 1 transition.
The conductance oscillations as a function of the flux are only
approximately periodic, because the magnetic field changes
uniformly (and not just inside the inner perimeter of the ring).
Still, a dominant periodicity �f = 1.1 × 105 can be extracted,
corresponding to an h/e flux through a disk of radius Reff ≈
170 a, about halfway between the inner and outer radii of the
ring. (For a μm-size Corbino disk this would correspond to a
field scale of �B ≈ 10 mT.)

To search for the predicted signature of the topological
phase transition, we calculate the amplitude �G = Gmax −
Gmin of the conductance oscillations over one period (f,f +
�f ). This amplitude is plotted in Fig. 4 as a function of
Fermi energy, for different fluxes f . TheQ = 0 → 1 transition
should give at least one e2/h peak value of �G, which is
indeed what is observed. For the larger field values there is only
a single e2/h peak, while for the lower field values three peaks
develop, consistent with the Q = 0 → 1 → 0 → 1 reentrant
transition seen in Fig. 3 (upper right panel, dashed line).

IV. DISCUSSION AND RELATION TO THE
CRITICAL EXPONENT

We have shown that the sample-specific conductance fluctu-
ations at the quantum Hall plateau transition contain a universal
feature of a topological origin: The magnetoconductance
oscillations in a Corbino disk geometry have an e2/h resonant
amplitude whenever the topological quantum number Q is
incremented by ±1. The strict h/e flux periodicity of the
magnetoconductance is broken in a realistic setting by the
penetration of the flux through the conducting region, but we
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FIG. 3. (Color online) Topological quantum number (top panels) and conductance (bottom panels) of a disordered 2DEG in the Corbino
disk geometry. The left panels give a broad range of flux f and Fermi energy μ, while the right panels show a close-up of the Q = 0 → 1
transition. (Note the different color scales for the left and right panels.) The horizontal dashed line indicates the three reentrant phase transitions
(see Fig. 7).

have shown by numerical simulations that the resonances are
still clearly observable.

The theory presented here may motivate an experimental
search for the reentrant phase transition that we observed in
our simulations. Existing experiments7 in a GaAs Corbino
disk show a maximal amplitude of about 0.1 e2/h in the
Q = 1 → 2 plateau transition, an order of magnitude below
the predicted value. This may partly be due to limited
phase coherence, and partly to the self-averaging effect of
overlapping resonances. In the experimental geometry the
entire inner and outer perimeters of the Corbino disk are
contacted to current source and drain, while our geometry
(Fig. 1) has two narrow contacts—which helps to isolate the
resonances and make them more easily observable.

From a theoretical perspective, the evolution of zeros of
the reflection matrix determinant (see Figs. 2 and 7) provides
a new way to analyze the plateau transition in a disordered
mesoscopic system. In particular, the critical exponent ν of
the quantum Hall phase transition can be extracted from the
speed at which a zero z0 of det r(z) crosses the unit circle in
the complex flux plane,

lim
L→∞

W

L
ln |z0| = const × (μ − μc)W 1/ν + O(μ − μc)2. (4)

Here μc is the value of the Fermi energy μ at the phase
transition, where z0 = eiφ for some real flux φ. The Corbino
disk has an inner perimeter of radius L and outer perimeter of
radius L + W , with the limit L → ∞ taken at constant W .

We note the following conceptual difference with the usual
MacKinnon-Kramer scaling:15,16 The MacKinnon-Kramer
scaling variable is a Lyapunov exponent, which is a nonneg-
ative quantity. Our scaling variable ln |z0| changes sign at the
phase transition, so it contains information on which side of
the transition one is located.

In Appendix B we present a calculation of the critical
exponent along these lines. It remains to be seen whether
this alternative numerical method has advantages over the
conventional method based on MacKinnon-Kramer scaling.
It is also still an open question whether the evolution of the
zeros of det r is more accessible to analytical methods than the
evolution of Lyapunov exponents.

ACKNOWLEDGMENTS

The numerical calculations were performed using the
KWANT package developed by A. R. Akhmerov, C. W. Groth,
X. Waintal, and M. Wimmer. Our research was supported by
the Dutch Science Foundation NWO/FOM and by an ERC
Advanced Investigator Grant.

APPENDIX A: CALCULATION OF THE TOPOLOGICAL
QUANTUM NUMBER

We summarize the method used to calculate the topological
quantum number Q of the Corbino disk, following Ref. 13. We
insert a flux tube � = φh̄/e at the center, without changing
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FIG. 4. (Color online) Dependence of the amplitude of the
magnetoconductance oscillations on the Fermi energy for different
magnetic fields. The nth trace from the bottom shows the μ depen-
dence of �G = Gmax − Gmin in the flux interval (fn,fn + �f ), with
fn = 490 × 10−5 + 2(n − 1)�f and �f = 1.1 × 105. Successive
traces are displaced vertically, with the G0 = e2/h peak value
indicated by a horizontal black line.

the magnetic field in the 2DEG, and obtain Q as the winding
number of det r . The integration (2) over φ can be avoided by
going to the complex z = eiφ plane and counting the number
of zeros and poles of det r in the unit circle. The difference
nzero − npole then directly gives Q.

1. Analytic continuation to complex flux

To perform the analytic continuation to complex flux we
cut the disk as indicated in Fig. 5. We attach virtual leads (see
Fig. 6) at the two sides of the cut and construct the four-terminal
unitary scattering matrix,

S =

⎛
⎜⎜⎜⎝

rαα tαβ tαγ tαδ

tβα rββ tβγ tβδ

tγ α tγβ rγ γ tγ δ

tδα tδβ tδγ rδδ

⎞
⎟⎟⎟⎠. (A1)

We choose a gauge such that the entire phase increment
φ from the flux tube is accumulated at the cut, between
terminals γ and δ. The reflection matrix r of the original

FIG. 5. Corbino disk in a uniform magnetic field B, containing
additionally a flux tube � inside the inner perimeter. We choose a
gauge such that the phase increment φ = e�/h̄ due to the flux tube is
accumulated upon crossing a cut indicated by the dashed line. Virtual
leads γ,δ are attached at the two sides of the cut. Together with the
two physical leads α,β they define the four-terminal scattering matrix
(A1). The reflection matrix r of the original two-terminal system is
obtained from Eq. (A2), in a formulation which can be analytically
continued to arbitrary complex z = eiφ .

two-terminal system (from terminal α back to α) is then
obtained from

r = rαα − (tαγ tαδ)

(
rγ γ tγ δ − z

tδγ − 1/z rδδ

)−1(
tγ α

tδα

)
. (A2)

This expression is in a form suitable for analytic continuation
to arbitrary complex z = eiφ .

2. Evolution of zeros and poles of det r

The determinant of the reflection matrix (A2) is computed
as a function of the complex variable z by means of the relation,

det(D − CA−1B) = det

(
A B

C D

)
[det A]−1. (A3)

FIG. 6. (Color online) Construction of a virtual lead, connecting
two sides of a tight-binding lattice. The virtual lead consists of parallel
1D chains with on-site energy μ and hopping amplitudes alternating
between +1 and −1. The tight-binding equations enforce that every
other site in the chain (colored red or blue) has the same wave
amplitude at energy μ. The wave amplitudes ψn, ψ ′

n at the left and
right end of the nth chain are therefore unaffected by the insertion of
the virtual lead. We use this device in Fig. 5 to convert a two-terminal
geometry into a four-terminal geometry, by cutting the lead at the
center and connecting the ends to terminals γ,δ.
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FIG. 7. (Color online) Positions of the zeros (red) and poles
(green, clustered near the origin; see inset) of det r , along the path
indicated by the dashed line in Fig. 3. Arrows point in the direction of
increasing Fermi energy. The numbers 1,2,3 indicate the three phase
transitions in which the topological quantum number Q changes first
from 0 to 1, then from 1 back to 0, and once again from 0 to 1.

This results in the expression,

det r = det

⎛
⎜⎝

rγ γ tγ δ − z tγα

tδγ − 1/z rδδ tδα

tαγ tαδ rαα

⎞
⎟⎠

×
[

det

(
rγ γ tγ δ − z

tδγ − 1/z rδδ

)]−1

. (A4)

The zeros and poles of det r are therefore those values of
z for which, respectively, the determinant in the numerator or
denominator of Eq. (A4) vanishes. By equating each of these
determinants to zero we obtain two generalized eigenvalue
problems, with the zeros given by⎛
⎜⎝

rγ γ tγ δ tγ α

−1 0 0

tαγ tαδ rαα

⎞
⎟⎠

⎛
⎜⎝

ψ1

ψ2

ψ3

⎞
⎟⎠ = −z

⎛
⎜⎝

0 −1 0

tδγ rδδ tδα

0 0 0

⎞
⎟⎠

⎛
⎜⎝

ψ1

ψ2

ψ3

⎞
⎟⎠,

(A5)

and the poles by
(

rγ γ tγ δ

−1 0

)(
ψ1

ψ2

)
= z

(
0 1

−tδγ −rδδ

)(
ψ1

ψ2

)
. (A6)

The numerical solution of generalized eigenvalue problems
is quick and accurate. As an example, we show in Fig. 7
the motion of the zeros and poles along the reentrant phase
transition of Fig. 3.

APPENDIX B: CALCULATION OF THE CRITICAL
EXPONENT

In Sec. IV we outlined how the critical exponent of the
quantum Hall phase transition can be extracted from the
speed at which a zero z0 of det r(z) crosses the unit circle
in the complex z = eiφ plane. Here we demonstrate that this

FIG. 8. Geometry of the network model used to calculate the
critical exponent. This rolled-up strip is topologically equivalent to
the Corbino geometry used in the main text.

approach produces results consistent with earlier calculations
based on the scaling of Lyapunov exponents.16

To make contact with those earlier calculations, we use
the same Chalker-Coddington network model17,18 (rather than
the tight-binding model used in the main text). The parameter
that controls the plateau transition in the network model is the
mixing angle α of the scattering phase shifts at the nodes of the
network. The transition is at αc = π/4. Disorder is introduced
by means of random, uncorrelated phase shifts on the links
between nodes, sampled uniformly from [0,2π ).

The network has a strip geometry, of longitudinal dimension
L and transverse dimension W (see Fig. 8). The longitudinal
dimension has twisted boundary conditions, ψ 	→ eiφψ upon
translation over L. The transverse dimension is connected to
a source and drain reservoir. This geometry is equivalent to
a Corbino disk, enclosing a flux � = φh̄/e and with source
and drain contacts extending along the entire inner and outer
perimeter.

Taking the self-averaging limit L → ∞ of Eq. (4) is
impractical, but sufficient convergence is reached for an aspect
ratio L/W = 5 and an average of ln |z0| over 1000 disorder
realizations. Results for the W and α dependence of the scaling
parameter 
 = (W/L)〈 ln |z0|〉 are shown in Fig. 9.

We extract the critical exponent ν using the procedure of
Ref. 16, by fitting the data to the scaling law,


(W,α) =
n∑

p=1

cpWp/ν

⎡
⎣ n′∑

q=1

c′
q(α − αc)q

⎤
⎦

p

. (B1)

FIG. 9. (Color online) Scaling variable as obtained numerically
(data points) and as fitted to Eq. (B1) (black lines). Not all calculated
data points are included, to avoid clutter.
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We have checked that corrections to scaling are insignificant
in our parameter range. The symmetry of the network model
(a time-reversal operation followed by translation over half a
unit cell) implies that only odd powers of α − αc appear in

the series expansion (cp = c′
p = 0 for p even). We truncated

the expansions such as to keep terms of order (α − αc)5 and
lower. The result ν = 2.56 ± 0.03 is consistent with the value
ν = 2.59 obtained in Ref. 16.
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