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Abstract

The Tup1-Cyc8 (Ssn6) complex is a well characterized and conserved general transcriptional repressor complex in eukaryotic
cells. Here, we report the identification of the Tup1 (TupA) homolog in the filamentous fungus Aspergillus niger in a genetic
screen for mutants with a constitutive expression of the agsA gene. The agsA gene encodes a putative alpha-glucan
synthase, which is induced in response to cell wall stress in A. niger. Apart from the constitutive expression of agsA, the
selected mutant was also found to produce an unknown pigment at high temperatures. Complementation analysis with a
genomic library showed that the tupA gene could complement the phenotypes of the mutant. Screening of a collection of
240 mutants with constitutive expression of agsA identified sixteen additional pigment-secreting mutants, which were all
mutated in the tupA gene. The phenotypes of the tupA mutants were very similar to the phenotypes of a tupA deletion
strain. Further analysis of the tupA-17 mutant and the DtupA mutant revealed that TupA is also required for normal growth
and morphogenesis. The production of the pigment at 37uC is nitrogen source-dependent and repressed by ammonium.
Genome-wide expression analysis of the tupA mutant during exponential growth revealed derepression of a large group of
diverse genes, including genes related to development and cell wall biosynthesis, and also protease-encoding genes that
are normally repressed by ammonium. Comparison of the transcriptome of up-regulated genes in the tupA mutant showed
limited overlap with the transcriptome of caspofungin-induced cell wall stress-related genes, suggesting that TupA is not a
general suppressor of cell wall stress-induced genes. We propose that TupA is an important repressor of genes related to
development and nitrogen metabolism.
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Introduction

The fungal wall is an essential organel. It forms a strong

structural barrier that offers protection against mechanical

damage, helps to withstand the internal turgor pressure, and

maintains and determines the shape of the cell. Developmental

stages or dimorphic switches strongly affect the composition of the

cell wall, both in structure as well as in the type of cell wall

mannoproteins that are incorporated into the cell wall [1–4]. The

cell wall also contributes to invasion of sturdy substrates, and the

formation of multi-cellular structures. The structural components

of the wall mainly consist of polysaccharides, such as polymers of

glucose (b-1,3- and b-1,6-glucan, and chitin, which consists of b-
1,4-linked N-acetyl-glucosamine residues [5,6]. In addition,

filamentous fungal walls including those of Aspergillus species often

contain a-glucans, b-1,3-1,4-glucan, galactomannan, galactosami-

nogalactan and galactomannoproteins [7–9]. The actual cell wall

composition not only depends on the fungal species, but its

composition is also highly dependent on environmental factors and

developmental stages [10].

Many (pathogenic) fungi are able to switch from yeast to

filamentous growth. This is accompanied by major changes in cell

wall composition. The dimorphic switch has been extensively

studied in Candida albicans and this has shown that the expression of

cell wall genes is highly dynamic during the yeast to hyphal

transition [11,12]. Moreover, in pathogenic dimorphic fungi like

Histoplasma capsulatum, Cryptococcus neoformans, Blastomyces dermatitidis,

and Paracoccidioides brasiliensis, the virulent yeast form contains

substantial levels of a-glucan (35–46% of total cell wall carbohy-
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drates) in comparison to dramatically decreased levels in the

avirulent mycelial form [13–17]. In addition, cell wall stress

conditions have been reported to induce important changes in cell

wall composition by the specific induction of cell wall remodeling

genes or cell wall proteins [18–20]. The Cell Wall Integrity (CWI)

pathway, a conserved signaling pathway, is one of the most

important pathways mediating this response (see [21–23] for

reviews). In A. niger, activation of the CWI pathway results in a

strong transcriptional induction of agsA, an alpha-glucan synthase-

encoding gene [20,24]. The induced transcription of agsA in

response to cell wall stress is mediated via a highly conserved

Rlm1p-like MADS-box transcription factor protein, called RlmA

[24].

The Tup1-Cyc8(Ssn6) complex is a general transcriptional co-

repressor complex that controls the expression of genes involved in

various processes. This complex is especially well studied in the

yeast Saccharomyces cerevisiae, and mutational and genome-wide

expression studies have shown that Tup1 is responsible for the

repression of over 180 genes, including gene sets regulated by

glucose, DNA damage, mating type, and oxygen availability, and

gene sets involved in osmotic stress responses, flocculation, and

dimorphism [25–28]. Recent studies have shown that the

repressor function of Tup1-Cyc8 is caused by the interaction of

the complex with a specific DNA-binding domain, thereby

preventing the recruitment of transcriptional co-activators

[29,30]. The important role of Tup1/TupA in pathogenic fungi

has received further attention because of its important role in

dimorphism and pathogenicity. Although the role of Tup1 in

fungal dimorphism is conserved, the way it controls the switch

differs between fungi [12,31–33].

We previously reported about the isolation of UV-mutants

showing a constitutive high expression of the agsA gene by selection

for improved growth on acetamide as sole nitrogen source and for

the presence of GFP-labeled, fluorescent nuclei [34]. For this, a

dual reporter strain was used that contained a construct with the

amdS sequence (coding for an acetamidase) and the Histone2B-

GFP sequence both cloned behind an agsA promoter region. In

this study, we describe a mutant with a constitutive expression of

the agsA gene and show that the mutant is mutated in the A. niger

TupA homolog. The tupA (An15g00140) mutant in A. niger displays

in addition to induced expression of agsA a strongly reduced radial

growth rate, increased branching, and abundant secretion of an

unknown pigment into the medium. We present further genome-

wide transcriptomic consequences of the mutation in the co-

repressor complex and focus on the impact of tupA on the

transcriptional control of cell wall biosynthetic genes in Aspergillus

niger. The genome-wide study combined with phenotypic analysis

of the tupA strains also suggests that TupA is an important

repressor of genes related to nitrogen metabolism, which might

explain the important role of TupA in relation to dimorphic

switching in dimorphic fungi.

Materials and Methods

Strains, Plasmids, Cosmids, and Growth Conditions
The A. niger strains used in this study are listed in Table 1.

Strains were grown on minimal medium (MM) [35] containing

1% (w v21) glucose or on complete medium (CM), containing

0.5% (w v21) yeast extract and 0.1% (w v21) casamino acids in

addition to MM-glucose. When required, plates or medium were

supplemented with 10 mM uridine, SDS (50 mg/ml), Calcofluor

White (50–400 mg/ml), caspofungin (0.2–1.5 mg/ml), or with

sorbitol (1.2 M) to assay growth. MM agar plates containing

acetamide as sole nitrogen source were made as described [36].

Targeted integration of constructs at the pyrG locus using the

pyrG* allele was done as described [37]. E. coli DH5a strains were

transformed by electroporation for propagation and amplification

of the cosmids. Amplification of plasmid DNA was performed

using the XL1-Blue strain, which was transformed using the heat-

shock protocol as described by [38]. Transformation of A. niger was

performed as described by Meyer et al. [39] using 40 mg lysing

enzyme (L-1412, Sigma, St. Louis) per gram wet weight of

mycelium. A. niger genomic DNA (including cosmid DNA) was

isolated as described previously [39]. [a-32P]dCTP-labeled probes

were synthesized using the Rediprime II DNA labeling system

(Amersham Pharmacia Biotech, Piscataway, NJ) according to the

instructions of the manufacturer. All molecular techniques were

carried out as described [40]. Sequencing was performed by

Macrogen Europe (Amsterdam, The Netherlands).

Bioreactor Cultivations
Bioreactor cultivations were carried out as described previously.

Fermentation medium (FM) adjusted to pH 3, is composed of

0.75% glucose, 0.45% NH4Cl, 0.15% KH2PO4, 0.05% KCl,

0.05% MgSO4, 0.1% trace element solution and 0.003% yeast

extract as described [41]. Freshly harvested conidia (56109) from

strain N402 and RD15.8#36 were used to inoculate 5 liters of

FM. Cultivations were performed in a BioFlo3000 bioreactor

(New Brunswick Scientific), where the temperature, pH (set to 3),

and agitation speed were controlled online using the program NBS

Biocommand. The cultivation program consisted of two consec-

utive phases: (i) 30uC, agitation speed of 250 rpm, and headspace

aeration, for the first 5 h; (ii) 30uC, agitation speed of 750 rpm,

and sparger aeration during the second phase. Mycelial samples

were taken after specific time points for microarray, metabolic,

and microscopic analyses.

Identification and Cloning of tupA
RD15.8#36 was made pyrG2 by selecting 5-fluoroorotic acid (5-

FOA)-resistant mutants as described [39]. One of the generated

pyrG2 mutants was transformed with a genomic cosmid library in

an AMA1-containing pyrG-based self-replicating vector [40].

Cosmids from transformants that show complementation of the

growth-deficient phenotype at 30uC were isolated. To re-isolate

the complementing cosmid, DNA from transformants was isolated

and used for transformation to E. coli DH5a by electroporation.

Fresh ampicillin (amp)-resistant transformants were transferred to

50 ml LB-amp medium and grown overnight at 37uC, and cosmid

DNA was isolated using a small-scale isolation protocol essentially

as described (Sambrook et al., 1989). Primers cosT7 and cosUL

were used for sequencing the borders of the insert [34]. Subclones

were generated by digestion of the cosmids with various enzymes,

and fragments were ligated into properly digested pBlue-

scriptSK(+). The generated subclones were co-transformed with

pAB4.1 to RD15.8#36 pyrG2. The 10.1-kb HindIII subclone

giving complementation was subject to further analysis and

sequencing.

For complementation studies the An15g00140 locus, including

approximately 2.3-kb promoter and 1.4-kb terminator regions,

was PCR-amplified using N402 genomic DNA as template and

the NotI site-containing primers P1_0140_For and P2_0140_Rev

(Table 2). The fragments were cloned into pJET1.2 (Fermentas),

sequenced, released from pJET1.2 via NotI restriction and cloned

into NotI-linearized pMA172 [43]. Respective plasmids (pMA172-

0140 and pJET-0140) were then transformed into RD15.8#36

pyrG2. Primary transformants containing the complementation

plasmid were isolated on MM without uridine supplementation

and further analyzed by Southern blot. To allow pMA172 plasmid

Transcriptional Repression of TUP1 in A. niger
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loss, spores were streaked on MM containing 10 mM uridine. The

DNA sequence of the An15g00140 gene in the parental strain

(RD15.8), in the wild-type strain (N402) and in the mutant strains

was determined by sequencing. The An15g00140 locus with a 0.7-

kb promoter and a 0.7-kb terminator region was amplified with

primers P3_0140_For and P8_0140_Rev (Table 2), using genomic

DNA of the respective three strains as template DNA. PCR

products were directly sequenced with appropriate primers

(Table 2).

Generation of a tupA Deletion Strain
An An15g00140 gene disruption cassette, (DtupA::pyrG), was

prepared by a three-way ligation. 59 and 39 regions flanking the

coding region were amplified by PCR using the primers listed in

Table 2. Fragments were cloned into pJet2.1. The 0.5-kb 59 region

KpnI/XhoI fragment, the 0.5-kb 39 HindIII/NotI fragment and a

1.7-kb HindIII/XhoI fragment from pAO4-13 [44] containing the

A. oryzae pyrG gene, were cloned into the pBluescript-SK+
backbone prepared by digestion with KpnI and NotI to give

DtupA::pyrG.
Using DtupA::pyrG as a template, a PCR with primers

P1_0140_For and P11_0140_Rev was performed and the linear

deletion fragment was transformed to MA169.4 pyrG2 (ku70::DR-

amdS-DR pyrG2). Uridine prototrophic transformants were

purified twice on MM and subjected to Southern blot analysis

[39]. DNA extraction was carried out from mycelia that had been

collected from liquid MM cultures containing 0.003% yeast

extract.

Microarray and Northern Analysis
(i) RNA isolation and quality control. Culture broth

samples (10 ml each) obtained from the above-described bioreac-

tor cultures were quickly harvested and filtered, and the mycelial

samples were immediately frozen using liquid nitrogen. Total

RNA for Northern and microarray analyses was isolated from

frozen, ground mycelium by Trizol extraction according to the

manufacturer’s instructions. Following extraction, RNA was

purified on NucleoSpin RNA II columns (Machery-Nagel),

including a DNase I digestion step. RNA was eluted in 60 ml of
MilliQ water. RNA quantity and quality were determined on a

Nanodrop spectrophotometer, and integrity was tested on an

Agilent 2100 Bioanalyser. The spectrum generated by the Agilent

Bioanalyser was visually inspected for possible RNA degradation

and contamination with genomic DNA to ensure good sample

quality.

Table 1. Strains used in this study.

Strain Description Reference

N402 cspA1 derivative of ATCC9029 [89]

AB4.1 pyrG2 derivative of N402 [90]

MA169.4 kusA::DR-amdS-DR pyrG2 [43]

RD15.8 pPagsA-H2B-GFP-TtrpC-pyrG* and pPagsA-amdS-TamdS/pAN7.1 [34]

RD15.8#36 pPagsA-H2B-GFP-TtrpC-pyrG* and pPagsA-amdS-TamdS/pAN7.1 [34]

DSC12 pyrG2 derivative of RD15.8#36 this study

DSC13 DSC12 containing pMA172-An15g00140 (tupA) this study

MA245.1 DtupA::pyrG in MA169.4 this study

MA246.1 DtupA::pyrG in RD15.8 pyrG2 this study

SM2.36 DtupA::pyrG AB4.1 pyrG2 this study

doi:10.1371/journal.pone.0078102.t001

Table 2. Overview of the primers used in this study.

Primer Sequence 59-39 used for remark

P1_0140_For aaggaaaaaagcggccgcTGAAGTGCCAGCCAGTAGTGG amplifying locus NotI underlined

P2_0140_Rev aaggaaaaaagcggccgcTGGGTGATCGTGACTTTACCG
CGGTAAAGTCACGATCACCCA

amplifying locus and generating deletion construct 39 NotI underlined

P3_0140_intI CGGTCACACTAAGCGCCGTA sequencing tupA alleles

P4_0140_intII CGACACAAATCTTTCGCGCTA sequencing tupA alleles

P5_0140_intIII TTGCCTGACCTCTGACCTCG sequencing tupA alleles

P6_0140_intIV GCTGGCAATGGTCGGTACA sequencing tupA alleles

P7_0140_intV CGGAAATGCGCAGATGATG sequencing tupA alleles

P8_0140_intVI CGAGAGATTGCATGGCAGC sequencing tupA alleles

P9_0140_ For cccaagcttACATGATTTGCTGGCTCCGAC generating deletion construct HindIII underlined

P10_0140_ Rev ccgctcgagAGCTGAGGCTGAAGGAGGAG generating deletion construct XhoI underlined

P11_0140_ For ggggtaccTGAAGTGCCAGCCAGTAGTGG generating deletion construct KpnI underlined

doi:10.1371/journal.pone.0078102.t002

Transcriptional Repression of TUP1 in A. niger
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Microarray Analysis and Bioinformatics
Microarray analyses for N402 and RD15.8#36 were performed

on mycelia obtained during the exponential growth phase from

two independent bioreactor cultivations (biological duplicates),

when 75% of glucose had been consumed. Probe synthesis and

fragmentation were performed at ServiceXS (Leiden, Netherlands)

according to the GeneChip Expression Analysis Technical

Manual (Affymetrix Inc. 2002). DSM (Delft, Netherlands)

proprietary A. niger gene chips were hybridized, washed, stained,

and scanned as described in the Gene-Chip Expression Analysis

Technical Manual (Affymetrix Inc. 2002). The generated

transcriptomic data set and description of the Affymetrix gene

chip used are deposited at the Gene Expression Omnibus database

and can be accessed via their accession numbers GSE50523 and

GPL6785, respectively. For transcriptomic data analysis, the

statistical programming language R as used including open source

and open development packages of the Bioconductor project [45].

Affymetrix probe-level data from CEL files were preprocessed

using the Robust Multi-Array average (RMA) [46] algorithm as

implemented in the Affy package [47]. For transcripts targeted by

multiple probe sets, average expression values were computed

prior to the identification of differentially expressed genes with the

limma package [48]. The proportion of false positives was

controlled by calculating the false discovery rate (FDR) according

Figure 1. Phenotypic characterization of the tupA mutants. (a) Ten thousand spores of UV mutant RD15.8#36, the parental strain RD15.8, the
complemented mutant RD15.8#36/pAn14g00140, the full deletion mutant DtupA and wild-type N402, were spotted and growth was monitored on
MM-glucose-nitrate plates or MM/glucose-acetamide plates acetamide (first vertical column or MM-glucose plates (if not stated differently) at the
indicated temperature for 3 days. (b) DIC- and fluorescent pictures of parental strain (RD15.8), the tupA mutant, and the tupA deletion strain in the
RD15.8 background after growth for 20 hours at 30uC in MM with casamino acids.
doi:10.1371/journal.pone.0078102.g001

Transcriptional Repression of TUP1 in A. niger
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to the method of Benjamini and Hochberg [49] and controlled at

0.005 without a minimal fold change criterion. Applying a critical

FDR of 0.05, Gene Ontology (GO) [50] enrichment analysis for

differentially expressed gene sets was performed using Fisher’s

exact Test Gene Ontology annotation tool (FetGOat) [51]

including its most recent GO annotation.

Results

Phenotypic Analysis of A. niger Mutant RD15.8#36
We previously reported the use of a genetic screen to isolate

mutants with an induced expression of agsA, a gene encoding a

putative a-glucan synthase. In this screen, a reporter strain is used

that contains two reporter constructs: the agsA promoter fused to

the A. nidulans acetamidase (amdS) gene and the agsA promoter

fused to H2B-GFP [34]. Since agsA is specifically induced in

response to cell wall stress conditions [20], this screen is expected

to yield cell wall mutants with a constitutively activated cell wall

integrity pathway resulting in agsA expression. The agsA-amdS

reporter allows direct selection for mutants that can grow on

acetamide and the second reporter was included to check for cis-

acting mutations in the agsA-amdS promoter region and for

mutants in which the expression of endogenous acetamidase was

deregulated. In comparison to the parental strain (RD15.8),

mutant RD15.8#36 shows clear induction of the two agsA reporter

constructs, which results in strongly improved growth on

acetamide medium at 30uC and nuclei that show enhanced green

fluorescence, consistent with increased expression of the agsA gene

(Figure 1a and 1b). The mutants showed several growth-related

phenotypes including retarded spore germination (germination of

RD15.8#36 occurred about 12 h later than in the parental strain

(data not shown), and a strongly reduced radial growth rate

(Figure 1a). Interestingly, at 37uC, the mutant secreted an

enhanced amount of dark green- to brown-colored pigment in

the medium (Figure 1a). We did not observe increased sensitivity

of the mutant towards the cell wall-perturbing compounds

caspofungin and Calcofluor White (CFW) or to the cell

membrane-perturbing agents SDS and fenpropimorph, an inhib-

itor of ergosterol biosynthesis (data not shown), which would have

been indicative of defects in cell wall synthesis [52,53]. Attempts to

improve the growth of the RD15.8#36 mutant by supplementing

the culture medium with 1.2 M sorbitol were only partly successful

(data not shown). This suggests that despite the induced expression

of agsA the mechanical strength of the mutant wall was not

significantly affected.

The A. niger Homolog of the General Transcriptional
Repressor TupA Complements A. niger Mutant
RD15.8#36
To identify the mutated gene causing the phenotypes of the

RD15.8#36 mutant, a pyrG2 derivative was made and

transformed with a pyrG-based genomic cosmid library [42].

Initially, circa 1,000 uridine-prototrophic transformants were

directly selected for enhanced growth at 30uC and one hundred

of those were purified and retested for wild-type growth at 30uC
on acetamide and minimal medium. Cosmids were isolated

from ten transformants with a strong complementation pheno-

type and EcoRI restriction of the cosmids revealed the isolation

of identical cosmid clones that could complement the

RD15.8#36 phenotypes. Sequence analysis of the insert borders

revealed the presence of two different chromosomal fragments,

which complicated identification of the responsible gene. Hence,

the isolated cosmid was restricted with various enzymes and

individual fragments were co-transformed with pAB4.1 to

RD15.8#36pyrG2. A 10.1-kb HindIII fragment that comple-

mented the reduced growth rate was subsequently cloned and

sequenced. The HindIII subclone harbored a single full-length

predicted open reading frame, namely, An15g00140. This gene

was amplified via PCR and ligated into the autonomously

replicating vector pMA172 [43] and the resulting plasmid was

transformed to RD15.8#36pyrG2. As shown in Figure 1a,

An15g00140 complemented the different phenotypes of the

RD15.8#36. This indicates that a single gene is responsible for

these phenotypes.

Comparison of the protein sequence generated from the

An15g00140 gene revealed that the protein displays strong

sequence similarity to the transcriptional repressor RcoA of A.

nidulans and to Tup1 of S. cerevisiae, and we will refer to this gene as

tupA.

Characterization of tupA Mutants in the Cell Wall Mutant
Collection
The 240 cell wall mutants of A. niger that were isolated via a

genetic screen for high agsA expression [34] and yielded the

identification of TupA as described above, was screened for

pigment-producing mutants at high temperature. Apart from

mutant RD5.18#36, sixteen more mutants were identified that

secreted the pigment at high temperature in a nitrogen source-

dependent manner (data not shown). To verify whether these 17

mutants were all mutated in tupA or otherwise affected in agsA

expression, the tupA locus of each of the mutant was PCR

amplified and sequenced. All mutants were mutated in the tupA

gene (Table 3). We were unable to PCR amplify the tupA locus

from mutant tupA-14 indicating rearrangement of the tupA locus

in this strain. A variety of mutations including point mutations,

insertions, deletions, missense mutations and mutations affecting

intron splicing were detected. Tup1 is known to interact with

Cyc8/Ssn6 and deletion of either tupA or cys8/ssn6 leads to

similar phenotypes [26]. Because of the saturating high number

of tupA mutants identified by screening and the lack of any

other mutant with a similar phenotype but not tupA, we suspect

that mutations in the Cyc8/Ssn6 homolog in A. niger

(An02g03940) do not lead to a strong induction of the agsA

promoter. The sequencing of the mutant alleles also confirms

that in our original mutants the tupA locus was mutated and

that tupA was not acting as a suppressor gene in our

complementation studies. To investigate the consequences of a

loss of function of the tupA gene in A. niger, a gene deletion

vector (pDtupA::pyrG) was constructed, in which the ORF was

replaced by the A. oryzae pyrG gene. After transformation,

primary transformants were purified twice on MM lacking

uridine, and stable transformants were obtained. Proper

disruption of the tupA gene in several transformants was

confirmed by Southern blot analysis (data not shown). The

phenotypes of the DtupA deletion mutant were similar to tupA

mutant (RD15.8#36) (Figure 1a and b). The phenotype of the

tupA deletion strain was characterized on glucose medium

containing either nitrate or ammonium as a nitrogen source.

The phenotype was characterized by a reduced radial growth

rate (approximately 50% reduced after 7 days of incubation)

and a strong reduction (,80%) in conidiation in the presence of

ammonium but not in the presence of nitrate (Table 4). We also

noticed that the production of the pigment was highest when

the tupA mutant grew at high temperatures (37uC) on nitrate.

Equivalent amounts on ammonium (10 mM) strongly repressed

pigment formation (Figure 2).

Transcriptional Repression of TUP1 in A. niger
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Microarray Analysis of Bioreactor-grown Wild-type and
Mutant Strains
To identify genes in A. niger that are differentially expressed in

the tupA mutant compared to the wild-type strain, RNA samples

were extracted from the wild-type (N402) and the tupA mutant

strain (RD15.8#36). To ensure controlled and reproducible

growth conditions, both N402 and RD15.8#36 were cultivated

in a bioreactor (see Materials and Methods). As shown in Figure 3,

initial spore germination of the tupA mutant was delayed compared

to the wild-type strain. The dry weight measurements were used to

determine the maximal specific growth rate of both strains under

the given growth conditions and this showed that the growth rate

of the tupA mutant strain (0.16 h21) was substantially lower than

that of the wild-type strain N402 (0.25 h21) (data not shown),

Table 3. Overview of mutations in A niger tupA mutants.

Strain Allel
Position of mutation in
ORF (including introns) Consequence of the mutation (s)

Protein sequence
(WT: 1–590)

RD6.47#28 tupA-1 GA deletion (61, 62) out of frame after aa 21 truncation 1–21

RD6.13#22 tupA-2 TA to AT (1561, 1562) ATT to ATA (silent I remains I);
AAG to TAG (K to stop)

truncation 1–358

RD6.13#53 tupA-3 A to C (487) mutation in 39 intron splice site
TAG to TCG

truncation 1–60

RD15.4#2 tupA-4 G to C (2351) TGG to TCG (W to S) point mutation 1–590 (W to S at 575)

RD15.4#3 tupA-5 G to A (889) mutation in 39 intron splice site
CAG to CAA

truncation 1–170

RD15.4#24 tupA-6 extra T (1355) Out of frame after aa 316 truncation 1–316

RD15.4#26 tupA-7 extra T (786) Out of frame after aa 160 truncation 1–160

RD15.4#27 tupA-8 C to T (2128) TCT to TTT (S to F) point mutation 1–590 (S to F at 489)

RD15.4#29 tupA-9 A to T (1772) AAG to TAG (K to stop) truncation 1–473

RD15.4#37 tupA-10 C to T and C deletion
(669, 670)

GGC to GGT (Silent G remains G);
out of frame after aa 122

truncation 1–122

RD15.4#47 tupA-11 TG to GA (1664, 1665) TGG to GAT (W to D) point mutation 1–590 (W to D at 393)

RD15.4#49 tupA-12 C to T (43) CAA to TAA (Q to stop) truncation 1–14

RD15.4#52 tupA-13 T to C (2350) TTG to CCG (W to R) point mutation 1–590 W to R at 575)

RD15.4#60 tupA-14 no PCR product obtained

RD15.8#13 tupA-15 C to T (1856) TCG to TTG (S to L) point mutation 1–590 (S to L at 457)

RD15.8#27 tupA-16 G to A (2125) GGT to GAT (G to D) point mutation 1–590 (G to D at 488)

RD15.8#36 tupA-17 G to A (2144) TGG to TGA (W to stop) truncation 1–519

doi:10.1371/journal.pone.0078102.t003

Figure 2. The effects of growth temperature and nitrogen source on pigment formation in the tupA mutant. High temperatures (37uC)
and nitrate are required for optimal production of the pigment. Note also the strong reduction of conidiospores on top of the vegetative mycelium in
the tupA mutant grown on ammonium as nitrogen source. Pictures taken after 3 days.
doi:10.1371/journal.pone.0078102.g002
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consistent with the substantial decrease in the radial growth rate

when cultured on a solid surface (Figure 1 and 2). The final growth

yields (4.0 gDW kg21 for the mutant and 4.8 gDW kg21 for N402)

differed only moderately and were highly reproducible. At the end

of the exponential growth phase the supernatant of the mutant

culture turned dark-green to brown whereas the wild-type broth

remained colorless. The green-brownish color at this time point

was not due to the presence of melanized conidiospores as

microscopic observation did not indicate the presence of spores.

Conceivably, the metabolic expenditure required for the forma-

tion and secretion of these secondary metabolites by the mutant

strain might explain its lower biomass yield. As shown in Figure 3

(panels A-F), also under these growth conditions the tupA mutant

showed morphological aberrations, which included increased

branching, increased variability in hyphal diameters, and curled

hyphae. In addition, RD15.8#36 sporadically formed swollen,

abnormally shaped, branched hyphae (Figure 3. These morpho-

logic differences might also result in less efficient metabolism and

therefore reduced biomass yield.

RNA was isolated from both cultures when 75% of the carbon

source (glucose) was converted into biomass (3.2 gDW kg21 for

RD15.8#36, 3.7 gDW kg21 for N402). Two biological replicates

for each strain were performed corresponding to four microarray

analyses in total.

Genome-wide Expression Analysis of the tupA Mutant in
Comparison to the Wild-type Strain
To identify the processes in A. niger affected by the tupA

mutation, we first confirmed that the biological reproducibility of

gene transcription for the biological duplicates was high, as

evidenced by a mean relative standard deviation of 0.05 for both

the wild-type and mutant, respectively, and similar to values

reported previously [54,55]. Two thousand and eight out of

14,165 A. niger genes (using a low corrected P-value of ,0.005)

were differentially expressed (as defined in Materials and

Methods). The large size of this set of genes (,14%) corroborates

the importance of tupA as a general transcriptional repressor. Of

the 2008 differentially expressed genes 1053 were higher expressed

in the tupA mutant compared to wild-type (tupAUP) and 955 genes

were down-regulated (tupADOWN). A comprehensive list of all

differentially expressed genes including statistical significance and

transcript ratios is presented in Table S1.

For more insight into the processes that are affected in the tupA

mutant, we performed GO-enrichment analysis of the genes that

were significantly higher expressed in the tupA mutant using

FetGOat [51]. The GO-terms (Biological Process) overrepresented

in the tupA mutant include 28 GO terms. The GO-terms are given

in Table S2. Among those 28 BP terms, 9 terminal nodes were

present which are summarized in Table 5. The presence of GO

term related to carbon metabolic process (acetate and pentose

metabolic processes), related to differentiation and development

(conidium formation, reproductive processes and sporulation),

related to stress response (oxidative stress) suggest conservation of

TupA function among fungi in repressing gene sets under non-

inducing conditions.

About half of the differentially expressed genes were down-

regulated in the tupA mutant and also for these genes a GO

enrichment analysis was performed. Sixty-seven GO terms (BP-

terms) were enriched, which are summarized in Table S3. Among

the sixty-seven enriched GO-terms, 19 terminal nodes were

present, which are summarized in Table 6. Most of the terms are

associated with metabolic and biosynthetic process, which may be

caused by the slower growth rate of the tupA mutant. The

inactivation of TupA not only affects the expression of a large

number of genes, but the fold-changes of many of these genes were

also remarkable. Seventy-five genes were higher expressed in the

tupA strain with a FC.10 and 77 genes were down-regulated with

a FC.10 (Tables S4 and S5).

In the following sections we will focus on genes related to

synthesis of the fungal cell wall and to development and highlight

some of the most significant changes in gene expression (Tables 7–

10).

Differential Expression of Cell Wall Biosynthesis and
Remodeling Genes
The A. niger tupA mutant was identified in a plate screen for

mutants with an increased expression of agsA. We therefore looked

specifically if the agsA gene was also induced in the microarray

data set. Surprisingly, the agsA gene was not induced in the tupA

mutant under the growth conditions used in the bioreactor

(normalized expression of agsA in the tupA mutant: 294 vs

normalized expression wild-type: 254; FC 1.2; FDR 2.45E-01).

Indeed, Northern analysis of additional samples taken from the

bioreactor runs confirmed that agsA was not induced during the

bioreactor cultivation (data not shown), whereas the expression of

agsA on plate was clearly induced. We investigated whether

nitrogen source was influencing the expression of agsA as the plate

screen was carried out on minimal medium containing acetamide

as a nitrogen source whereas the bioreactor cultivation was carried

out in minimal medium containing ammonium as a carbon

Table 4. Growth and sporulation analysis of wild-type (N402) and DtupA (tupA::pyrG in MA169.4) strains after 7 days of growth.

Strain N-source
Temp.
(uC)

Colony
diameter (cm)

Spores per
colony Spores/cm2*

Relative
growth

Relative
sporulation

WT ammonium 30 10.0 2.06108 2.56106 100% 100%

WT ammonium 37 14.0 6.86108 4.46106 100% 100%

WT nitrate 30 9.8 2.06108 2.66106 100% 100%

WT nitrate 37 14.9 3.06108 1.76106 100% 100%

DtupA ammonium 30 5.8 0.166108 0.616106 58.0% 24.4%

DtupA ammonium 37 7.3 0.336108 0.796106 52.1% 18.0%

DtupA nitrate 30 5.2 0.686108 3.26106 53.1% 123%

DtupA nitrate 37 5.5 0.496108 2.16106 36.9% 124%

*Number of spores of the colony/((Radius of the colony)26p).
doi:10.1371/journal.pone.0078102.t004
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Figure 3. Physiological and morphological of A. niger RD15.8#36 in comparison to wild-type N402. (Top figure) Biomass accumulation
in the duplicate cultures and the maximum specific growth rate (mmax). The arrows indicate the time point when 75% of glucose was consumed and
mycelia were harvested for transcriptomic analysis. (Lower figure (A-F) Morphology of the mutant RD15.8#36 in bioreactor cultures in comparison to
the wild-type N402 both grown on FM. Mycelium from the exponentially growing culture was harvested at the indicated time points. Scale bar,
10 mm.
doi:10.1371/journal.pone.0078102.g003
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source. To also examine the effect of the pH, spores of the tupA

mutant containing the PagsA-H2B-GFP reporter were allowed to

germinate in nitrate (pH3.0 and pH6.0) and ammonium (pH3.0

and pH6.0) medium and the fluorescence was analyzed. Under all

condition, we observed fluorescent nuclei to a similar strength,

indicating that neither the low pH nor the nitrogen source

explained for the absence of agsA expression in the bioreactor

(Figure S1). It is important to note that the bioreactor condition

represents only a single condition and thus only a small fraction of

the genes affected by the tupA deletion will be revealed. For

example transcriptomic consequences in relation to the loss of

TupA such as conidiation, carbon stress, nitrogen stress, effects of

pH and DNA damage conditions will not be detected. Further

experiments are required to understand in detail the effects of loss

of TupA repression in general and of agsA expression in particular.

Several factors, including the physiology of the fungus (exponential

growth in the bioreactor and a mix of exponential growing

mycelium (edge) and stationary phase mycelium (central parts of

the colony) [56,57], or different expression dependent on the water

content [58–59] could account for these differences. The

morphological differences of the tupA strain still raised the question

whether the transcription of other cell wall formation-associated

genes was altered in the tupA strain. To examine this, the cell wall-

related genes that were annotated as such [60] were examined.

This analysis identified 20 up-regulated genes involved in the

biosynthesis of cell wall polysaccharides (Table 7). Especially,

genes related to b-glucan processing were significantly up-

regulated, but several genes involved in chitin and a-glucan
synthesis were up-regulated in the tupA mutant as well (Table 7).

Two genes (bgt1/An08g03580 and exgA/An18g04100), both

enzymes involved in b-glucan synthesis, were very highly

expressed in the tupA mutant. In addition, the expression of genes

predicted to encode structural (GPI-anchored) cell wall proteins

[60] were analyzed (Table 8). Fifteen cell wall protein-encoding

genes were higher expressed indicating that the cell wall protein

composition has changed in the tupA mutant. One of these

proteins, CwpA, has been shown to encode a GPI-anchored cell

wall protein that is expressed during stationary phase, but before

conidiation markers such as brlA and rodA [61]. The higher

expression of bgt1 and cwpA in the tupA mutant was also confirmed

by Northern blot analysis (Figure S2).

In addition to higher expressed cell wall-related genes, 19 genes

encoding cell wall biosynthetic enzymes and three genes encoding

GPI-anchored cell wall proteins were lower expressed in the tupA

mutant (Table 9 and 10 respectively). Most dramatically down-

regulated are a putative endo-mannanase of the DFG family, a

GPI-anchored chitinase, a putative alpha-glucanase (mutA) and a

GPI-anchored cell wall protein of unknown function. The

differential expression of mutA was confirmed by Northern blot

analysis (Figure S2). Collectively, the observations presented in

Tables 7, 8, 9, 10 strongly indicate that TupA plays an important

role in regulating the formation and remodeling of the cell wall.

Differential Expression of Asexual Development and
Secondary Metabolite Production Related Genes
GO enrichment analysis identified the differential expression of

asexual development-related genes. In Table 11 the genes and a

short description of the gene products are presented. Four

Table 5. GO terms (Biological Process) enriched among up-regulated genes in the tupA strain.

Description FDR

GO:0006083 acetate metabolic process BP 7,13E-04

GO:0044282 small molecule catabolic process BP 7,46E-03

GO:0015695 organic cation transport BP 1,95E-02

GO:0075307 positive regulation of conidium formation BP 2,65E-02

GO:2000243 positive regulation of reproductive process BP 3,03E-02

GO:0019321 pentose metabolic process BP 3,36E-02

GO:0006979 response to oxidative stress BP 3,95E-02

GO:0045881 positive regulation of sporulation resulting in formation of a cellular spore BP 3,95E-02

GO:0033609 oxalate metabolic process BP 4,29E-02

doi:10.1371/journal.pone.0078102.t005

Table 6. GO terms (Biological Process) enriched among
down-regulated genes in the tupA strain.

Description FDR

GO:0009108 coenzyme biosynthetic process BP 3,56E-03

GO:0046355 mannan catabolic process BP 4,92E-03

GO:0006534 cysteine metabolic process BP 8,41E-03

GO:0006879 cellular iron ion homeostasis BP 9,53E-03

GO:0019184 nonribosomal peptide biosynthetic process BP 1,10E-02

GO:0042364 water-soluble vitamin biosynthetic process BP 1,64E-02

GO:0006544 glycine metabolic process BP 1,99E-02

GO:0006066 alcohol metabolic process BP 2,16E-02

GO:0071577 zinc ion transmembrane transport BP 2,92E-02

GO:0006733 oxidoreduction coenzyme metabolic process BP 2,92E-02

GO:0043156 chromatin remodeling in response to cation
stress

BP 2,92E-02

GO:0019662 non-glycolytic fermentation BP 2,92E-02

GO:0009082 branched chain family amino acid
biosynthetic process

BP 3,19E-02

GO:0000301 retrograde transport, vesicle recycling
within Golgi

BP 3,36E-02

GO:0006555 methionine metabolic process BP 4,12E-02

GO:0015812 gamma-aminobutyric acid transport BP 4,12E-02

GO:0008219 cell death BP 4,12E-02

GO:0010106 cellular response to iron ion starvation BP 4,45E-02

GO:0015893 drug transport BP 4,92E-02

doi:10.1371/journal.pone.0078102.t006
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transcription factors (flbC, flbD, brlA, and proA) are significantly up-

regulated in the tupA mutant during exponential growth. The first

three are positive transcription factors required for conidiation in

A. nidulans (see [62,63] for reviews) and for brlA we confirmed that

this gene is required for conidiation in A. niger [64]. The ProA

transcription factor is homologous to the Pro1/NosA transcription

factor which is required for sexual development in Sordaria

macrospora and a repressor of sexual development in Aspergillus

nidulans [65,66]. The genes ppoA and ppoC encode two fatty acid

oxygenases that are required for the production of oxylipins called

Table 7. Cell wall biosynthetic genes up-regulated in the tupA mutant.

Gene number
Gene
name Description tupA WT FC P-value

An08g03580 bgtA Putative beta-1,3-glucanosyltransferase (GH17-family) 1669 37 44.6 2.28E-07

An18g04100 exgA Putative exo-beta-1,3-glucanase (GH5-family) 907 45 20.1 1.46E-06

An02g03980 kslA Putative transglycosidase required for beta-1,6 glucan biosynthesis; ScKre6-like 179 32 5.5 3.21E-06

An01g06500 dfgD Putative endo-mannanase with a possible role in GPI-CWP incorporation; ScDfg5-like
(GH76-family)

152 29 5.2 1.02E-06

An16g02850 crhF Putative transglycosidase involved in cell wall biosynthesis (GH16-family) 673 135 5.0 5.78E-06

An02g09050 gelG GPI- anchored beta-1,3-glucanosyltransferase 362 78 4.6 2.21E-05

An05g00130 knlA Putative transglycosidase required for beta-1,6 glucan biosynthesis; ScKre9-like 1008 219 4.6 1.31E-06

An15g07800 agtC GPI-anchored alpha-glucanotransferase 85 21 4.1 9.14E-06

An07g04650 bgtB Putative beta-1,3-glucanosyltransferase (GH17-family) 381 120 3.2 5.76E-06

An15g07810 agsB Putative catalytic subunit alpha-glucan synthase complex 82 31 2.7 5.40E-04

An01g12450 bxgA Putative exo-beta-1,3-glucanase (GH55-family) 1122 473 2.4 5.87E-05

An08g09030 cfcB Putative ClassV Chitinase (GH18) 57 24 2.4 1.01E-04

An07g07530 crhB Putative transglycosidase involved in cell wall biosynthesis (GH16-family) 1589 753 2.1 9.72E-04

An10g00400 gelA GPI- anchored beta-1,3-glucanosyltransferase 2918 1435 2.0 1.02E-04

An09g04010 chsB Putative chitin synthase Class III 1574 819 1.9 4.51E-04

An02g10490 – Putative endo-1,3(4)-beta-glucanase 457 262 1.7 5.18E-04

An03g05260 csnA similarity to chitosanase csnA - Aspergillus oryzae 72 44 1.6 9.15E-04

An01g04560 mlgA strong similarity to mixed-linked glucanase precursor MLG1 - Cochliobolus carbonum 194 125 1.6 4.33E-03

An02g13180 bgxB Putative exo-beta-1,3-glucanase (GH55-family) 38 25 1.5 1.56E-03

An07g01540 rotA Protein with putative role in beta-1,6 glucan biosynthesis 735 506 1.5 2.39E-03

doi:10.1371/journal.pone.0078102.t007

Table 8. Predicted (GPI-anchored) cell wall protein encoding genes up-regulated in the tupA mutant.

Gene
number

Gene
name Description

Predicted
GPI-anchor tupA WT FC P-value

An15g07790 putative cell wall protein; serine/threonine rich yes 2412 32 74.4 4.40E-07

An11g02730 putative cell wall protein; serine/threonine rich yes 743 23 32.5 1.68E-07

An02g09010 putative cell wall protein; serine/threonine rich yes 1464 48 30.3 2.75E-07

An14g02100 cwpA hydrogen fluoride extractable GPI-anchored cell wall protein yes 1433 97 14.7 1.75E-06

An16g07920 putative cell wall protein yes 5261 403 13.1 9.09E-07

An16g01780 putative cell wall protein yes 9574 808 11.8 3.41E-06

An06g01000 putative cell wall protein; serine/threonine rich yes 4951 699 7.1 1.47E-05

An12g00140 putative cell wall protein; serine/threonine rich yes 763 113 6.8 9.53E-07

An18g06360 putative cell wall protein; serine/threonine rich yes 689 137 5.0 9.96E-07

An07g04620 putative cell wall protein yes 2155 493 4.4 3.28E-04

An01g05230 putative cell wall protein; serine/threonine rich yes 6536 1940 3.4 7.03E-06

An07g06210 putative cell wall protein; serine/threonine rich yes 738 231 3.2 4.29E-05

An14g01820 phiA strong similarity to cell wall protein binB - Aspergillus nidulans no 1966 611 3.2 1.02E-04

An02g00120 putative cell wall protein serine/threonine rich yes 771 403 1.9 1.69E-03

An18g03730 putative cell wall protein serine/threonine rich yes 3086 1895 1.6 1.24E-03

doi:10.1371/journal.pone.0078102.t008
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psi-factors. In A. nidulans, psi factors have been shown to alter the

ratio of asexual to sexual sporulation. The lack of synthesis of psi-

factor in ppo disruption strains increased and misregulated the

activation of sexual development [67,68] and has been shown to

affect brlA expression levels.

Several hydrophobin genes were up-regulated in the tupA

mutant (Table 11, Figure S2). However, the hydrophobin gene

that is induced during conidiation in response to carbon starvation

during zero growth conditions (An03g02360) [41] was not induced

in the tupA mutant. Finally, we noticed that two genes that are

required for spore-related melanin production in A. niger (olvA and

brnA) were up-regulated. However, the polyketide synthase (fwnA),

which is required for the melanin production [69], was not higher

expressed. As described above, the loss of repression of transcrip-

tion due to the tupA mutation has an important effect on the

expression of genes that regulate and coordinate asexual

development. However, not all the genes that are induced during

asexual development were induced. We therefore suggest that

TupA assists in repression of these genes under non-inducing

conditions. For other genes, like fwnA, a specific activator is

probably required to induce expression. It is important to note that

we did not observe formation of asexual structures (conidiospores)

during the exponential growth phase of the tupA mutant when

cultivated in the bioreactor, indicating that not the entire asexual

developmental program was turned on in the tupA mutant during

exponential growth. Also noticeable is the up-regulation of two

genes related to cAMP signaling (RasA and PkaR), which hints to

an increased activation of cAMP synthesis in the tupA mutant.

Differentiation is closely linked to the production of secondary

metabolites [70] and therefore the expression of genes and gene

clusters potentially encoding secondary metabolite synthesis was

also analyzed. To do so, the list of 376 secondary metabolite-

related genes in A. niger as published by Pel and co-workers was

used [60]. Fifteen genes were found to be up-regulated (Table S6).

One of them does not belong to any known gene cluster

(An02g00840) and is predicted to encode a non-ribosomal protein

synthase (NRPS). The 14 remaining up-regulated genes belong to

predicted gene clusters. In all cases, only a limited number of the

genes in an annotated gene cluster were induced. The gene cluster

bordered by genes An08g03730 and An08g03820 includes 6

Table 9. Cell wall biosynthetic genes down-regulated in the tupA mutant.

Gene
number

Gene
name Description tupA WT FC-down P-value

An11g01240 dfgH Putative endo-mannanase (GH76-family) with a possible role in GPI-CWP incorporation 42 503 12.0 1.67E-07

An09g06400 ctcA Predicted GPI-anchored protein. Putative ClassIII Chitinase (GH18) 161 1852 11.5 3.26E-07

An08g09610 agnD Putative alpha-1,3-glucanase GH71 324 2187 6.7 8.15E-07

An06g00360 dfgF Putative endo-mannanase (GH76-family) with a possible role in GPI-CWP incorporation 131 753 5.8 8.84E-07

An07g01160 crhC Predicted GPI-anchored protein. Putative transglycosidase of GH16-family 153 584 3.8 8.69E-06

An08g07350 gelB Predicted GPI-anchored protein. Putative 1,3-beta-glucanosyltransferase GH72 224 713 3.2 1.78E-05

An09g00670 gelD Predicted GPI-anchored protein. Putative 1,3-beta-glucanosyltransferase GH72 1424 4169 2.9 8.65E-06

An04g04670 cfcC Putative ClassV Chitinase (GH18) 232 609 2.6 3.08E-05

An13g02510 crhE Predicted GPI-anchored protein. Putative transglycosidase of GH16-family 83 213 2.6 4.88E-05

An01g11010 crhD Predicted GPI-anchored protein. Putative transglycosidase of GH16-family 256 641 2.5 6.91E-05

An12g10380 chsE Putative chitin synthase ClassIII 1203 2556 2.1 3.43E-04

An16g08090 dfgE Putative endo-mannanase (GH76-family) with a possible role in GPI-CWP incorporation 281 597 2.1 1.44E-04

An12g02450 agsC Putative catalytic subunit alpha-glucan synthase complex 161 323 2.0 1.63E-04

An08g05290 chsG Putative chitin synthase ClassVI 28 55 2.0 8.78E-05

An02g07020 cfcA Putative ClassV Chitinase (GH18) 132 258 2.0 5.38E-04

An11g07660 exgB Putative exo-1,3-beta-glucanase 144 272 1.9 2.36E-04

An09g03070 agsE Putative catalytic subunit alpha-glucan synthase complex 376 699 1.9 1.88E-03

An09g06260 agnC Putative alpha-1.3-glucanase GH71 355 571 1.6 9.68E-04

An12g02460 agtB GPI-anchored alpha-glucanotransferase 328 483 1.5 2.48E-03

Cell wall signaling

An04g10140 mltB Putative plasma membrane sensor required for cell wall integrity signalling 47 235 5.0 3.27E-05

doi:10.1371/journal.pone.0078102.t009

Table 10. Predicted GPI-anchored cell wall protein-encoding genes down-regulated in the tupA mutant.

Gene number Gene name Description tupA WT FC P-value

An07g05670 Putative cell wall protein 196 342 1.7 6.45E-04

An12g07750 Putative cell wall protein serine threonine rich 141 1076 7.6 1.89E-03

An16g07950 Putative cell wall protein serine threonine rich 109 7139 65.4 6.98E-08

doi:10.1371/journal.pone.0078102.t010
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induced genes of the 10 genes in total in the cluster. An08g03770,

which belongs to this cluster and is strongly (31-fold) induced, is

predicted to encode a Zn(II)2Cys6 transcription factor. It remains

to be elucidated which secondary metabolite is produced by this

cluster. In total 34 secondary metabolite genes were down-

regulated in the tupA mutant, belonging to 17 clusters and three

down-regulated genes were not clustered. Similarly, as observed

for the tupA-induced secondary metabolite genes, not all genes

from a cluster were down-regulated. All five genes in the cluster

bordered by An03g03520 and An03g03560 showed a strong

down-regulation in the tupA mutant (Table S6).

TupA is Involved in Controlling Expression of Extracellular
Proteases
The genes pepA and pepB, both encoding extracellular proteases

in A. niger [42], are highly expressed in the tupA mutant during

exponential growth on glucose and ammonium, whereas their

expression is low in the wild-type strain. Their respective fold-

changes are 224 and 99 (Table S7). Expression of pepA and pepB

requires the Zn2Cys6 transcription factor called PrtT [42].

Thirteen PrtT targets (including pepA and pepB) have been

described in patent application US 2008/0108105 A1. These

PrtT-dependent proteases were identified because their expression

is dependent on a functional prtT gene; in the prtT knock out

strain, these proteases are significantly lower expressed. Of the

thirteen PrtT targets, 6 genes (including pepA and pepB) were up-

regulated in the tupA mutant. The expression of the remaining four

genes was less dramatically different between the tupA strain and

the wild-type strain (Table S7).

Discussion

It is well established that the Tup1/Cyc8 complex functions as

an important repressor complex in eukaryotic cells. Transcrip-

tional analysis of a A. niger tupA mutant reveals the important role

for TupA in controlling gene expression as about 14% of the genes

are differentially expressed (up- or down-regulated) in the tupA

mutant. Some of these differences could be indirectly caused by

the slower growth rate of the tupA mutant compared to the wild-

Table 11. Developmental genes up-regulated in the tupA mutant.

Gene
number

Gene
name Description TupA* WT* FC P-value

Regulation of Development

An02g05420 flbC Putative regulator containing two zinc-finger motifs 672 221 3.0 1.04E-04

An01g04830 flbD strong similarity to myb-like DNA binding protein, required for conidiation 1916 83 23.2 3.20E-07

An01g10540 brlA BrlA C2H2 Zn (II) finger transcription factor required for conidiation 158 22 7.1 6.61E-06

An04g07400 proA Zn(II)2Cys6- transcriptional activator similar to Pro1 597 135 4.4 1.68E-04

An05g00480 stuA APSES-transcription factor (spatial expression of abaA) 2202 870 2.5 7.07E-04

An17g01580 steA Transcriptional Activator containing homeodomain DNA binding; STE12-LIKE 427 231 1.8 1.80E-04

An02g09610 nsdD GATA-transcription factor, light regulation 199 115 1.7 4.03E-04

An01g13660 abr2 Putative laccase possible role in pigment biosynthesis 891 28 31.7 7.97E-08

An04g05880 ppoA Fatty acid oxygenase for Psi factor production 211 86 2.5 4.18E-04

An02g07930 ppoC Fatty acid oxygenase for Psi factor production 661 90 7.4 1.72E-06

An12g00710 esdC Required for sexual development in A. nidulans negative regulation of conidium formation,
positive regulation of sexual sporulation resulting in formation of a cellular spore

3989 804 5.0 3.94E-05

An14g01820 phiA Strong similarity to hypothetical cell wall protein binB; caspofungin induced 1966 611 3.2 1.02E-04

An08g05100 veA Velvet activator induces sexual reproduction A. nidulans 319 124 2.6 4.15E-05

An12g03660 CAAX-prenyl cysteine carboxymethyltransferase; a-factor modification; STE14-LIKE 272 114 2.4 7.99E-05

An02g03160 flbA Regulator of G-protein signalling 167 83 2.0 3.02E-04

An18g06110 rgsA Regulator of G-protein signalling 180 96 1.9 4.91E-04

An14g02970 fphA Red light phytochrome An14g02970 AN9008.2 89.m01927 20173.m00405 83 46 1.8 3.85E-03

Hydrophobins

An15g03800 hypF Putative hydrophobin 948 22 42.7 5.52E-08

An07g03340 hypE Putative hydrophobin 1726 136 12.7 2.34E-07

An01g10940 hypA Putative hydrophobin 125 43 2.9 2.62E-05

An04g08500 rodA Hydrophobin: strong similarity to rodletless protein rodA - Aspergillus nidulans 185 88 2.1 1.34E-03

Melanin biosynthesis

An09g05730 fwnA polyketide synthase required for melanin synthesis A. niger 54 128 0.4 3.94E-04

An14g05350 olvA strong similarity to hypothetical yellowish-green 1 ayg1 - Aspergillus fumigatus 363 85 4.3 3.42E-05

An14g05370 brnA strong similarity to cell surface ferroxidase precursor Fet3 - Saccharomyces cerevisiae 52 34 1.5 1.91E-03

Growth and Morphology

An16g03740 pkaR protein kinase A regulatory subunit 469 286 1.6 1.59E-03

An01g02320 rasA RAS protein, small GTP binding protein 1938 1217 1.6 7.34E-04

doi:10.1371/journal.pone.0078102.t011
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type, but the detailed analysis of the genes differentially expressed

in the tupA mutants (Tables 7, 8, 9, 10, 11, and Tables S6 and S7)

suggest that TupA is also important in regulating some specific

processes related to cell wall biosynthesis, development, secondary

metabolism, and nitrogen regulation.

The tupA mutant identified in this study was isolated in a cell

wall mutant screen. The selection is based on the observation that

agsA is induced in response to cell wall stress [71]. This screen has

been successful in establishing that galactomannan biosynthesis

and functional vacuolar ATPase activity are required for cell wall

biosynthesis [34,72]. The mutants identified (ugmA and vmaD,

respectively) showed several cell wall-related phenotypes such as

increased sensitivity towards CFW and SDS. The mutant selected

for this study showed a relative strong induction of the agsA

reporters as observed by its ability to grow relatively well on

acetamide, and displayed a relatively strong GFP fluorescence

signal compared to other mutants (data not shown). However, the

mutant did not show increased sensitivity towards cell wall- or cell

membrane-perturbing compounds, suggesting that cell wall

integrity was not significantly affected.

Caspofungin, an inhibitor of beta-1,3-glucan synthase, induces

the cell wall integrity pathway. Genome-wide expression analysis

of A. niger treated with sub-lethal concentrations of caspofungin

resulted in induced expression of 166 genes [20]. These genes are

considered to represent the cell wall stress-responsive genes in A.

niger. To examine whether loss of tupA function results in

derepression of the cell wall stress-responsive genes we determined

the overlap between caspofungin-induced and tupA-induced genes.

Of the 166 genes induced by caspofungin (CA) only 47 genes

(,28%) were also induced in the tupA strain (Table S8). Eighty-six

(,52%) of the CA-induced genes were not differentially expressed

in the tupA strain. In addition, a considerable number of CA-

induced genes (33 genes; ,20%) had lower expression levels in the

tupA mutant. Although the overlap is substantial, this indicates that

loss of tupA function under the growth conditions used here does

not simply lead to derepression of cell wall stress-induced genes

and suggests that TupA does not function as a repressor of cell wall

stress-induced genes under non-stressed conditions.

Interestingly, the two strongest induced cell wall-related genes in

the tupA mutant, bgtA and exgA, are not expressed under normal

growth conditions. We noticed that these two genes are very highly

expressed during sclerotia formation in the A. niger sclA-1 mutant

strain [73], based on RNA analysis extracted from sclerotia

(Jørgenson and Ram, unpublished results). In several filamentous

fungi, Tup1 functions as a global repressor which regulates genes

associated with morphological differentiation, sexual and asexual

reproduction, and pathogenicity [31–33]. Possibly, TupA of A.

niger also has a repressing role with respect to the expression of

sclerotia-associated genes under conditions in which sclerotia

formation is normally repressed.

An additional interesting phenotype of the tupA mutant is the

secretion of a currently unknown pigment in the medium when

grown at high temperatures and with nitrate as a nitrogen source

(Fig 1). Both replacement of nitrate by ammonium (Figure 2) as

well as the addition of yeast extract and casamino acids to nitrate-

containing minimal medium (not shown) reduce pigment produc-

tion. This suggests that production of the pigment is normally

repressed in the presence of nitrate, but that nitrate-controlled

repression is lost in the tupA mutant. In the tupA mutant however,

the synthesis of the pigment can still be repressed by more

preferred nitrogen sources such as ammonium. In Penicillium

marneffi the lack of tupA also results in pigment production [32], but

the effect of nitrogen sources has not been analyzed. Attempts to

identify the nature of the pigment secreted in the tupA mutant have

not been conclusive. It probably has an elemental composition of

C10H14O4, but further analysis is required to identify the

compound (Kristian F. Nielsen, unpublished results). Intriguingly,

the tup1 deletion strain of C. albicans also secretes excessive

amounts of a (yellow-green) pigment into the medium [74].

In S. cerevisiae, it is well established that Tup1, together with Ssn6

(Cyc8), is involved in carbon repression. In S. cerevisiae Mig1p, the

repressor responsive to the carbon status of the cell, is known to

recruite the Tup1/Ssn6 complex to enable its repressor function

[75]. Also in the yeasts Schizosaccharomyces pombe and Candida albicans

Tup1 homologs have been found to be required for carbon

repression [76–77]. However, in Aspergillus nidulans it has been

shown that the Tup1 homolog, in this species designated as RcoA,

is not involved in carbon repression [78–79].

Delmas et al. recently proposed a model by which starvation

leads to the expression of genes that encode extracellular enzymes

[80]. These enzymes are normally repressed by CreA and it was

proposed that these enzymes have a sensing role for the presence

of alternative substrates. These genes were identified in the study

of Delmas et al., because the genes encoding these extracellular

enzymes were rapidly induced under carbon starvation conditions.

The authors show that the gene encoding cellobiohydrolase

(An01g11660; cbhB) is induced upon C-starvation in a XlnR-

independent way and that the expression is higher in a creA mutant

strain, strongly suggesting that the induced expression of cbhB

upon starvation is mediated via carbon catabolite derepression. As

cbhB (An01g11660) is not higher expressed in the tupA mutant, this

offers further support for the notion that similar to A. nidulans tupA

of A. niger is not required for carbon catabolite repression.

The expression of the two major extracellular proteases in A.

niger (pepA and pepB) has been shown to be under carbon catabolite

repression [81]. The involvement of CreA in mediating this

repression was shown by [82] as the expression of pepA and pepB

was higher in the creA strain under repressing conditions. The

latter observation seems to contradict the conclusion the TupA is

not mediating carbon repression since pepA and pepB are highly

expressed in the tupA mutant (Table S7). To explain these

observations, it is important to note that pepA and pepB are also

under nitrogen repression control. The presence of a preferred

nitrogen source such as ammonium strongly represses the

expression of pepA and pepB [80]. Additional support for a

connection between TupA and nitrogen repression comes from

the observation that the formation of the pigment in the tupA

mutant strain was found to be nitrogen source-dependent and

repressed by ammonium.

TupA has been implicated in several fungi to have a role in

dimorphism in the transition from yeast to filamentous growth

[31–33,83]. The role of Tup1 in fungal dimorphism might well be

linked to nitrogen metabolism as nitrogen availability has been

shown to be an important factor in fungal dimorphism [84–88].

We suggest that the link to nitrogen metabolism and TupA is

important to understand the involvement of TupA in develop-

mental processes and dimorphic switches in fungi.

Supporting Information

Figure S1 Spores of the MA246.1 (DtupA in RD15.8) were

inoculated in MM-glucose containing 10 mM ammonium or

10 mM nitrate at pH3.0 or pH5.7. Pictures were taken after 16 of

incubation at 30uC. The fluorescence detected under all

conditions shows that agsA expression in germinating spores of

the tupA mutant is not affected by pH or nitrogen source.

(TIF)
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Figure S2 Northern blot analysis of selected differentially

expressed genes of RNA samples that were used for the

microarrays of the wild-type strain (wt) or the tupA mutant. Gene

identifiers are indicated as well as the gene name (when available).

Behind the gene identified the fold change in expression (tupA vs

wild-type) is given based on the microarray data.

(TIFF)

Table S1 Expression data WT and tupA mutant.

(XLS)

Table S2 GO-terms of up-regulated genes in tupA mutant.

(XLS)

Table S3 GO-terms of down-regulated genes in tupA mutant.

(XLS)

Table S4 TupA up-regulated gene with Fold change .10.

(XLSX)

Table S5 TupA down-regulated gene with Fold change .10.

(XLSX)

Table S6 Expression analysis of all secondary metabolite genes.

(DOCX)

Table S7 Expression analysis of PrtT target genes.

(DOCX)

Table S8 Comparison of caspofungin treated and TupA

differentials.

(XLSX)
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