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Abstract

While the entirety of ‘Chemical Space’ is huge (and assumed to contain between 1063 and 10200 ‘small molecules’), distinct
subsets of this space can nonetheless be defined according to certain structural parameters. An example of such a subspace
is the chemical space spanned by endogenous metabolites, defined as ‘naturally occurring’ products of an organisms’
metabolism. In order to understand this part of chemical space in more detail, we analyzed the chemical space populated
by human metabolites in two ways. Firstly, in order to understand metabolite space better, we performed Principal
Component Analysis (PCA), hierarchical clustering and scaffold analysis of metabolites and non-metabolites in order to
analyze which chemical features are characteristic for both classes of compounds. Here we found that heteroatom (both
oxygen and nitrogen) content, as well as the presence of particular ring systems was able to distinguish both groups of
compounds. Secondly, we established which molecular descriptors and classifiers are capable of distinguishing metabolites
from non-metabolites, by assigning a ‘metabolite-likeness’ score. It was found that the combination of MDL Public Keys and
Random Forest exhibited best overall classification performance with an AUC value of 99.13%, a specificity of 99.84% and a
selectivity of 88.79%. This performance is slightly better than previous classifiers; and interestingly we found that drugs
occupy two distinct areas of metabolite-likeness, the one being more ‘synthetic’ and the other being more ‘metabolite-like’.
Also, on a truly prospective dataset of 457 compounds, 95.84% correct classification was achieved. Overall, we are confident
that we contributed to the tasks of classifying metabolites, as well as to understanding metabolite chemical space better.
This knowledge can now be used in the development of new drugs that need to resemble metabolites, and in our work
particularly for assessing the metabolite-likeness of candidate molecules during metabolite identification in the
metabolomics field.
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Introduction

The area of ‘Metabolomics’ is relatively young [1,2] and

describes the large-scale analysis of (often human and endogenous)

metabolites. It comprises both the analytical approaches em-

ployed, such as mass spectroscopy (MS) as well as the analysis of

the resulting data on a network- and phenotype level. Metabo-

lomics is a particularly interesting research field as it allows the

determination of biological phenotypes on a chemical basis, since

endogenous metabolites are closer phenotype of an organism than

for example gene expression [3]. As a consequence, new

knowledge on biological processes can be obtained by investigating

metabolites.

Various experimental techniques, most commonly MS and

nuclear magnetic resonance (NMR), have been devised to detect

and identify metabolites, with different approaches being

necessary to cover different parts of the metabolite spectrum. In

practice it is found that some metabolites with different

lipophilicity can only be detected by one of the experimental

techniques but not by others [4–9]. Different techniques might

also be used depending on the type and quantity of sample to be

analyzed, as well as the concentration and the molecular

properties of the metabolites. In general terms, NMR allows for

a detailed characterization of the chemical structure of the

(un)known compound, and it is the preferred technique for

unambiguous identification of a chemical structure. On the

downside, NMR requires abundant and pure sample, yielding

low sensitivity. Conversely, MS offers high sensitivity and

specificity, requiring less amounts of sample, but providing less

information about the chemical structure, namely its elemental

composition and some structural fragments.

However, despite its ability to describe a phenotype in many

cases in a more relevant manner than other approaches, in

metabolomics studies a major challenge exists, namely metabolite

identification [10–12]. While many endogenous metabolites can

be detected (and their spectrum determined), also elucidating their

chemical structures is essential to properly interpret results, and to

utilize the analytical data to finally answer biological questions

[13]. However, the step from the analytical readout to the

structural formula is often fraught with problems.
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In the commonly employed MS-based profiling approaches

(which are also used in our group), once metabolites are detected

their elemental composition (or multiple elemental compositions)

[14,15] can be derived directly from MS data. Based on this

elemental composition, matching chemical structures can be

proposed following two approaches. In the first approach,

molecular databases are queried for the presence of molecules

with the same elemental composition (or similar spectral data), and

hits are returned as candidate structures [13,16]. However, the

major shortcoming of this approach is that one can only find in

databases what has been found before, making the elucidation of

novel metabolites impossible. In the second approach, which is

meant to cover this shortcoming, the elemental composition and

optionally other experimental data are provided to a ‘structure

elucidator’, which will generate in silico all possible chemical

structures which match the analytical constraints provided to the

algorithm [17–19]. While one of the structures generated will be

the metabolite of interest, depending on the elemental formula

provided, the latter method in particular yields a large number of

possible solutions. (For example, the elemental composition of

phenylalanine, C9H11NO2, yields 277,810,163 possible candi-

date structures.)

Due to the above reasons, molecular databases compiling

structural information on endogenous metabolites are currently

limited in size and they certainly do not cover metabolite space

exhaustively. The number of possible metabolites is yet unknown

[20]. While lipids alone are estimated to exist in the order of

20,000 different structures [21] plants are thought to contain

around 200,000 metabolites [3]. Given these figures, the

experimental data obtained until today is relatively scarce. A

large database of metabolites such as the Human Metabolome

Database (HMDB) [21] contains in its current version about 8,000

structures, which is only a fraction of the above numbers. Still,

HMDB is the most comprehensive dataset to represent the

Metabolite Space from a human point of view. Plant metabo-

lomics makes use of different databases [12]. In addition

metabolomics databases exist [22] that contain metabolites and

the enzymatic reactions that connect them to pathways, such as in

KEGG [23]; some databases contain metabolites grouped by

organism such as in BioCyc [24] and other database relate

metabolites with experimental information, such as Metlin [25].

Still, given its number of data entries, the approach to match the

MS or NMR spectrum to database spectra can only succeed in a

fraction of cases.

Hence, solutions need to be ranked, based on the likelihood of a

molecular structure to be a metabolite [26] – and, as we will

outline in more detail below, this is one of the main aims of the

current work of implementing a ‘metabolite-likeness’ model. In

addition, our goal was to understand metabolites better from a

chemical point of view, and this is what we will discuss in the

remainder of this work, after setting our approach in context with

the ‘prior art’ in the field of metabolite classification.

Focusing on metabolites of E. coli, Nobeli et al. [27] studied 745

metabolites of this organism by analyzing physiochemical

descriptors, the diversity of scaffolds, and similarity-based

compound clustering. It was observed that most of the E. coli

metabolites are found between the 100 and 300 Da molecular

weight region, that they contain up to 20 heavy atoms, and that

they are mostly hydrophilic. In addition the low diversity of

molecular scaffolds was observed. The clustering analysis per-

formed revealed that it is difficult to use molecular similarity to

group metabolites in ‘sub-classes’, since there is not a natural

separation according to their two-dimensional structure similarity,

concluding that the metabolite space of E. coli is homogeneous.

While Nobeli et al. focused on the metabolome of E. Coli, Gupta

et al. [28] represented the chemical space of metabolites using the

KEGG/LIGAND database, which includes metabolites from

different species as well as xenobiotics. The chemical space of

non-metabolites was approximated by ZINC database [29], which

contains small molecules that are commercially available. These

molecules are often used as the search space, in virtual-screening

research, or as background set in classification projects.

In this work it was concluded that hydroxyl groups, aromatic

systems, and molecular weight are discriminating features between

metabolite and non-metabolite chemical space. Furthermore, Self

Organizing Maps (SOM), Random Forests (RF), and Classifica-

tion Trees (CT) were employed to distinguish between the two

classes of compounds, which were represented by 3D descriptors,

topological descriptors, and global molecular descriptors, respec-

tively. The best classification accuracy was 97%, achieved by the

combination of RF and global molecular descriptors. (No external

validation of such models is reported in their work, as opposed to

our novel study, which includes a prospective validation set.)

While trying to discriminate metabolites from non-metabolites

was the obvious starting point, it was then noted that also bioactive

compounds, notably drugs, could be related to the metabolite/

non-metabolite chemical spaces. All three of those sets were hence

analyzed by Dobson et al. in a subsequent study [30]. Endogenous

metabolites were selected from the HMDB, BioCyc, BiGG, and

Edinburgh databases while drugs were compiled from DrugBank

and KEGG DRUG. In addition, screening molecules from ZINC

were the source for the background compound set. Molecules were

represented using connectivity and path fingerprints, MDL Public

Keys and E-state, and the similarity between them was determined

by the Tanimoto coefficient. In this work the authors concluded

that drugs are more similar to metabolites than to screening compounds.

Furthermore the distribution of molecular properties among the

different families of compounds was studied and it was noticed that

metabolites tend to have fewer heavy atoms than the other two

groups of compounds. Another relevant physicochemical property

identified was lipophilicity, which showed a bias in metabolites

towards hydrophilicity, whereas drugs and screening compounds

were more hydrophobic.

In the current study we are extending previous work by,

compared to Gupta et al., focusing on a large set of human

metabolites obtained from HMDB, instead of metabolites from

multiple species, and an updated collection of background

compounds from ZINC. We make use of different molecular

descriptors such as ECFP_4 [31], FCFP_4, MDL Public Keys

[32], and physicochemical properties, as well as classifiers like

Support Vector Machines (SVM) [33], Random Forest (RF) [34]

and Naı̈ve Bayes (NB) [35] and evaluate their applicability to

distinguishing metabolites from non-metabolites. In addition we

include a prospective validation set to further assess model

performance. Furthermore, Dobson et al. used molecular

similarity to metabolites as an indicator of metabolite-likeness. In

comparison, we assign our score based on the predictions given by

different classification methods. The classifier presented here

employs, at the time of publication, the most comprehensive

collection of human metabolites and purchasable compounds.

Furthermore we also make use of PCA and hierarchical clustering

to understand which physicochemical properties as well as

chemical functionalities are characteristic of metabolites, and

discriminate them from non-metabolites. The principal aim of this

work is to establish a reliable metabolite classifier for candidate

structures that need to be identified in metabolomics studies;

however, apart from the classifier itself, also understanding

metabolite space better was a second major aim of this work.

Metabolite Space and Metabolite-Likeness
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Methods

Datasets and Data Preprocessing
The Human Metabolome Database (HMDB) version 2.5 [21]

served as source of the metabolite set. This database contains, in

its original form, 7,886 human metabolites as determined by

experimental analytical methods. The ZINC Database (ZINC)

release 8 [29] was chosen to represent non-metabolite chemical

space. From the different datasets provided by ZINC, we selected

the subset ‘‘everything #10’’ (date 2010-06-17), since it includes

21.6 million compounds and it was the largest set at the time, and,

hence, most representative of ‘all’ chemical space.

Molecules from the two datasets were standardized with

PipelinePilot Student Edition 6.1 [36] using the ‘washing’

workflow suggested by Dobson et al. [30], which involved the

selection of the largest fragment in the structure, the removal of

salts and hydrogen atoms and the standardization of charges and

stereochemistry. Because the ZINC database mainly contains

molecules with a low molecular weight, a value of 1000 Daltons

was set as the maximum molecular weight of any compound,

metabolite or not, in this study. While this removes part of

chemical space from the metabolite dataset, this step was necessary

to avoid molecular weight to appear as a major discriminant

between metabolites and non-metabolites (which would not be

relevant in the context of our future application of distinguishing

metabolites from non-metabolites in cases of structures with an

identical sum formula). Furthermore, when employing fingerprints

for classification, the chemical distribution of features (as opposed

to the molecular weight) will be used for classification, hence

making the classification (in this feature space) size-independent.

This filter removed 775 metabolites from the HMDB dataset.

Furthermore, the constraint imposed on molecules to contain

three or more atoms (in order to retain only small organic

molecules in the dataset) removed 65 small molecules and ions

from HMDB. Metabolites from HMDB that are considered drugs

were also removed from the dataset, based on annotations as drugs

in the fields ‘‘Taxonomy Family’’ and ‘‘Taxonomy Sub Class’’

provided by HMDB, removing 92 drugs from the dataset and

reducing the metabolite dataset to 6,954 molecules. The number

of molecules contained in ZINC was excessively large to perform

clustering and classification, concerning the computational

resources needed for such tasks, therefore selecting a subset was

necessary. Such a subset was randomly selected from ZINC, which

contained 194,350 molecules. All of these molecules passed the

filtering based on molecular weight and the minimum number of

atoms. The last dataset preprocessing step was the removal of

metabolites (molecules contained in the HMDB database) from the

ZINC dataset, where 8 molecules were removed from the non-

metabolite set.

Training and Test Sets
Diversity selection [37,38] was used in this work to prepare

representative compound datasets for metabolites and non-

metabolites with the intention of reducing the bias that

overrepresented families of molecules could have on the

classification step. This initially appeared particularly crucial since

lipids were hugely overrepresented in the HMDB database. After

giving it more thought it was noted that this step certainly involves

subjective elements since it, on the one hand, removes information

about the distribution of data points in the original set. On the

other hand, we assumed that there was a significant bias present in

particular in the metabolite dataset not only due to ‘natural’

causes, but also due to the bias introduced by experimental

techniques (such as MS and NMR), which are able to detect and

identify compounds rather selectively. Hence, we came to the

conclusion that close analogues should be removed carefully from

the dataset. In this spirit, each dataset was independently

clustered using the maximal dissimilarity partitioning algorithm

implementation from the ‘Cluster Molecules’ component from

PipelinePilot Student Edition 6.1 [36]. Molecules were repre-

sented by ECFP_4 fingerprints and the distance between each

pair of molecules was calculated using the Tanimoto coefficient.

The maximum dissimilarity of a cluster member to the cluster

centre was 0.6, (that is, molecules from the same cluster possess a

ECFP_4/Tanimoto similarity of at least 0.4). Finally cluster

centers were selected as representatives of each cluster, which

yielded 532 representatives for HMDB and more than 12,000 for

ZINC. In order to have balanced training datasets for model

building (where some algorithms are prone to majority class

predictions), 532 random molecules were selected from ZINC.

These two subsets of 532 molecules each were used for building

the classification models. While these datasets are small, they

were intended to remove much of the bias present in the original

datasets. We also still made use of the additional compound

information available since from the remaining molecules not

included in the training datasets the test set was built, where the

remaining 6,422 metabolites as well as 6,422 randomly selected

non-metabolites were joined to form an initial test set of 12,844

molecules. Hence, this very large test set was used to evaluate

whether model generation with our training dataset assembled in

the way just described would produce viable metabolite-likeness

models.

Prospective Validation Sets
Predictive models are meant to be applied to novel, unseen

molecules, and to estimate the performance on those new

molecules the utilization of external validation sets is crucial. In

order to determine prospective performance of our model, an

external validation set was compiled, which includes 563

metabolites not yet part of HMDB (which were provided by the

database curators). After filtering using the standardization

protocol described above, the resulting prospective validation set

contained 457 metabolites that were not included in any of the

previous preprocessing steps (diversity selection, model building,

and model evaluation). Furthermore, two other datasets of

molecules were assembled for evaluation with the metabolite-

likeness model, namely one of drugs, and one of bioactive

compounds (as determined by experimental assays). To represent

drugs DrugBank release 2.5 (date 23-11-2010) [39] was used,

comprising 6,532 molecules. To represent bioactive molecules,

ChEMBL [40] release 8 (date 09-12-2010) was employed. Both

datasets were normalized using the protocol described above and

from the 635,933 compounds in ChEMBL, 6,312 were randomly

selected (the DrugBank dataset was used in full due to its smaller

size). With these datasets we evaluated if our metabolite-likeness

model is able to detect the biogenic bias of drugs and bioactive

compounds in general. With these three prospective validation sets

(external validation set, drug set, bioactive compound set) we

evaluated our best model, as derived in the parameter exploration,

in two different ways. Firstly, the quality of the predictions for

metabolites that were not involved at any stage of the model

creation by employing an external validation set, was determined.

Secondly, we tested the hypothesis that drugs (and, possibly to a

lesser extent, bioactive molecules) are more similar to metabolites

than to non-metabolites. This hypothesis could either be rejected

or not from the distribution of metabolite-likeness scores as

assigned by our model.

Metabolite Space and Metabolite-Likeness
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Molecular Descriptors
Molecular descriptors should be chosen with care depending

for which problem they are going to be used [41,42]. In this

case different descriptor sets were used for classification as

follows.

a) Atom Counts and Physicochemical Molecular

Descriptors. Atom counts and physicochemical descriptors

are rather simple, intuitive and easy to interpret by chemists. On

the downside, they usually result in poorer classification results

than more complex descriptors since no structural information is

captured. In this study our descriptor set based on atom counts

was called ‘Atom Counts’ and contained counts of the most

common atom types in metabolites, namely H_Count, C_Count,

N_Count, O_Count, F_Count, P_Count, S_Count, Cl_Count.

‘Atom Counts’ descriptors were computed using the component

‘Element Count’ from PipelinePilot Student Edition 6.1 [36].

The physicochemical properties used were the Atom Counts

descriptors mentioned above together with the following

properties: the number of atoms (Num_Atoms in PipelinePilot),

a calculated logP value (ALogP), a calculated logD value (LogD),

the number of hydrogen donors (Num_H_Donors) and acceptors

(Num_H_Acceptors), the number of rotatable bonds

(Num_RotatableBonds), the number of rings (Num_Rings), the

number of aromatic rings (Num_AromaticRings), a calculated

value of solubility (Molecular_Solubility), a calculated value of the

polar surface area (Molecular_PolarSurfaceArea), and a calculated

value for the minimized energy (Minimized_Energy). All these

properties, listed in detail in Table 1, were calculated with the

components ‘Element Count’, ‘Calculate Properties’, ‘ALogP’,

‘LogD’, ‘Surface Area and Volume’, ‘Molecular Energy’ as

implemented in PipelinePilot Student Edition 6.1 [36].

b) Fingerprints. 2D ECFP_X and FCFP_X are ‘‘Extended

Connectivity’’ molecular fingerprints where features are

descriptions of the neighborhood of the atoms up to a certain

distance or radius X. In the ECFP fingerprint the atom identifier is

based on the atom type, while in FCFP it is based on the functional

class of the atom [31]. In this work, ECFP and FCFP fingerprints

with radius 4 were calculated using the component ‘Molecular

Properties’ in PipelinePilot Student Edition 6.1 [36] with the

parameter ‘Convert Fingerprint To’ set to ‘Leave As-Is’. These

fingerprints can produce thousands of features for a molecular

library, including features that are present in very few molecules,

which can easily lead to over fitting. Hence, we folded the

fingerprints to a fixed length of 1024 bits, using PipelinePilot

Student Edition 6.1 [36] component ‘Convert Fingerprint’, to an

output format of ‘Fixed length Array of Bits’, ‘Fixed Bit Length’ of

1024, and ‘Output Bit Order’ of ‘Pack Least-Significant First’.

MDL keys [32] were used as well for classification. MDL Public

Keys are a key-based molecular representation defined by the

presence or absence of 166 predefined keys, or molecular

substructures. Since the size of this key set is only 166 bits, folding

is not necessary.

Principal Component Analysis
Principal Component Analysis (PCA) is a mathematical

transformation that projects the dataset onto a lower dimension

defined by uncorrelated variables, the so-called ‘principal

components’ [43]. Such components are ordered according to

the percentage of variance in the dataset that they explain, which

means that the first principal component explains the highest

variance. We performed a PCA on the training set of metabolites

and non-metabolites in order to understand better the nature of

the chemistry contained in both classes. PCA was performed using

the R library FactoMineR [44] and data was standardized to unit

variance before analysis.

Hierarchical Clustering
Hierarchical Clustering groups objects together that are close in

the particular representation chosen and assigns a hierarchy to the

resulting clusters. This grouping can be agglomerative, where

initially each object is a cluster by itself and where clusters are

subsequently combined, or divisive, where the whole dataset is

assigned to a single cluster initially which is then iteratively split

into smaller clusters. Furthermore, two other factors determine the

output of the clustering, the distance metric between objects and

the method used to link two clusters, i.e. the method used to

calculate the distance between clusters. We have used the

agglomerative hierarchical clustering offered by FactoMineR [44]

on the results of the PCA as described above in combination with

an Euclidean distance metric and Ward’s linkage method. Finally,

the hierarchy of clusters is presented on a dendogram that needs to

be cut at some point to split the clusters. The criteria employed to

cut the dendogram was the default in FactoMineR, which splits the

clusters at the point of maximal loss of intra-cluster inertia. The

clustering results are used to evaluate if some natural grouping

emerges from the data; in our case, whether metabolite space

actually contains several distinct subspaces.

Classification Trees
Classification trees are machine-learning methods that use a

univariate partition to split the dataset in subsets [45]. At each step

the data is split using the predicting variable that optimizes a

certain criteria. In our case, we make use of conditional inference

trees (CIT) as implemented in the R package party [46].

Conditional inference trees perform a covariate selection that

relies on permutation tests and statistical significance. Applying

CIT to a two-class classification problem can be seen as a binary

tree where at each node the dataset is split into two subsets using

the covariate that has the strongest association to the response

variable. In the case that features are binary fingerprints, the

presence or absence of a given feature determines the data split

performed. Variables are selected if they maximize the ‘purity’ of

the split, this is, that each subset contains mostly objects of one

class. The result is a tree that depicts the best variables to split the

data and provides information about relevant variables for each

Table 1. List of atom counts and physicochemical properties used to describe the molecules of this study.

Descriptors Properties

Atom Counts H_Count, C_Count, N_Count, O_Count, F_Count, P_Count, S_Count, Cl_Count

PP_desc Atom Counts, Molecular_Weight, Num_Atoms, ALogP, LogD, Num_H_Donors, Num_H_Acceptors, Num_RotatableBonds, Num_Rings,
Num_AromaticRings, Molecular_Solubility, Molecular_PolarSurfaceArea, Minimized_Energy

PP_desc include Atom Counts and the listed physicochemical properties.
doi:10.1371/journal.pone.0028966.t001

Metabolite Space and Metabolite-Likeness
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class of objects. In the course of the present study, classification

trees were applied particularly to ECFP_4 fingerprints, in order to

determine which features distinguish metabolite space from non-

metabolite space.

Fragment Analysis
In this part of the work, we further analyzed the fragment

composition of metabolite and ‘purchasable chemistry’ spaces as a

means to better understand the composition of (and differences

between) both compound spaces. From the point of view of a

chemist, molecular fragments are easier to interpret and convey

more meaning than a fingerprint or a sensitivity percentage.

Therefore we used the component ‘Generate Fragments’ from

PipelinePilot Student Edition 6.1 [36] to enumerate (in PipelinePilot

terminology) rings, ring assemblies, bridge assemblies, chains, and

Murcko assemblies (scaffolds that contain ring systems and ring

systems connected by linkers, but no side chains) [47]. The top 20

most frequent fragments from our two datasets, human metabolites

and purchasable compounds were collected and analyzed.

Machine Learning
Three machine-learning algorithms were used to generate the

models of metabolite-likeness, namely Support Vector Machines

(SVM) [33], Random Forests (RF) [34], and the Naı̈ve Bayes

Classifier (NB) [48]. We used the implementations of these

algorithms in the statistical software package R [49]. For SVM, we

employed the library e1071 [50], which is an implementation of

the standard C++ libsvm [51]. As for RF, we opted for the library

randomForest [52], an R port of the original code of Breiman [34].

Again e1071 was the library chosen for NB.

SVM is one of the most robust and widely used algorithms in

machine learning and it belongs to the class of maximum margin

classifiers [33,53]. In a two-class problem, SVM tries to define a

boundary that maximizes the separation between the two classes.

Provided the classes are linearly separable, SVM builds a

hyperplane with a maximal margin to neighboring objects of the

two classes. When the linear separation is not feasible, a kernel

function executes a nonlinear mapping of the data to a higher

dimension where it can be linearly separated. SVM requires the

tuning of two metaparameters, gamma, which regulates the level

of non-linear behavior of the kernel, and C, the cost of violating

the constraints, in order to achieve an optimal performance. The

kernel type was set to the default Gaussian Radial Basis Function

(RBF). SVMs have been successfully used in molecular classifica-

tion before, such as for classifying ‘drug-likeness’ [54,55].

RF is an ensemble of classification trees [34] in which each tree

classifies, or votes, the class of an object given a randomly chosen

subset of the full variable set. Many of such trees are grown (as

determined by the variable ntree) and majority voting is used to

obtain one final classification result. RF requires the tuning of the

metaparameter mtry, which determines the number of variables

randomly sampled.

The last classification algorithm is the Naı̈ve Bayes algorithm

[48], which relies on the assumption that the variable values are

conditionally independent of the class label. This strong

assumption usually does not hold, but in practice this approach

still allows building good models for multidimensional data, as was

shown for bioactivity datasets before [56,57]. Compared to SVM

and RF, NB only requires one parameter to be tuned, the cut-off

value for the class membership probability (equivalent to changing

the choice of the ‘prior’), which was however not explored in this

work and it was set to its theoretical optimum (it was set to 50% in

the case of balanced datasets, as proposed previously) [58].

According to this, a molecule with a predicted metabolite-likeness

of 50% of higher is considered to be a metabolite, and with less

than 50% metabolite-likeness, a non-metabolite.

Cross Validation and Model Generation
Concerning RF and SVM, k-fold cross validation [59–61] is a

recommended method to tune metaparameters and avoid over

fitting. We opted to apply a 5 fold cross validation, a previously

recommended value for k [62,63], to the 1,064 molecules in the

training dataset. In the case of RF, for each cross validation split a

range of values for mtry metaparameter were tested, while the

number of trees in the forest, ntree, was set to the default value of

500. The mtry giving the highest averaged Area Under the Curve

(AUC) and smallest classification error was chosen as the optimal

value for building the model. Cross validation was performed in

the same fashion for SVM (Table S1 shows the best values

obtained for the metaparameters). Once the optimal metapara-

meters were selected, final RF (RF variable importance of PP_desc

descriptors are listed in Table S2, and for MDL Public Keys in

Table S3), SVM, and NB models were generated using the

complete set of 1,064 molecules in the training dataset. This

process of metaparameter determination and model building was

performed for each pair of three different classifiers (RF, SVM,

and NB) and five molecular representations (PP_desc, Atom

Counts, ECFP_4, FCFP_4, and MDL Public Keys), resulting in a

total of 15 different classification exercises.

Model Benchmarking
Once the training step was finished, we needed to evaluate what

pair of classifier and representation gave the best results on the test

set, consisting of an additional 6,422 metabolites as well as 6,422

non-metabolites that were not used at any stage during model

training. To evaluate model performance we used sensitivity and

specificity values derived from the confusion matrices, together

with ROC curves and their associated AUC. After applying the

models to the test set, the final step involved classification of the

molecules contained to the prospective, external validation sets

described above. The distribution of the metabolite-likeness scores

for these datasets as well as the percentage of correctly classified

compounds are discussed in the Results and Discussion section.

Results and Discussion

PCA and Hierarchical Clustering
PCA was performed to the training set and the loadings and

scores plots for the first four dimensions are presented in Figure 1.

For this PCA, we focus on physicochemical properties (PP_desc)

for the sake of interpretability (PCA results for MDL Public Keys

are presented in Figure S1 and Figure S2, and the percentage of

variance explained in Table S4). Almost 71% of the variance is

explained in the first four components. A slight separation between

metabolites and non-metabolites can be observed in the score plots

of PP_desc (Figure 1A and Figure 1C). The loadings plots for

PP_desc (Figure 1B and Figure 1D) one can see which variables

are correlated or inversely correlated with each class of

compounds. For the first two dimensions (Figure 1B), the variables

that contribute the most to the variance are Molecular Solubility,

Molecular Weigh, Molecular Polar Surface Area (PSA), and the

number of carbon atoms per molecule (C_Count). Metabolites

hence tend to have higher water solubility, lower molecular

weight, and fewer carbon atoms than non-metabolites. These

observations are in accordance to the work of Nobeli et al. [27]

and Dobson et al. [30], who concluded that metabolites are

hydrophilic and have less heavy atoms than non-metabolites. PSA

tends to be bigger than the one of non-metabolites, suggesting that

Metabolite Space and Metabolite-Likeness
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metabolites do not penetrate cell membranes as efficiently as the

non-metabolites. Furthermore, the loadings plot for the third and

fourth dimensions (Figure 1D), shows that the most contributing

variables are Num Rings, Num Rotatable Bonds, N Count, S

Count, and Minimized Energy. The number of rings, rotatable

bonds, and minimized energy, for which metabolites obtain lower

values than non-metabolites, are indicators of molecular complex-

ity, and, therefore, one can conclude that metabolites have simpler

chemical structures than non-metabolites. Interestingly, metabo-

lites also have fewer nitrogen and sulfur atoms than non-

metabolites, as is the case for all atom types except for oxygen

and phosphor, which are more frequent for metabolites as

opposed to non-metabolites.

The results of the PCA of PP_desc and MDL Public Keys were

subject to hierarchical clustering. (Plots are presented in Figure S3.)

In both cases the optimal cluster split, according to the loss of intra-

cluster inertia, returned 3 clusters. The distribution of metabolites

and non-metabolites in each cluster is listed in Table 2. It can be

seen that for PP_desc and MDL Public Keys 2 large clusters and a

third small one are formed, each of them containing one dominant

class of compounds. The first cluster for PP_desc has a purity of

70.2% (370 metabolites and 157 non-metabolites), the second

cluster has a purity of 89.65% (52 metabolites and 6 non-

metabolites), and the third cluster has a purity of 77.03% (110

metabolites and 369 non-metabolites). Using MDL Public Keys, the

first cluster has a purity of 78.81% (372 metabolites and 100 non-

metabolites), the second cluster has a purity of 73.03% (134

metabolites and 363 non-metabolites), and the third cluster has a

purity of 72.63% (26 metabolites and 69 non-metabolites).

However, the purity of each cluster is not high and this, together

with the lack of separation observed in the PCA, leads us to think

that the separation of metabolites from non-metabolites requires the

utilization of more sophisticated methods like random forests, or

other nonlinear classifiers as explored in the following.

Fingerprint Features and Fragment Analysis
A classification tree was built upon the training set, which was

described using non-hashed ECFP_4 fingerprints (Figure 2). The

Figure 1. Principal Components Analysis of the PP_desc training set. PCA plots (A,C) and variable contributions(B,D) for the training datasets
PP_desc.
doi:10.1371/journal.pone.0028966.g001
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results give a general idea of which chemical moieties are

characteristic of each class of compounds. As expected, the most

discriminating feature was the hydroxyl group, in agreement with

the work by Gupta et al. [28], with a higher frequency among

metabolites. On the other hand, the presence of chemical moieties

containing nitrogen, in particular secondary amines and secondary

imines, is highly correlated with a class membership of the non-

metabolites. Finally, in the case a molecule lacks hydroxyl

functionalities (demonstrated to be metabolite-like moieties), but

it also lacks five or three member rings, ether-like features, and

primary amines, it will likely be a metabolite (which is the

combination of features in the left-most branch of the tree in

Figure 3).

When looking at the frequent fragments of metabolites (Figure 3)

and non-metabolites (Figure 4), we corroborate this finding.

Among metabolites, hydroxyls and carboxylic acids are frequent as

well as rings containing oxygen atoms. In the case of non-

metabolites, either rings or linear fragments containing nitrogen

and sulfur abound, which is in accordance to the classification tree

results, in accordance to the findings of Hert et al. [64]. Other

frequent fragments of metabolites are the phosphate group,

characteristic of some classes of metabolites like nucleotides and

phospholipids, as well as the steroid and adenine scaffolds. This

importance of class-specific fragments can make two metabolites

from different classes very different, and it hence poses a challenge

when building models that aim to capture such diversity within a

given class. One option is to build local models for each subclass of

metabolites; but in this study we aimed at building a global model

for metabolites, and as a result, we rely on complex classifiers to

predict the metabolite-likeness of molecules. These classification

models were built using the methods and data described in the

methods section and they were applied to our test set.

Test Set
In this study we used 5 molecular representations and 3

classifiers. Our aim was to select which combination of molecular

representation and classifier yielded the best classification results

for metabolites. The classification results on the test set for each

combination are presented in Table 3 and visualized graphically in

Figure 5. MDL Public Keys and RF, reporting 99.84% sensitivity

and 88.79% specificity, achieve best results. ECFP_4 is the best

performing molecular representation when used with SVM,

achieving 99.55% sensitivity, while PP_desc achieves the highest

AUC of 98.66%. MDL Public Keys also outperformed the other

representations for NB, with a sensitivity of 96.71%, specificity of

86.97%, and an AUC of 97.99%. Another representation that

exhibits a solid performance across the whole study is ECFP_4

(which is in line with previous studies [65,66]). This fingerprint has

the best sensitivity for SVM, 99.55%, the second best AUC for

RF, 99.07%, and the second best sensitivity, 97.15%, and AUC,

94.25% for NB. A conceptually related fingerprint, namely

FCFP_4, shows surprisingly worse performance than MDL Public

Keys and ECFP_4 fingerprints by having smaller AUC values for

RF, SVM, and NB, 98.16%, 94.19%, and 80.80% respectively.

Molecular descriptors, both PP_desc and Atom Counts, perform

well: PP_desc reports better AUC for RF and SVM, 98.93% and

98.66% respectively, than FCFP_4, 98.13% and 94.19% respec-

tively. Atom Counts descriptors also outperform FCFP_4 in SVM

in terms of AUC, 98.02% the former and 94.19% the latter. On

Table 2. Cluster distribution of the molecules in the training
datasets, using PP_desc and MDL Public Keys.

Cluster Type PP_desc MDL Public Keys

1 HMDB 370 372

1 ZINC 157 100

2 HMDB 52 134

2 ZINC 6 363

3 HMDB 110 26

3 ZINC 369 69

The clustering performed was a hierarchical clustering and the dendogram was
cut at the point of maximal inertia loss.
doi:10.1371/journal.pone.0028966.t002

Figure 2. Conditional inference tree of the ECFP_4 features in the training set. Hydroxyls, carboxylic acids, and linear structures are
associated with metabolites, whereas secondary amines and secondary imines are associated with non-metabolites.
doi:10.1371/journal.pone.0028966.g002
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Figure 3. Top 20 most frequent fragments in HMDB. The 20 most frequent ring systems, chain assemblies, and Murcko assemblies in the
metabolite data set (HMDB compounds). ‘H’ refers to the frequency of fragments in the HMDB dataset, ‘Z’ to the frequency of fragments in the ZINC
dataset. Fragments with less than 4 heavy atoms were excluded. Oxygen containing rings, phosphate group, hydroxyl, carboxylic acid, and the
steroid scaffold, among others, are common fragments in metabolites.
doi:10.1371/journal.pone.0028966.g003

Figure 4. Top 20 most frequent fragments in ZINC. The 20 most frequent ring systems, chain assemblies, and Murcko assemblies among the
ZINC compounds, here chosen as a non-metabolite-like set. ‘H’ refers to the frequency of fragments in the HMDB dataset, ‘Z’ to the frequency of
fragments in the ZINC dataset. Fragments with less than 4 heavy atoms were excluded. Nitrogen containing rings dominate the most frequent
fragments.
doi:10.1371/journal.pone.0028966.g004
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the other hand, PP_desc and Atom Counts underperformed when

used with NB, where the AUC obtained was 61.57% and 58.95%,

respectively.

By looking at the average AUC results for the different

representations we conclude that MDL Public Keys (with

98.19%) and ECFP_4 (with 97.18%) are the best performing

representations overall. If we observe the average results obtained

by the classifiers, RF outperforms SVM and NB in each category

with averages of 99.26% sensitivity, 87.41% specificity, and

98.52% AUC.

From the results presented in this work we see that with the

optimal combination of molecular descriptors and classifier, MDL

Public Keys and RF, 99.84% of the metabolites and 88.79% of the

non-metabolites in the test set are classified correctly. These results

are slightly better than those presented by Gupta et al. [28], who

reported 97% correct predictions for KEGG metabolites using RF

and global molecular descriptors, which are similar to the PP_desc

descriptors used in the current work. While these 97% correct

predictions were achieved on the dataset used to train the model,

our 99.84% correctly classified metabolites were not employed in

training the model. Interestingly, it is also observed in our

predictions that metabolites have a smaller false positive rate than

non-metabolites, which reinforces the idea that it is easier to

determine what makes a metabolite a metabolite, than what makes a

non-metabolite a non-metabolite. The ZINC molecules that have

been classified as metabolites (some of them shown in Figure S4),

form an interesting set for further research, since according to the

models they exhibit metabolite-like features, which would give

them an increased likelihood of being bioactive in experimental

screening [64].

With respect to the classification algorithms, RF and SVM have

demonstrated their status as the ‘state of the art’ in machine

learning, as applied to this dataset. This good performance comes

however at the expense of having to optimize metaparameters,

which is more demanding for SVM, where finding the right

gamma and cost results in changing the value ranges multiple

times. From this experience, when facing a classification problem

where objects are described by a large number of variables and

only a modest computational power is available, RF is a good

compromise.

As seen in previous research, ECFP_4 is a solid ‘all-round

performer’ [65,66], which obtains good results in combination

with the different classification approaches. The most surprising

feature is that with simpler molecular representations than

ECFP_4, like MDL Public Keys or PP_desc molecular descriptors,

one can achieve similar or slightly improved results from the

above, as it has been observed before [67]. This finding confirms

the idea that (at least known) ‘Metabolite Space’ is a well-defined

subset of all ‘Chemical Space’, and that hence its diversity can be

modeled with success using either 1D or 2D descriptors.

Apart from the discussion of general model performance we also

investigated cases where our model failed, which may be either

due to wrong data annotation or wrong predictions of the model.

Figure 6 depicts false negative predictions, i.e. those metabolites

with a metabolite-likeness value of 50% or lower, and which were

therefore being considered as non-metabolites in combination with

the MDL Public Keys and the RF classification method. Although

these molecules would be considered non-metabolites by our

model, 9 out of 10 obtain a metabolite-likeness of 40% or more. It

is interesting to note that the lowest scoring compound,

debrisoquine with a score of 35.4%, is in fact a drug. Since it

was not described as such by the HMDB taxonomy, our filtering

step did not eliminate it. The same occurs for entacapone, which is

a drug and has a predicted metabolite-likeness of 48.8%.

Nevertheless, our classification method was able to assign to both

drugs the lowest metabolite-likeness scores. Non-endogenous

compounds are also present in this group of compounds, such as

nicotine glucuronide, and 4b-Hydroxystanozolol, a metabolite of

Table 3. Classification results of the test set.

Random Forest SVM Naı̈ve Bayes Average

Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity AUC

PP_desc 99.17% 88.60% 98.93% 96.82% 88.93% 98.66% 42.51% 86.56% 61.57% 79.50% 88.03% 86.39%

Atom Counts 97.91% 85.57% 97.33% 98.05% 84.10% 98.02% 36.66% 92.90% 58.95% 77.54% 87.52% 84.77%

ECFP4 99.80% 86.27% 99.07% 99.55% 83.43% 98.23% 97.15% 83.29% 94.25% 98.83% 84.33% 97.18%

FCFP4 99.55% 87.84% 98.16% 81.89% 86.53% 94.19% 99.75% 44.80% 80.80% 93.73% 73.06% 91.05%

MDL 99.84% 88.79% 99.13% 98.54% 86.48% 97.45% 96.71% 86.97% 97.99% 98.36% 87.41% 98.19%

Average 99.26% 87.41% 98.52% 94.97% 85.90% 97.31% 74.56% 78.90% 78.71% 89.59% 84.07% 91.52%

Results for the test set, including the percentage of correctly classified metabolites (Sensitivity), the percentage of correctly classified non-metabolites (Specificity) and
the Area Under the Curve (AUC). It can be observed that the best combination of descriptor and classifier is MDL Public Keys and Random Forest and that the second
best is ECFP_4 fingerprints and Random Forest. Interestingly, physicochemical descriptors (PP_desc) perform well both with Random Forest and Support Vector
Machines classifiers. (A molecule is considered metabolite if its metabolite-likeness .50%).
doi:10.1371/journal.pone.0028966.t003

Figure 5. Classification accuracy on the test set. Percentage of
correctly classified molecules of the test set for each combination of
fingerprint and classifier. Sensitivity is in most cases larger than 90%,
except for FCFP_4 and SVM, and Atom Counts and PP_desc and NB.
Specificity is larger than 80% in most cases, except FCFP_4 and NB. It
can be observed that metabolites are classified more accurately than
non-metabolites when using RF and SVM.
doi:10.1371/journal.pone.0028966.g005
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the synthetic anabolic steroid stanozolol. In the same fashion, we

find in this set vanillylamine, with 49% of predicted metabolite-

likeness, which is a metabolite of the natural product Vanillin and

which structure resembles the endogenous metabolite 4-Methox-

ytyramine, which obtains a metabolite-likeness score of 48.8%.

Unfortunately, some endogenous metabolites like Uroporphyrin

II, 3-Methylhistamine, Melatonin, and Vitamin K1 2,3-epoxide,

received a low score without an obvious reason, and they are

hence false-negative predictions of our model.

Prospective Validation
Three prospective datasets containing metabolites, drugs, and

small molecules, were next classified using our two best performing

models, using RF and either MDL Public Keys or PP_desc. The

results are displayed in Table 4 and indicate that 95.84% of the

new metabolites (obtained after model training has been finished)

are correctly classified as metabolites, indicating the generalizabil-

ity of our model to classify new data. As for the drugs (represented

by DrugBank compounds), 54.37% are assigned a metabolite-

likeness of 50% or higher, which is in accordance with our

assumption that many drugs indeed resemble metabolites (as has

been presented before [64]). For the third dataset, the screening

compounds from ChEMBL, molecules predicted to be metabolites

only represent 22.39% of the total dataset, hence a smaller

percentage than for drugs. In Figure 7 the distributions of

metabolite-likeness for each dataset are visualized. We see that

most of the new HMDB compounds (HMDB_unofficial) show

high values of metabolite-likeness, while the ChEMBL molecules

give values that are accumulating at the lower-scoring end of the

distribution. The DrugBank molecules on the other hand are

evenly distributed among all the metabolite-likeness ranges, with

slight peaks at both the metabolite-like, as well as the non-

metabolite-like end of the spectrum. This result is in accordance to

the work of Ertl et al. [68], where a Natural Product-Likeness

score was reported after studying natural products, drugs, and

screening compounds. Natural products are molecules produced

by living organisms, and therefore they can be regarded as to some

extend similar to the human metabolites we employed in our work.

Ertl et al. concluded that drugs are more similar to natural

products than screening compounds, a similar finding to what we

have presented. This biogenic bias is also present in screening

libraries, as presented by Hert et al. [64]; however, the wide spread

of drugs along the spectrum of metabolite-likeness (in particular

with slight peaks at either end of the scale) has not been previously

reported.

While numerical performance is one thing, the chemical

interpretation of model predictions remains crucial. Hence, in

order to explore further the results of the prospective validation,

molecules of the three different classes (metabolites, drugs,

bioactive compounds), which fall into different bins of metabo-

lite-likeness scores, are presented in Figure 8. The first noticeable

feature is the absence of a metabolite with a predicted metabolite-

likeness smaller than 10%, underlining the homogeneity of

metabolites as a class (as opposed to non-metabolites). As a matter

of fact, the metabolite HMDB13193 obtained the lowest

metabolite-likeness, 17%, contains two chlorine atoms, which is

not common in metabolites. Another interesting situation occurs

with molecules that have a steroid scaffold, a common fragment in

endogenous metabolites. Metabolite HMDB12524 and drug

DB00180 (flunisolide) obtain metabolite-likeness values of 60.6%

and 52%, respectively. Here flunisolide possesses a fluorine atom,

which is not frequent in metabolites, and which might have hence

reduced its metabolite-likeness score. Conversely, ChEMBL

compound CHEMBL1163241 also has the steroid scaffold but

obtains a score of just 35.2% on the metabolite-likeness scale,

corresponding related to having two fluorine atoms and a

secondary amine, features that the classification tree revealed

to be common in non-metabolites. Finally, examples of com-

pounds with high values of predicted metabolite-likeness are

DB00131 (adenosine monophosphate), DB00125 (L-arginine),

CHEMBL6422, and CHEMBL14568, which receive 84.2%,

99%, 82.8%, and 96.8% respectively. Adenosine monophosphate

includes the phosphate group, frequently found in metabolites

together with two hydroxyl groups. Metabolite-likeness features of

Figure 6. Metabolites in the test set predicted as non-
metabolites. The 10 only false negative metabolites from the test
set. These metabolites obtained a Metabolite-likeness score smaller
than 50%, therefore being classified as non-metabolites, using the best
model, MDL Public Keys and Random Forest. Debrisoquine obtains the
lowest score; it is a drug that was not taxonomically described as such.
9 out of 10 compounds have 40% or more metabolite-likeness, which is
very close to our cut-off used to predict metabolites.
doi:10.1371/journal.pone.0028966.g006
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L-Arginine, like linearity and a carboxylic group, outweigh the

non-metabolite features like the nitrogen containing functional

groups. Compound CHEMBL6422 possesses a carboxylic acid

and hydroxyl functionalities, while and CHEMBL14568 is small,

linear, and also exhibits a hydroxyl group, leading to a very high

metabolite-likeness score.

The results obtained from the prospective validation demon-

strate that our model is successful at identifying whether a

molecule is a metabolite or not, which we expect to help studies

that involve metabolite identification in the future. Furthermore,

metabolite-likeness helps to detect non-metabolites that exhibit

features characteristic of metabolites, which can be of interest for

drug discovery In our future work, we will explore both of those

avenues with results to be communicated shortly.

In this work we evaluated various machine-learning models with

respect to their ability to discriminate metabolites from non-

metabolites, and hence, to calculate the metabolite-likeness score of

a given molecule. Our best model detects 99.84% of the metabolites

from the test set and 95.84% of the metabolites from a prospective

validation set, hence underlining the applicability of the classifier to

the majority of novel metabolites. While we confirm that drugs are,

on average, more metabolite-like than other compound classes, we

noted a considerable spread of drugs across the metabolite-likeness

spectrum, with two small (but distinct) peaks at either end of the

spectrum, illustrating that both synthetic molecules and metabolite-

like compounds may become successful drugs. As for the application

side, metabolite-likeness is a tool to rank compounds that ‘need’ to

resemble metabolites, which may be (as above) certain types of

Table 4. Percentage of molecules classified as metabolites or
non-metabolites for three independent sets.

RF Prediction

Metabolites Non-Metabolites

HMDB_unofficial 95.84% 4.15%

DrugBank 54.37% 45.62%

ChEMBL 22.39% 77.61%

95.84% of independent metabolites are correctly classified. More than half of
the drugs in DrugBank are considered metabolites. Only 22.39% of the
screening compounds in ChEMBL are predicted as metabolites. (A molecule is
considered metabolite if its metabolite-likeness .50%.).
doi:10.1371/journal.pone.0028966.t004

Figure 7. Metabolite-likeness distribution of the prospective validation sets. Distribution of predicted metabolite-likeness for the three
classes of molecules in the prospective evaluation set using our best predicting model, RF and MDL Public Keys (namely metabolites from HMDB,
drugs from DrugBank and bioactive compounds from ChEMBL). Most of the metabolites are predicted at a metabolite-likeness of 60% or higher. Most
of non-metabolites from ChEMBL obtain low values. Drugs from DrugBank are spread across the whole range of values, with higher concentrations at
both ends, which indicate a presence of synthetic drugs, for low values, and metabolite-like drugs at high values.
doi:10.1371/journal.pone.0028966.g007
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drugs, but also in particular candidate structures in metabolite

identification. Given the performance of our model, we will now

continue with our work to apply our model in precisely those areas.

Accordingly, we expect to use this tool in metabolomics studies

where no database match is found for the unknown compound and

therefore, candidate structures are generated based on mass

spectrometry data, e.g. elemental composition, using a structure

generation tool. These output molecules would be then ranked

according to their Metabolite-Likeness. Furthermore, we have also

studied which functional groups, fragments, and physicochemical

properties help describe the Metabolite Space. Our findings give a

general idea of what metabolites look like, but also encourage us to

look closer at the different subclasses of metabolites and to explore

the applicability of a local model approach if we want to expand our

knowledge of metabolites.

Supporting Information

Figure S1 PCA of the PP_desc and MDL Public Keys that
the RF model considers important. The importance

criterion is the Mean Decrease Accuracy. The separation of both

classes is slightly improved for PP_desc using these important

variables if compared with the PCA score plot in Figure 1.

(TIF)

Figure S2 PCA of the PP_desc and MDL Public Keys that
the RF model considers important. The importance

Figure 8. Molecules of the prospective validation sets with different predicted metabolite-likeness values. Compounds of the 3 classes
present in the prospective evaluation set using our best predicting model, RF and MDL Public Keys, sorted according to their predicted metabolite-
likeness. Non-metabolite compounds exhibit moieties characteristic of metabolites like carboxylic acids and phosphate groups, which make them
obtain high values of metabolite-likeness.
doi:10.1371/journal.pone.0028966.g008
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criterion is the Mean Decrease Gini. The separation of both

classes is slightly improved for PP_desc using these important

variables if compared with the PCA score plot in Figure 1.

(TIF)

Figure S3 Hierarchical clustering of PP_desc and MDL
Public Keys. Plots of the first two dimensions of the Hierarchical

Clustering. For PP_desc: A, using all variables; B, using the

important variables according to Accuracy decrease; C, using the

important variables according to Gini decrease. For MDL Public

Keys: A, using all variables; B, using the important variables

according to Accuracy decrease; C, using the important variables

according to Gini decrease. In all cases the optimal cut of the

dendogram, according to the maximum loss of inertia, returns 3

clusters.

(TIF)

Figure S4 Non-metabolites predicted as metabolites.
Some non-metabolites from the test set that obtained a

Metabolite-likeness score greater than 50%, therefore being

classified as metabolites, using the best model, MDL Public Keys

and Random Forest. These are the 20 cluster centers selected from

the clustering performed on all the false positives.

(TIF)

Table S1 Optimal metaparameters for classifiers. mtry for

Random Forest, Gamma and Cost for Support Vector Machines,

obtained after performing Cross Validation on the training set.

(DOC)

Table S2 Importance given to the PP_desc descriptors by

Random Forest. High values on Mean Decrease Accuracy and in

Mean Decrease Gini indicate that this variable is important to

discern between metabolites and non-metabolites. These impor-

tance values have been obtained from the Random Forest model

built with the training set.

(DOC)

Table S3 Importance given to the MDL Public Keys by

Random Forest. High values on Mean Decrease Accuracy and

in Mean Decrease Gini indicate that this variable is important to

discern between metabolites and non-metabolites. These impor-

tance values have been obtained from the Random Forest model

built with the training set.

(DOC)

Table S4 Cumulative percentage of variance explained of the

first 8 principal components. PCA was performed on the Atom

Counts, PP_desc, and MDL Public Keys datasets.

(DOC)
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