
Engineering of two-photon quantum correlation behind a double slit
Peeters, W.H.; Renema, J.J.; Exter, M.P. van

Citation
Peeters, W. H., Renema, J. J., & Exter, M. P. van. (2009). Engineering of two-photon quantum
correlation behind a double slit. Physical Review A, 79, 043817.
doi:10.1103/PhysRevA.79.043817
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/61332
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/61332


Engineering of two-photon spatial quantum correlations behind a double slit

W. H. Peeters, J. J. Renema, and M. P. van Exter
Leiden Institute of Physics, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands

�Received 23 December 2008; revised manuscript received 18 February 2009; published 16 April 2009�

This paper demonstrates the engineering of spatially entangled two-photon states behind a double slit by
tailoring the incident pure two-photon state. We experimentally characterize many different two-photon states
by measuring their complete two-photon interference patterns in the far field of the double slit. Spatial en-
tanglement right behind the double slit can reside in either the modulus or the phase of the two-photon field.
The balance between these two types of entanglement is fully controlled by experimentally utilizing the
phase-front curvatures of the pump beam and the phase-matching profile. We project either a far-field image or
a magnified near-field image of the two-photon source onto the double slit. Our theoretical analysis shows how
the two-photon interference pattern behind the double slit effectively acts as a phase-sensitive probe of the
incident two-photon field profile. We thus present phase-sensitive measurements of the generated two-photon
field profile probed in an image plane of the two-photon source.
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I. INTRODUCTION

Two photons are spatially entangled if their spatial de-
grees of freedom, residing in the phase space of transverse
position and transverse momentum, are quantum correlated.
This form of entanglement can be easily generated via the
nonlinear process of spontaneous parametric down-
conversion �SPDC�, where a single pump photon splits into a
pair of down-converted photons �1,2�. Spatial quantum cor-
relations between two photons have played a pivotal role in
many landmark experiments on fourth-order spatial interfer-
ence �3,4�, ghost imaging and ghost interference �1,5–7�,
quantum lithography �8,9�, and orbital angular-momentum
entanglement �10,11�. Other experiments have addressed
wave-particle complementarity �12,13� and duality of one-
photon and two-photon interferences �13–16�. Identification
of spatial entanglement has been demonstrated via combined
position-momentum measurements �17,18� and a recent vio-
lation of Bell inequalities �19,20�.

Spatial entanglement created via SPDC is of a high-
dimensional form, and the spatial Schmidt modes are gener-
ally quite complicated �21�. This spatial structure becomes
less complicated by projecting each photon onto an array of
holes. Behind a double slit, for example, the spatial entangle-
ment exists between two transmitted photons of which each
photon resides in a two-dimensional Hilbert space spanned
by the upper slit and lower slit modes. Two-photon transmis-
sion through a double slit has been demonstrated with both
indistinguishable �13,16� and distinguishable photons
�9,12,14,22–28�. Extensions to high-dimensional forms of
entanglement have been realized by using multislit apertures
�29–32�. Methods for characterizing spatial entanglement be-
hind a double slit have been demonstrated in Refs.
�25,26,28�.

To set the stage for further discussion, we restrict our-
selves to double-slit illumination schemes that obey mirror
symmetry with respect to the optical axis. The transmitted
two-photon state then takes the form

��2ph� = cos��/2�� �↑↓� + �↓↑�
�2

	
+ ei� sin��/2�� �↑↑� + �↓↓�

�2
	 , �1�

where �↑ � and �↓ � represent transmissions through the upper
slit and lower slit, respectively, and where � and � represent
the state parameters. In principle, the above expression cov-
ers a large variety of two-photon spatial quantum correla-
tions behind a double slit.

Experiments so far have addressed only a subclass of all
two-photon states represented by Eq. �1�. In many papers
�12–14,16,22,23,26,28–32�, the double slit is positioned far
away from the two-photon source where transmission is
dominated by photons emerging from opposite slits so that
0���

1
2�. Some of these papers have demonstrated how to

control � within this range �13,14,26,32�. The opposite case,
where both photons emerge from the same slit and �=�, has
been realized by positioning the double slit very close to the
two-photon source �9,27�. This two-photon state plays a cen-
tral role in the field of quantum lithography �8�. Until now,
parameter � has not been tuned within the range 1

2���
��. No attention has been paid to the experimental tuning
of � either, and most experiments seem to operate at �
0.
Yet, it is known that � is highly relevant for the degree and
type of spatial entanglement behind the double slit �26�. One
could, for example, consider a maximally entangled state at
�=�= 1

2� where the entanglement resides in the phase rather
than the modulus of the two-photon field right behind the
double slit �33�.

In this paper we demonstrate full control over the state
parameters � and �. We achieve this by tailoring the imaging
system in between the two-photon source and a single double
slit. We switch between two imaging schemes: the crystal
imaging scheme and the far-field �ff� imaging scheme. The
crystal imaging scheme images �a plane close to� the two-
photon source onto the double slit. We will call � the curva-
ture phase because we control this phase by utilizing the
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phase-front curvatures of both the phase-matching profile
and the pump beam profile. We characterize more than 30
different two-photon states by measuring their complete two-
photon interference patterns in the far field of the double slit.
Our theoretical analysis provides a direct connection be-
tween the incident two-photon field profile and the state pa-
rameters � and �. We show that the two-photon interference
pattern behind the double slit effectively acts as a phase-
sensitive probe of the incident two-photon field profile.

In our experiments, we use frequency degenerate SPDC
in a periodically poled crystal where the signal and idler
photons have the same polarization �type-I SPDC�. Hence,
the obtained spatial quantum correlations exist between in-
distinguishable photons. Our theoretical analysis, however,
also applies to type-I SPDC in a uniform crystal and type-II
SPDC in a periodically poled crystal. The analysis in this
paper can thus also be used to engineer spatial quantum cor-
relations between distinguishable photons.

The paper is organized as follows. The first theoretical
part in Sec. II describes how to engineer two-photon spatial
quantum correlations behind the double slit. We describe
how parameters � and � depend on the incident two-photon
field for the far-field and crystal imaging schemes. The sec-
ond theoretical part in Sec. III describes one-photon and two-
photon interferences behind the double slit. Section IV de-
scribes the experimental apparatus. The experimental results
can be found in Sec. V. The tuning of the two-photon state is
illustrated with a number of measured two-photon interfer-
ence patterns. The observed one-photon and two-photon in-
terference patterns are compared with theory. The paper ends
with a concluding section and a discussion on the possibility
to tune two-photon spatial quantum correlations in a higher-
dimensional Hilbert space. The Appendix discusses the va-
lidity of our engineering model for various types of phase
matching.

II. THEORY: TWO-PHOTON STATE ENGINEERING

A. Electromagnetic field behind double slit

The electromagnetic field behind a double slit is consid-
ered. We assume the field to be the response to an incident
quasimonochromatic two-photon field in a pure state. Trans-
mission through the double slit can happen in three ways:
either both photons come through, one photon comes
through and the other one is blocked, or both photons are
blocked. The density matrix of the electromagnetic field be-
hind the double slit can thus be written as

�̂out = P0�vac��vac� + P1�̂1p + P2��2ph���2ph� , �2�

where the first term represents vacuum, the second term rep-
resents a mixed one-photon field �one photon blocked�, and
the third term represents a pure two-photon field �both pho-
tons transmitted�. Equation �2� emphasizes that experiments
involving a single detector depend on both the one-photon
component and the two-photon component.

We now direct our attention to the two-photon part ��2ph�
of the transmitted state. Each photon can pass the double slit
through either the upper or lower slit. We will denote these

two spatial modes by �↑ � and �↓ �, respectively. The most
general form of the two-photon part of the transmitted state
can thus be written as

��2ph� = c1�↑↑� + c2�↑↓� + c3�↓↑� + c4�↓↓� , �3�

where the two Hilbert spaces belong to the two photons. We
will now restrict ourselves to illumination setups that obey
mirror symmetry with respect to the optical axis �see Fig. 1�.
This symmetry implies that c1=c4 and c2=c3 so that reversal
of all arrows leaves the quantum state unaltered. With this
restriction, the most general form of the two-photon state
becomes

��2ph� = cos��/2�� �↑↓� + �↓↑�
�2

	
+ ei� sin��/2�� �↑↑� + �↓↓�

�2
	 , �4�

being a coherent superposition of two states that we will
denote as antipaired and paired. In the antipaired state the
two photons emerge from opposite slits. In the paired state
the photons stick together and emerge from the same slit,
being either the upper slit or the lower slit. Figure 2 shows
how the two-photon state can be depicted as a point on a
two-particle Bloch sphere. We call � the curvature phase
because it depends on the phase-front curvature of the inci-
dent two-photon field �details in Secs. II B–II E�.

The quantum state in Eq. �4� represents a spatially en-
tangled qubit pair, where the quantum information of each
photonic qubit is encoded in its spatial properties. The degree
of entanglement within a qubit pair is often quantified via the
concurrence �34,35�. For our case, the concurrence becomes
�26�

C = �1 − sin2���cos2��� . �5�

On the two-qubit Bloch sphere of Fig. 2, the concurrence
equals the distance from the point on the sphere to the ver-
tical axis of the sphere. Quantum states on the horizontal
equator ��= �� /2� are maximally entangled regardless the
value of �. Quite remarkably, until now, hardly any attention
has been paid to the experimental tuning of �. This paper
describes how to tune both � and �.

In our experiments, the two photons are not distinguish-
able by their energy or polarization. Probabilistic separation
is achieved with a beam splitter behind the double slit �see
Fig. 1�. The spatial quantum correlations are detected after
postselection on simultaneous clicks of two detectors in the

FIG. 1. �Color online� Detection part of the double-slit setup
supporting the theoretical framework in Secs. II and III.
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output ports of the beam splitter. The events in which the
photons are reflected or transmitted in pairs are discarded.
The experiments could fairly easily be extended to distin-
guishable spatially entangled photons by using type-II SPDC
in a periodically poled crystal �see Sec. II C�.

B. Quantum state engineering

The main point of this paper is to demonstrate full control
over the two-photon state behind the double slit as given by
Eq. �4�. We thus need to describe how � and � depend on the
incident quasimonochomatic pure two-photon state ��in�.
The incident state is fully characterized by the two-photon
field profile in the double-slit plane,

Aslits�x1,x2� � �vac�Êslits
�+� �x1�Êslits

�+� �x2���in� . �6�

The operator Êslits
�+� �x� is the positive frequency electric field

operator at transverse position x in the double-slit plane. The
two-photon field profile can be interpreted as the complex
probability amplitude for simultaneous detection of one pho-
ton at position x1 and the other photon at transverse position
x2.

The two-photon field profile behind the double slit is just
the sampled version of the incident two-photon field profile.
We now assume that the slits are narrower than any spatial
structure of the incident two-photon field profile. The trans-
mitted two-photon state is then fully characterized by four
complex amplitudes Aslits��d , �d�, where 2d is the slit
separation. Because of the assumed mirror symmetry with
respect to the optical axis we have Aslits�d ,d�=Aslits�−d ,−d�
and Aslits�d ,−d�=Aslits�−d ,d�. The first pair of two-photon
amplitudes corresponds to paired photons, and the latter pair
corresponds to antipaired photons. The coefficients of the

transmitted two-photon state in Eq. �4� can thus be associ-
ated with the incident two-photon field profile via

p � ei� tan��

2
	 =

Aslits�d,d�
Aslits�d,− d�

. �7�

Here, we have defined p as the engineering parameter,
which fully determines the transmitted two-photon state.
Equation �7� plays a central role in this paper because it
describes the relationship between the incident two-photon
field profile and the two-photon state behind the double slit.

C. Incident two-photon state

In this section we calculate the incident two-photon field
profile for a two-photon state produced via the nonlinear
process of SPDC. We consider frequency degenerate SPDC
in the low-conversion regime with cw pumping along the
positive z direction. The nonlinear crystal has two parallel
planar facets in transverse xy planes separated by length
L. We assume the divergence of the pump beam to be small
such that the Rayleigh range is much larger than the crystal
length. The pump photon has energy �	p, and the signal
and idler photons individually have approximately energy
�	0= 1

2�	p.
The phase-matching condition is essential for the precise

form of the generated two-photon field profile. All equations
derived below are based on noncritical type-I phase match-
ing. Noncritical phase matching is generally applied in peri-
odically poled crystals, and it means that the pump beam is
orientated along a principal axis of the crystal. However, in
the Appendix we show that our analysis also applies to non-
critical type-II as well as critical type-I phase matching. In
the latter case, the transverse walk-off distance of the pump
should be much smaller than the pump beam diameter, which
can be achieved by sufficiently loose focusing of the pump.

The first step toward quantum state engineering is to cal-
culate the two-photon field profile in the crystal-center plane.
Following Ref. �36�, we write for the momentum represen-
tation of this two-photon field profile

Ãcrys�q1,q2� 
 Ẽp�q1 + q2��̃�q1 − q2� , �8�

where the tilde symbol indicates the spatial Fourier trans-

form, Ẽp�q� is the momentum representation of the pump
profile in the crystal-center plane, and q1,2 are the transverse
wave vectors of the two photons. The phase-matching profile
is

�̃��q� = sinc�
0 +
L��q�2

8n0	0/c	 , �9�

where sinc�x��sin�x� /x, L is the crystal length, and n0 is the
refractive index at the down-converted frequency. The 
0
term accounts for the phase mismatch in forward direction.

The second step is to calculate the propagation from the
crystal toward the double slit. The propagation of the two-
photon field profile is described via

FIG. 2. �Color online� Bloch-sphere representation of a two-
qubit state ��2ph� that is restricted to the two-dimensional expres-
sion shown above. The states ��+� and ��+� are two of the four
maximally entangled Bell states. The indicated two-photon visibili-
ties V12=cos��� and Vcon=sin���cos��� directly relate to the posi-
tion on the sphere. The concurrence of ��2ph� is given by C
=�1−Vcon

2 . The two-qubit state is thus maximally entangled on the
horizontal equator.
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Aslits�x1,x2� =
 
 Acrys�x�,x��h�x1,x��h�x2,x��dx�dx�,

�10�

where h�x ,x�� is the �classical� electric field propagator �37�
from the crystal to the double slit at radial frequency 	0. The
two-photon field profile remains factorized after propagation
through any paraxial ABCD lens system. Therefore, it is con-
venient to think of the pump profile and the phase-matching
profile as two separately propagating profiles. The two-
photon field profile at any position z along the optical axis
can thus be written as

A�x1,x2;z� 
 Ep,z�x1 + x2

2
;z	�z�x1 − x2

2
;z	 , �11�

where Ep,z�x ;z� is the pump beam, �z�x ;0����x�, and
�z�x ;z� is the phase-matching profile propagated at radial
frequency 	p from the crystal center to position z.

In the final step, we calculate the engineering parameter p
from Eq. �7�. This calculation requires a one-dimensional
description of the incident two-photon field profile. Below,
we argue why it is allowed to single out one transverse di-
mension in Eq. �11� for the imaging schemes that we use. It
may, however, not be concluded that a one-dimensional
treatment is permitted for any general imaging scheme. The
problem is that the phase-matching profile �z�x ;z� does not
factorize in two functions for the two transverse dimensions.
The pump beam Ep,z�x ;z�, which we will assume to have a
Gaussian profile, nicely factorizes in the two transverse di-
rections.

In the far-field imaging scheme �see Fig. 3�b��, the slit
separations that we use are much smaller than the phase-
matching profile. The phase-matching profile is thus approxi-
mately constant in the region of the slits, and the two-photon

field scales with the pump profile. Singling out one dimen-
sion is thus allowed for the far-field imaging scheme.

Our crystal imaging scheme �see Fig. 3�a�� is based on a
mixed form of imaging, where lens 1 is a cylinder lens and
lens 2 is a standard lens. This mixed form of imaging pro-
duces only a crystal image in the direction perpendicular to
the slits �x direction�, while it retains the far-field image in
the direction parallel to the slits �y direction�. The size of the
phase-matching profile along the x direction is now similar to
the slit separation, whereas the profile is much more exten-
sive along the y direction. Furthermore, detection occurs via
projection on round detection modes that are much smaller
than the phase-matching profile along y direction in the
double-slit plane �2.1 mm versus 9.2 mm full width at half
maximum intensity�. The incident two-photon field profile is
thus probed only around qy �0, and singling out the x di-
mension is allowed.

D. Crystal imaging scheme

Our crystal imaging scheme can produce any two-photon
state on the left hemisphere of the two-qubit Bloch sphere
�see Fig. 2�. The working principle is that the crystal is im-
aged onto the double slit. For collinear phase matching
��
0����, the two photons leave the crystal from approxi-
mately the same transverse position, and they arrive in the
same way at the double slit �38�. Hence, the two-photon state
behind the double slit is dominated by the paired contribu-
tion.

The crystal imaging scheme is shown in Fig. 3�a�. The
pump beam is weakly focused in the crystal-center plane. A
plane close to the crystal center, i.e., within the Rayleigh
range of the pump beam, is imaged onto the double slit with
two lenses. The double slit is positioned in the back focal
plane of the second lens; the corresponding object plane then
coincides with the front focal plane of the first lens. The
precise position of the object plane can now be tuned by
moving the first lens longitudinally. We call this displace-
ment the defocus distance �z, where �z=0 if the object
plane coincides with the crystal-center plane, and �z�0 for
an increased distance between lens and crystal. The magni-
fication of the imaging system is M � f2 / f1, where f1 and f2
are the focal lengths of the first and the second lens, respec-
tively. The slit separation is 2d.

The profile at the double slit is just the magnified version
of the two-photon field profile in the object plane. The engi-
neering parameter p, which completely determines the two-
photon state behind the double slit via Eq. �7�, becomes

p =

A�+ d

M
,
+ d

M
;�z	

A�+ d

M
,
− d

M
;�z	 , �12�

where A�x1 ,x2 ;z� is the two-photon field profile of Eq. �11�.
Note that the object plane inside the crystal has actually
moved over a distance n0�z. For convenience, we have used
the propagation length �z instead of n0�z. This choice im-
plies that A�x1 ,x2 ;z� must be treated as a two-photon field

FIG. 3. �Color online� Two schemes for quantum state engineer-
ing. �a� Crystal imaging: a plane inside or close to the crystal is
imaged onto the double slit. The two engineering parameters are the
magnification M � f2 / f1 and the longitudinal position �z of lens 1.
The illustration shows �z=0, where the front focal plane of lens 1
coincides with the crystal center. �b� Far-field imaging: the far field
of the crystal, which is pumped by a Gaussian beam, is imaged onto
the double slit. The two engineering parameters are the pump di-
vergence �p and longitudinal position of the pump waist s.
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profile that has propagated over a distance z through an
imaginary medium with refractive index n=1.

It is important to realize that the phase-matching profile
�z�x ;�z� is much narrower than the pump profile Ep,z�x ;�z�.
As a consequence, d /M is much smaller than the waist of the
pump beam in the relevant range of operation. Therefore, we
can approximate the engineering parameter via

p =

Ep,z� d

M
;�z	�z�0;�z�

Ep,z�0;�z��z� d

M
;�z	 


�z�0;�z�

�z� d

M
;�z	 . �13�

The argument and the absolute value of p are determined by
the phase-front curvature of �z�x ;�z� and amplitude varia-
tions of �z�x ;�z�, respectively.

By using the expression for the phase-matching profile in
Eq. �9�, we find the explicit expression

p =

 sinc�
0 + x2�exp�− ibx2�dx


 sinc�
0 + x2�exp�− ibx2 − iax�dx

, �14�

where sinc�x��sin�x� /x and 
0 is the phase mismatch. The
dimensionless parameters

a �
2d

M�Lc/�n0	p�
, �15�

b �
�z

L/�2n0�
, �16�

are the scaled slit separation and the scaled defocus distance,
respectively. The two-photon state behind the double slit can
be engineered by tailoring parameters a and b. Unfortu-
nately, there is no simple analytic expression for the integrals
in Eq. �14�.

We can gain physical intuition for the influence of a and b
on parameter p by considering two general properties of the
phase-matching profile �z�x ;z�. First, the phase front of
�z�x ;z� is flat at the crystal center. This flatness causes pa-
rameter p to be real valued for �z=0 making the curvature
phase �=0. Second, �p��1 at any �z, as the maximum of
�z�x ;z� stays at the optical axis during propagation. Numeri-
cal evaluations show that 98% of the left hemisphere of the
two-qubit Bloch sphere is covered by varying a� �0,8� and
b� �−6,6�. These evaluations also show that the coverage
can be brought arbitrarily close to 100% for larger ranges of
a and b.

E. Far-field imaging scheme

Our far-field imaging scheme can produce any two-
photon state on the right-hand hemisphere of the two-qubit
Bloch sphere �see Fig. 2�. The working principle is that the
far field of the crystal is imaged onto the double slit. The
photons propagate with approximate opposite transverse mo-
menta, so the photons arrive at approximate opposite trans-

verse positions in the double-slit plane. Hence, the two-
photon state behind the double slit is dominated by the
antipaired contribution.

The far-field imaging scheme is shown in Fig. 3�b�. The
crystal is pumped with a weakly focused Gaussian beam

with divergence �p defined via Ẽp��	p /c�
exp�−�2 /�p
2�. The

waist of the pump beam lies at a distance s in front of the
crystal center. The far field of the crystal is symmetrically
imaged onto the double slit by a lens with focal length f2.
The slit separation is 2d.

It is important to realize that the far-field pump profile

Ẽp�q� is much narrower than the far-field phase-matching

profile �̃�q�. As a consequence, d / f2 is much smaller than the
divergence of the phase-matching profile in the relevant
range of operation. Therefore, the engineering parameter p
can be approximated via

p =

Ẽp�d	p

f2c
	�̃�0�

Ẽp�0��̃�d	p

f2c
	 


Ẽp�d	p

f2c
	

Ẽp�0�
, �17�

where the first equality is found by combining Eqs. �7�, �8�,
and �10�.

Insertion of the described pump profile yields the explicit
expression

p = exp�− � d

f2�p
	2�1 +

is

zR
	� , �18�

where zR�2c / ��p
2	p� is the Rayleigh range of the pump

beam. From this expression it is clear that any two-photon
state with �p��1 can be produced by tailoring the divergence
of the pump beam �p and its waist location s. These two-
photon states lie on the right-hand hemisphere of the two-
qubit Bloch sphere in Fig. 2.

III. THEORY: INTERFERENCE BEHIND
THE DOUBLE SLIT

A. State determination by two-photon interference

This section describes how we analyze the engineered
two-photon state. We show that the two-photon interference
pattern in the far field of the double slit serves as a finger-
print of the quantum state described by Eq. �4�. Figure 1
shows the geometry of the detection setup. The far field of
the double slit is formed in the back focal plane of a lens
with focal length f . The two photons are probabilistically
separated by a beam splitter �see Sec. II A�. Two detectors
are positioned in the far-field planes formed in the two output
ports of the beam splitter.

In the limit of narrow slits, the coincidence count rate in
the far field of the double slit becomes �26�

Rcc�x1,x2� 
 1 + Vdiff cos�
1 − 
2� + Vsum cos�
1 + 
2�

+ Vcon�cos�
1� + cos�
2�� , �19�

where the interslit phase differences 
i relate to the detector
positions xi via 
i=2d	0xi / fc, where 2d is the slit separation
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and �	0 is the energy of each photon. The coefficients are
given by

Vdiff = cos2��/2� , �20�

Vsum = sin2��/2� , �21�

Vcon = sin���cos��� , �22�

where we call Vsum the visibility in the sum of coordinates
and Vdiff the visibility in the difference of coordinates. Coef-
ficient Vcon relates to the fringe pattern in the single count
rate conditioned on transmission of the second photon
through the double slit. Therefore, we call Vcon the condi-
tional one-photon visibility. Note that Vcon is allowed to be-
come negative and that this sign has a clear and measurable
physical meaning. It is just for convenience that we incorpo-
rate the sign of sin���cos��� in what we call the conditional
one-photon visibility.

The visibilities in the sum and difference of coordinates
obey Vdiff+Vsum=1. It is convenient to remove this redun-
dancy and use only one quantity. Therefore, we define

V12 � Vdiff − Vsum = cos��� �23�

as the two-photon visibility difference. The interference pat-
tern of Eq. �19� is now determined by just two quantities
being V12 and Vcon.

The far-field two-photon interference pattern serves as a
fingerprint of the two-qubit state. State parameter � is deter-
mined by V12=cos��� and state parameter ��� is then deter-
mined by Vcon=sin���cos���. The two-qubit Bloch sphere in
Fig. 2 graphically connects these visibilities to the two-
photon state: the in-plane horizontal coordinate is V12 and the
vertical coordinate is Vcon. The sign of �, indicating whether
the state is on the front or rear side of the sphere, cannot be
determined from the two-photon interference pattern. This
sign, however, has limited physical meaning as the two-
photon interference pattern, anywhere behind the double slit,
is invariant under sign reversal of �.

The experimental visibilities can easily be expressed in
terms of the engineering parameter p, which characterizes
the two-photon state behind the double slit via Eq. �7�. By
combining Eqs. �7�, �22�, and �23�, we find

V12 =
1 − �p�2

1 + �p�2
, �24�

Vcon =
p + p�

1 + �p�2
, �25�

enabling us to explicitly predict the outcome of the experi-
ments based on the calculated parameter p.

B. Interpretation of the two-qubit Bloch sphere

The two-qubit Bloch sphere in Fig. 2 is a graphical rep-
resentation of a pure two-qubit state that is restricted to the
indicated linear superposition of two Bell states. All possible
two-photon states on this sphere share a common Schmidt
basis �26,39�. These Schmidt states are located on the north

and south poles of the sphere, being ��+���+� and ��−���−�,
respectively, where ����� 1

�2
��↑ �� �↓ ��. The concurrence C

is thus directly related to the vertical coordinate Vcon on the
sphere. By combining Eqs. �5� and �22� we find �26�

C = �1 − Vcon
2 . �26�

The physical interpretation of Eq. �26� is simple. If the pho-
ton pair is strongly entangled �C�1�, the spatial state of
each individual photon is necessarily mixed and cannot pro-
duce a strong interference pattern on its own �Vcon�0�. In
the opposite case of an approximately nonentangled state
�C�0�, the state of each individual photon is almost pure
and produces strong interference �Vcon�1�.

The sphere provides a clear graphical interpretation of a
well-known complementarity relation between V12 and Vcon.
By combining Eqs. �22� and �23� it is easily shown that
�40,41�

V12
2 + Vcon

2 � 1 �27�

or V12
2 �C2. The stronger the entanglement, the larger �V12� is

allowed to become. The absolute two-photon visibility dif-
ference �V12� determines the correlation strength of the trans-
verse positions of the photons right behind the double slit.
Absence of this type of correlation, however, does not imply
absence of entanglement because the entanglement could
also reside in the phase rather than the modules of the two-
photon field profile �33�. Inequality �27� becomes an equality
for two-photon states with zero curvature phase ��=0�.

The two-qubit Bloch sphere also suggests the existence of
a third visibility,

Vp � sin���sin��� =
− i�p − p��

1 + �p�2
, �28�

being the coordinate along the “out of paper” direction. To-
gether with V12 and Vcon, this third coordinate forms an exact
complementarity relation

V12
2 + Vp

2 = C2. �29�

In the fully entangled case, where C=1 and Vcon=0, a pro-
jective measurement on photon A provides all quantum in-
formation on photon B. The basis in which this quantum
information is obtained depends on the character of the en-
tanglement. At V12= �1 and Vp=0, a projection of photon A
in the slit basis �↑ � , �↓ � provides full “which path” informa-
tion on photon B. At V12=0 and Vp= �1, photon A must be
projected onto the states �↑ �� i�↓ � to obtain which path in-
formation on photon B. It is yet unclear how to experimen-
tally determine the third coordinate Vp.

C. One-photon interference

We consider the pattern of the total intensity in the far
field of a double slit that is illuminated with a pure two-
photon state. The visibility of this fringe pattern is called the
unconditional one-photon visibility Vunc. The unconditional
and conditional one-photon visibilities generally differ from
each other because Vcon solely depends on the two-photon
component behind the double slit, whereas Vunc also depends
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on the one-photon part. The electromagnetic field behind the
double slit is often even dominated by the one-photon part,
i.e., P1� P2 in Eq. �2�.

For symmetric double-slit illumination, the intensity pro-
file in the far-field plane of the double slit �see Fig. 1� is of
the form

I�x� 
 1 + Vunc cos�
� , �30�

where the interslit phase difference 
 relates to the detector
position x via 
=2d	0x / fc. Equation �30� implicitly defines
the unconditional one-photon visibility Vunc. The second-
order correlation function at the slits determines Vunc via �42�

Vunc =
G�1��d,− d�
G�1��d,d�

. �31�

The outcome of this equation is real valued due to the as-
sumed illumination symmetry of the setup. Like the condi-
tional one-photon visibility, we have defined the uncondi-
tional one-photon visibility such that it can become negative.

To calculate Vunc, we need the second-order correlation
function in the plane of the double slit. The second-order
correlation function in a transverse plane can be calculated
via �43�

G�1��x1,x2;z� 

 A��x1,x;z�A�x2,x;z�dx , �32�

where A�x1 ,x2 ;z���vac�Ê�+��x1 ;z�Ê�+��x2 ;z���in� is the
two-photon field profile and ��in� is a pure monochromatic
two-photon state associated with light propagating along the
optical axis. Equation �32� has a broader range of validity
than an alternative method based on the Van Cittert-Zernike
theorem �15�. The latter theorem can only be used beyond
the Rayleigh range of the two-photon source, and the two-
photon source should be sufficiently spatially incoherent.
The validity of Eq. �32� is retained close to the two-photon
source even for partially coherent �realistic� two-photon
sources.

As a first case, we calculate Vunc for the crystal imaging
scheme that is treated in Sec. II D and shown in Fig. 3�a�. By
combining the generated two-photon field in Eqs. �8� and �9�,
the propagation to the double slit �Eq. �10��, and the formu-
las for the unconditional one-photon visibility in Eqs. �31�
and �32�, we find

Vunc,cr =

 sinc2�
0 + x2�exp�iax�dx


 sinc2�
0 + x2�dx

, �33�

where sinc�x��sin�x� /x and a is the �dimensionless� scaled
slit separation defined in Eq. �15�. Again, we have assumed
the pump profile to be much wider than the phase-matching
profile. Unfortunately, there is no simple analytic expression
for the integrals in Eq. �33�.

As a second case, we consider the far-field imaging
scheme that is treated in Sec. II E and shown in Fig. 3�b�. By
combining Eqs. �8�, �10�, �31�, and �32� we find

Vunc,ff = exp�−
1

2
� d

f2�p
	2�1 +

s2

zR
2 	� , �34�

where 2d is the slit separation, �p is the pump divergence,
and zR�2c / ��p

2	p� is the Rayleigh range of the pump beam.
Again, we have assumed the far-field phase-matching profile
to be much wider than the far-field pump profile. For this
far-field imaging case, Eq. �34� can also be obtained via the
Van Cittert-Zernike theorem.

D. Duality between unconditional one-photon interference
and two-photon interference

The relationship between unconditional one-photon inter-
ference and �conditional� two-photon interference was stud-
ied earlier in Refs. �13–16�. Saleh et al. �15� theoretically
pointed out that there exists a profound duality between the
two phenomena if far-field imaging is applied. In this sec-
tion, we show how this duality manifests itself in our model.
We find new duality relations that apply to our far-field im-
aging scheme, and we point out that the precise form of the
duality relations strongly depends on the applied imaging
scheme.

We consider far-field imaging �see Fig. 3�b�� with a pump
beam that is loosely focused in the crystal-center plane
�s=0�. For this specific imaging scheme we find that
p=Vunc,ff

2 by comparing engineering parameter p in Eq. �18�
with Vunc in Eq. �34�. After converting p into the two-photon
visibilities via Eqs. �24� and �25�, we directly find duality
relations

V12 =
1 − Vunc,ff

4

1 + Vunc,ff
4 , �35�

Vcon =
2Vunc,ff

2

1 + Vunc,ff
4 , �36�

which strictly correspond to the specified imaging geometry.
Equations �35� and �36� describe how the unconditional in-
tensity pattern serves as a fingerprint of the two-photon state.

In other imaging geometries, the duality relations become
generally different or might even be multivalued. For ex-
ample, the duality between V12 and Vunc,ff was reported dif-
ferently in Eq. �3.16� in Ref. �15� because the authors as-
sumed a top-hat-shaped flat pump profile inside the crystal
instead of a Gaussian-shaped flat pump profile. As another
example, no one-to-one duality relations exist for the crystal
imaging scheme �see Fig. 3�a��. If crystal imaging is applied,
some values of Vunc individually correspond to multiple val-
ues of V12 and Vcon �see Fig. 6�.

IV. EXPERIMENTAL APPARATUS

A. General information

A schematic representation of the experimental apparatus
is shown in Fig. 4. This apparatus can implement the crystal
imaging scheme as well as the far-field imaging scheme. The
working principles of these two imaging schemes are ex-
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plained in Secs. II D and II E. The technical details of the
apparatus are given in Secs. IV B and IV C.

B. Experimental apparatus in front of double slit

Photon pairs are generated via collinear spontaneous para-
metric down-conversion �SPDC� in a periodically poled
KTiOPO4 �PPKTP� crystal. The conversion is such that
pump, signal, and idler waves have the same linear polariza-
tion. We pump the crystal with a continuous-wave
y-polarized Gaussian beam propagating along the z direction
�laser: Kr+, 200 mW at 413.1 nm�. We operate in the quasi-
monochromatic limit by applying detection behind narrow-
band spectral filters ���=5 nm at 826.2 nm�. The crystallo-
graphic x axis of the PPKTP is oriented along z direction
�pump direction� and the crystallographic z axis is oriented
along the y direction �poling direction�. The crystal is L
=5.09 mm long, 1 mm thick in y direction, and 2 mm wide
in x direction. The pump beam is absorbed behind the crystal
by a GaP wafer that is antireflection coated for 826 nm.

It is important to know the phase mismatch 
0 because it
strongly affects the engineering parameter p in the crystal
imaging scheme �see Eq. �14��. For our 5-mm-long crystal,
the temperature dependence of the phase mismatch is mea-
sured to be

�
0

�T =1.059 °C−1 �44�. The phase-match tempera-
ture is found to be T0= �60.39�0.04� °C from measure-
ments of the temperature-dependent spectrum of the SPDC
light in forward direction. All double-slit experiments are
performed at a temperature T= �60.70�0.01� °C corre-
sponding to a phase mismatch of 
0=0.33�0.05.

We illuminate the symmetric and centered double slit
either with a centered far-field image of the source using an
f-f imaging system �far-field imaging scheme� or a centered
magnified image of the crystal by adding an extra cylinder
lens �crystal imaging scheme�. The double slit is positioned
at 80 cm from the crystal center, and the fixed far-field im-
aging lens with focal length f2= �400�1� mm is positioned
halfway. The removable cylinder lens with focal length f1

produces a sharp image of the crystal-center plane only in the
direction perpendicular to the slits; the cylinder lens leaves
the imaging in the parallel direction unaffected. The cylinder
lens can be moved further away from the crystal by an
amount that we call the defocus distance �z. The y-oriented
slits are created by wire electrical discharge machining in a
phosphor bronze plate.

Some size parameters of the experimental apparatus are
adjustable in order to be able to engineer many different
two-photon states behind the double slit. In the crystal imag-
ing scheme, we adjust the slit separation 2d, the focal length
of the cylinder lens f1, and the defocus distance �z. In the
far-field imaging scheme, we adjust the slit separation 2d, the
pump divergence �p, and the distance from the pump waist to
the crystal center s.

We have used six double-slit apertures with slit separa-
tions of �313,510,600,758,950,1400� �m, all values with
�15 �m uncertainty. The corresponding slit widths are
�138,150,193,135,235,225� �m. We used three different
cylinder lenses with focal lengths of 12.7, 19.0, and 25.4
mm, all values with �2% uncertainty. The defocus distance
is varied between −0.20 and 3.30 mm. The null position of
�z corresponds to the point where the front focal plane co-
incides with the crystal center. This position is calibrated to a
precision of �0.04 mm by reflecting a reference beam,
which is backwardly focused in the primary focal plane of
the cylinder lens on the front and rear crystal facets �reversed
autocollimation�. For the far-field imaging experiments with
s=0, we used three different pump divergences, 0.73, 1.31,
and 2.27 mrad, all values with 10% uncertainty. Some mea-
surements have been performed with pump waists in front of
the crystal such that s�0.

C. Experimental apparatus behind double slit

The two photons behind the double slit are probabilisti-
cally separated with a beam splitter behind the double slit.
The events where the photons are both reflected or both
transmitted are discarded �see Sec. II A�. A lens with focal
length f =400 mm is positioned between the double slit and
the beam splitter. The lens images the far field of the double
slit onto two intermediate detection planes in the two output
ports of the beam splitter.

Detection occurs via projection onto the mode profiles of
two single-mode fibers. In the double-slit plane, the centered
Gaussian detection modes have �loose� waist diameters of
2.1 mm for each mode �full widths at half maximum inten-
sity�. Correspondingly, the detection modes have waist diam-
eters of 70 �m in the intermediate detection planes �full
widths at half maximum intensity�. The finite size of the
detection modes does not affect the observed fringe visibility
because the field projection is phase sensitive, and the period
of the two-photon fringe pattern is at least 240 �m which is
more than three times larger than the width of the detection
modes. The two-photon interference pattern is measured by
scanning two computer-controlled detection stages trans-
versely. Each detection stage comprises the fiber tip and an
objective with an effective focal length of 8 mm. The detec-
tion modes thus only move in the far field of the double slit,

FIG. 4. �Color online� Schematic representation of the experi-
mental apparatus. The down-converted light propagates from the
crystal to the double slit via either the crystal imaging scheme �with
cylinder lens� or the far-field imaging scheme �without cylinder
lens�. The longitudinal position of the cylinder lens can be adjusted.
The two-photon interference pattern in the far field of the double
slit is measured by scanning the fiber holders transversely. The two
fiber holders are identical and consist of a single-mode �SM� fiber
and an objective. The & symbol represents the detection of simul-
taneous photon arrivals.
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while their intensity profiles remain fixed in the double-slit
plane.

The single-mode fibers are coupled to single-photon
counting modules �Perkin-Elmer SPCM-AQR-14-FC�. Si-
multaneous photon detections are registered by coincidence
electronics. The applied gate time of our pulse correlator is
�g= �1.73�0.01� ns. If two photons from different photon
pairs are detected within this time window, it is fallaciously
registered as a coincidence count. The count rate of these
so-called accidental counts is

Rac = R1R2�g, �37�

where R1 and R2 are the raw single count rates in detector 1
and detector 2, respectively. The “real” coincidence count
rate is obtained by subtracting the accidental count rate from
the measured coincidence count rate. In our experiments, the
accidental count rate typically accounts for about 10%–45%
of the rawly measured coincidence count rate. The photon
count integration time is 1 s for each pixel of the measured
two-photon interference patterns.

V. EXPERIMENTAL RESULTS

A. General information

In this section we demonstrate the engineering of many
different two-photon states behind the double slit. Each two-
photon state is characterized via a measurement of the two-
photon interference pattern in the far field of the double slit.
The interference patterns provide the conditional one-photon
visibility Vcon and the two-photon visibility difference V12 for
each two-photon state. The manner in which these visibilities
relate to the engineered two-photon state is graphically indi-
cated on the two-qubit Bloch sphere in Fig. 2. The intensity
fringe patterns are also recorded. These yield the uncondi-

tional one-photon visibility Vunc. The analysis and tuning of
the two-photon interference pattern are discussed in Sec.
V B. Quantitative comparison with theory is performed in
Secs. V C–V F.

B. Analysis and tuning of two-photon interference patterns

Six examples of measured two-photon interference patters
are shown in Figs. 5�a�–5�f�. This selection covers a whole
range of different double-slit imaging types. The upper row
is measured with the crystal imaging scheme, and the lower
row is measured with the far-field imaging scheme. The left
column contains the two extreme cases where the slit sepa-
ration is large compared to the coherence width of the down-
converted light at the double slit. The central column is mea-
sured with slit separations similar to the coherence width.
The right-hand column is measured with a certain amount of
defocusing, meaning that either �z�0 for the crystal imag-
ing scheme or s�0 for the far-field imaging scheme.

The general form of the two-photon interference pattern,
given by Eq. �19�, allows for an insightful interpretation of
the fringe visibilities. The three visibilities—Vsum, Vdiff, and
Vcon—become isolated after projections on the +45° diago-
nal, the −45° diagonal, and the horizontal axis, respectively.
Mathematically, these projections result in

R+45°�x1 + x2� 
 1 + Vsum cos� x1 + x2

xs/2�
	 , �38�

R−45°�x1 − x2� 
 1 + Vdiff cos� x1 − x2

xs/2�
	 , �39�

R0°�x1� 
 1 + Vcon cos� x1

xs/2�
	 , �40�

FIG. 5. �Color� Various measured two-photon interference patterns in the far field of a double slit. Measurements �a�–�c� are obtained
with the crystal imaging scheme and �d�–�f� are obtained with the far-field imaging scheme. Measurements �c� and �f� have nonzero
curvature phase. The slit separation is 1.40 mm for measurements �a�–�d�, 0.95 mm for measurement �e�, and 0.76 mm for measurement �f�.
The indicated coincidence count rates have been corrected for accidental coincidences.
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where xs is the fringe period for coherent light at the down-
converted wavelength. In order not to deform the projection,
it is important to select an integer number of fringe periods
in the direction orthogonal to the projection axis. Each fringe
pattern has been analyzed by fitting these three projections
after including the effect of limited angular diffraction due to
the finite slit width �26�. The two-photon visibility difference
is then found via its definition V12�Vdiff−Vsum. The sum
Vdiff+Vsum=1 is automatically obeyed if the experimental ap-
paratus is aligned properly.

In the far-field imaging scheme, the two photons arrive at
approximately opposite positions in the double-slit plane.
Hence, two-photon transmission is dominated by the anti-
paired two-photon component causing V12 to be positive.
One quickly recognizes that the lower three interference pat-
terns have positive V12 because the fringes projected on the
−45° diagonal are more distinct than the fringes projected on
the +45° diagonal. The extreme case, where the slit separa-
tion is large compared to the pump divergence, is shown in
Fig. 5�d�. This two-photon state is almost completely anti-
paired as we find V12= �96�1�%. Paired two-photon trans-
mission can be increased by increasing the pump divergence
relative to the slit separation. Such an increase has been ap-
plied to situation �e� where the fringe orientation is hardly
visible and V12= �25�3�%.

The tuning of V12 in the crystal imaging scheme is analo-
gous. The photons arrive at approximately equal positions in
the double-slit plane. Hence, two-photon transmission is
dominated by the paired two-photon amplitude, causing V12
to be negative. The extreme case is shown in Fig. 5�a�, where
the slit separation is large compared to the size of the mag-
nified phase-matching profile. The corresponding two-photon
state is almost completely paired and we determine
V12=−�96�1�%. The antipaired two-photon transmission
can be enhanced by increasing the magnification of the im-
aging system or reducing the slit separation. In situation �b�,
the slit separation is reduced to about the size of the
magnified phase-matching profile �z�

x
M ;�z=0� resulting in

V12=−�89�1�%.
The conditional one-photon visibility can be interpreted

as the fringe visibility produced by each individual photon of
the transmitted pair. By projecting the two-photon fringe pat-
tern on the horizontal axis, it is easily recognized that pat-
terns �a� and �d� have Vcon
0. The conditional one-photon
visibility is close to 100% for pattern �e�. Patterns �b� and �f�
feature Vcon�0 because each of these two patterns has a
minimum in the center of the image. The other four patterns
have centered maxima corresponding to Vcon�0. Calibration
of detector positions x1,2=0 is performed via measurements
of the coincidence count rate without double slit. Patterns �b�
and �f� correspond to two-photon states on the lower hemi-
sphere of the two-qubit Bloch sphere in Fig. 2.

Patterns �c� and �f� are special because they have nonzero
curvature phase �. Such configurations can only be achieved
with defocused two-photon imaging, meaning that �z�0 for
crystal imaging or s�0 for far-field imaging. The character-
izing feature of defocusing is the emergence of a checker-
boardlike pattern. This changes the topology of the interfer-
ence pattern by splitting the dark curves of zero coincidences
into patches of low coincidence counts. A checkerboardlike

pattern reduces the conditional one-photon visibility so that
the two-photon state is brought closer to the horizontal equa-
tor of the two-qubit Bloch sphere.

The degree of entanglement is directly related to the con-
ditional one-photon visibility via Eq. �26�. Maximum en-
tanglement manifests itself as Vcon=0 and a total absence of
separability of the interference pattern in horizontal and ver-
tical directions. Patterns �a� and �d�, on one hand, correspond
to maximally entangled states as these have zero conditional
one-photon visibility. Pattern �e�, on the other hand, corre-
sponds to an almost nonentangled two-photon state as the
pattern almost factorizes.

The curvature phase is highly relevant for the
degree of entanglement. Pattern �c�, for example, has
V12=−0.14�0.01 which is rather close to zero, and, at the
same time, it is strongly entangled with a concurrence
of C=0.906�0.008. Such combination is only possible if
the curvature phase is nonzero. The curvature phase is
���= �64.7�1.0�° for pattern �c�. The entanglement has al-
most fully “migrated” from the modulus to the phase of the
two-photon field profile right behind the double slit �33�.

C. Crystal imaging at �=0

This section presents the experimental results obtained
with the crystal imaging scheme of Fig. 3�a� with zero defo-
cus �z=0. We only vary the reduced slit separation 2d /M,
where M is the magnification of the imaging system. Work-
ing at zero defocus, we expect to engineer two-photon states
with zero curvature phase �=0. Figure 6 depicts the mea-
sured visibilities V12, Vcon, and Vunc versus the reduced slit
separation. The vertical error bars are based on the internal
errors and scan resolutions of the two-photon interference
patterns. The theoretical curves for V12 and Vcon are based on
Eqs. �24�, �25�, and �14�. The theoretical curve for Vunc is a
plot of Eq. �33�. We observe good agreement between ex-
periment and theory.

The three plots in Fig. 6 contain a wealth of information.
First of all, the shape of each curve is directly related to the
phase-matching profile of the periodically poled crystal. Our
theoretical curves are based on the sinc-shaped phase-
matching profile in momentum representation �see Eq. �9��.
The observed agreement between experiment and theory
means that the phase-matching profile is indeed sinc shaped
in its momentum representation. Second, we observe that
Vcon and Vunc are negative for some values of the reduced slit
separation. Negativity of these parameters means that we ob-
serve minima instead of maxima in the centers of the mea-
sured interference patterns. Finally, we observe that Vcon and
Vunc are different from each other. For the crystal imaging
scheme, there is no one-to-one duality relation between these
visibilities like there is for the far-field imaging scheme �see
Eq. �36��. Interestingly, the experiments prove that Vunc can
be zero, while the two-photon state behind the double slit is
not maximally entangled for the same geometry �Vcon�0�.

Closer inspection of Fig. 6 indicates that the majority
of the measurements seem to be slightly on the right-hand
side of the theoretical curves. We do not know the origin of
this systematic error for certain, but a suspicious parameter
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is the phase mismatch 
0. It was determined to be 
0
=0.33�0.05 from measurements of the SPDC spectrum.
However, if we would plot the theoretical visibilities using

0=0.65 we would observe excellent agreement between
theory and measured visibilities. This means that a system-
atic error of only 0.3 °C in the phase-matching temperature
would already explain the observed small systematic differ-
ence between experiment and theory.

In Fig. 7 the engineered two-photon states are depicted as
points in a square with V12 and Vcon along the axes. The
points on the left half plane correspond to the measurements
from the crystal imaging scheme. The measurements are in
excellent agreement with the complementarity relation V12

2

+Vcon
2 =1 that is predicted for two-photon states with zero

curvature phase �=0.
Previously, of the two-photon states with V12�0, only the

fully paired two-photon state had been prepared by position-
ing a double slit with large slit separation very close to the
crystal �9,27,32�. We now demonstrate that the fully paired
two-photon state can also be prepared by imaging the two-
photon source onto a double slit. To the best of our knowl-
edge, two-photon states corresponding to −1�V12�0 or
Vcon�0 have never been prepared before. Our experiments
with the crystal imaging scheme are phase-sensitive mea-
surements of the two-photon field structure in an image plane
of the crystal center.

D. Far-field imaging at �=0

We present the experimental results obtained with the far-
field imaging scheme of Fig. 3�b� with zero defocus �s=0�,
where we expect to engineer two-photon states with zero
curvature phase �=0. We only vary the relative slit separa-
tion 2d / �2f2�d�, where 2f2�d is the diameter of the pump
beam in the double-slit plane. Figure 8 depicts the measured

visibilities V12, Vcon, and Vunc versus the relative slit separa-
tion. The horizontal error bars are determined by the 10%
uncertainty in the pump divergence. The vertical error bars
are based on the internal error and scan resolution of the
two-photon interference patterns. The theoretical curves for
V12 and Vcon are based on Eqs. �24�, �25�, and �18�. The
theoretical curve for Vunc is a plot of Eq. �34�.

We observe excellent agreement between theory and the
measured visibilities. For small slit separations we observe
that the two-photon visibility difference V12
0, meaning
that the moduli of the paths of the two photons are hardly
correlated. We also observe that these states are approxi-
mately nonentangled because Vcon
1. For larger slit separa-
tions V12 approaches 1, indicating that the concurrence

FIG. 6. �Color� Measured visibilities obtained with the crystal
imaging scheme of Fig. 3�a� at �z=0 for various reduced slit sepa-
rations 2d /M. The theoretical two-photon visibilities V12 and Vcon

are calculated via Eqs. �24� and �25� for the two-photon state with
engineering parameter p from Eq. �14�. The theoretical curve for the
unconditional one-photon visibility Vunc is calculated via Eq. �33�.
The uncertainty in the theoretical curves, indicated by finite curve
widths, originates from the uncertainty in the phase mismatch 
0

=0.33�0.05. No fit parameters are used for the theoretical curves.

FIG. 7. �Color online� Measured visibilities of engineered two-
photon states with zero curvature phase �=0. The two-photon states
on the left side are prepared with the crystal imaging scheme in Fig.
4�a� at �z=0. The two-photon states on the right are prepared with
the far-field imaging scheme in Fig. 4�b� at s=0. The annotated
measurements correspond to fringe patterns in Fig. 5. The exterior
of the circle is forbidden by the complementarity relation Vcon

2

+V12
2 �1. Figure 2 graphically indicates how Vcon and V12 relate to

the engineered two-photon state.

FIG. 8. �Color� Measured visibilities obtained with the far-field
imaging scheme of Fig. 3�b� at s=0 for various configurations of
the slit separation 2d relative to the Gaussian pump diameter in the
double-slit plane 2f2�p. The theoretical two-photon visibilities V12

and Vcon are calculated via Eqs. �24� and �25� for the two-photon
state with engineering parameter p from Eq. �18�. The expected
curve for the unconditional one-photon visibility Vunc is calculated
via Eq. �34�. No fit parameters are used for the theoretical curves.
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increases, and Vcon goes down. Furthermore, we observe that
the conditional and the unconditional one-photon visibilities
are different from each other. Interesting is the observation
that the curves for Vcon and Vunc cross each other. This cross-
ing has neither been predicted nor observed before. It is in
agreement with the duality relation of Eq. �36�.

Each engineered two-photon state can be depicted as a
point in a square with V12 and Vcon along the axes. This
representation is visualized in Fig. 7, where the points on the
right half plane correspond to our measurements from the
far-field imaging scheme. The measurements are in excellent
agreement with the complementarity relation V12

2 +Vcon
2 =1

that is predicted for two-photon states with zero curvature
phase �=0. Previously, an experimental demonstration of
complementarity was performed by Abouraddy et al. �13�,
albeit with less accuracy.

E. Crystal imaging at nonzero curvature phase

Two-photon states with nonzero curvature phase have
been engineered with the crystal imaging scheme in Fig. 3�a�
at nonzero defocus distance �z�0. A plane slightly behind
the crystal center is imaged onto the double slit. Due to the
propagation away from the crystal-center plane, the phase-
matching profile �z�z ;�z� has developed a certain wave-front
curvature. This wave-front curvature causes the curvature
phase � to become nonzero. The curvature phase is highly
relevant for the two-photon interference pattern behind the
double slit. The characterizing feature of two-photon states
with 0� ����� is that V12

2 +Vcon
2 �1, implying that these

states are located in the interior of the complementarity
circle. The curvature phase is also relevant for the degree of
entanglement.

Figure 9 shows the two-photon visibilities V12 and Vcon of
eight two-photon states that are engineered with the crystal
imaging scheme at increasing defocus distance �z. For this
series, we have used a reduced slit separation of 2d /M
= �44.5�1.3� �m and eight equidistant values of �z. We
observe that the two-photon state at �z
0 has approxi-
mately zero curvature phase, as this measurement lies on the
complementarity circle V12

2 +Vcon
2 =1. For increasing defocus,

we observe that the two-photon states obtain nonzero curva-
ture phases, as their two-photon visibilities lie in the interior
of the complementarity circle.

The theoretical curve, including its uncertainty region, is
calculated from the engineering parameter p given by Eq.
�14�. The visibilities V12 and Vcon are then derived via Eqs.
�24� and �25�. The wiggly nature of the theoretical curve in
Fig. 9 originates from the Fresnel-type integrals in the equa-
tion for p. We observe reasonable agreement between theory
and experiment. All the more so, a strong resemblance is
found when considering the relative orientation of two points
within any pair of successive measurement points. This re-
semblance is striking because these relative orientations are
quite erratic while the defocus distance �z is increased over
equidistant values.

The measurements in Fig. 9 are the first phase-sensitive
measurements of the two-photon field structure in an image
of a plane close to the crystal center, i.e., within the Rayleigh
range of the phase-matching profile �z�x ;z�.

F. Far-field imaging at nonzero curvature phase

Two-photon states with nonzero curvature phase have also
been engineered with the far-field imaging scheme in Fig.
3�b� at s�0. The phase front of the pump beam in the
double-slit plane is curved now because the pump waist is
located in front of the nonlinear crystal. The wave-front cur-
vature of the pump beam in the double-slit plane causes the
curvature phase � to become nonzero. States with nonzero
curvature phase have V12

2 +Vcon
2 �1 implying that such states

are located in the interior of the complementarity circle. The
curvature phase is relevant for the two-photon interference
pattern as well as the degree of entanglement.

Figure 10 shows the two-photon visibilities V12 and Vcon
of six two-photon states that are engineered with the far-field
imaging scheme with s�0. We observe that the two-photon
state behind the double slit has nonzero curvature phase as
the states lie inside the complementarity circle. We also dem-
onstrate that it is possible to reach the lower hemisphere of
the two-qubit Bloch sphere �Vcon�0 in Fig. 2� by altering
the pump beam. Two-photon states on the lower hemisphere
have never been prepared before.

VI. CONCLUSION

This paper demonstrates the engineering and characteriza-
tion of spatially entangled two-photon states behind a double
slit that is symmetrically illuminated with a pure two-photon
state. Engineering is achieved by tailoring the optical imag-
ing system in between the two-photon source and the double
slit. We have discussed a crystal imaging scheme where the
two-photon source itself is imaged onto the double slit. The
curvature phase � has also been discussed, and it is shown

FIG. 9. �Color online� Measured visibilities of two-photon states
engineered with the crystal imaging scheme of Fig. 3�a� at increas-
ing defocus �z. The series contains measurements at eight
equidistant displacements of the cylinder lens ranging from
�z=−�0.20�0.04� mm to �z= �3.30�0.04� mm at the annotated
measurement �c�. The theoretical curve is calculated via Eqs. �24�
and �25� with engineering parameter p from Eq. �14�. The points on
the theoretical curve �diamonds� relate to the measured points in the
indicated order. The uncertainty of the theoretical curve originates
from the phase mismatch �
0=0.33�0.05 and a �3% uncertainty
in the reduced slit separation 2d /M. The annotated measurement
corresponds to fringe pattern �c� in Fig. 5.
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that � is highly relevant for the two-photon interference pat-
tern as well as the degree of entanglement behind the double
slit. State characterization is achieved by performing mea-
surements of the complete two-photon interference pattern in
the far field of the double slit.

The presented analysis of two-photon state engineering is
complete for illumination systems within the following three
restrictions. First, we consider illumination schemes and
double slits that obey mirror symmetry around the optical
axis �see Sec. II A�. Second, we assume slits that are nar-
rower than the transverse coherence width of the illumina-
tion �see Sec. II B�. Third, the two-photon source is based on
any type of SPDC in a periodically poled crystal or type-I
SPDC in a uniform crystal provided that the transverse walk-
off of the pump beam is negligible with respect to its width
�see Sec. II C and Appendix�.

For a symmetric setup and narrow slits, the two-photon
state behind the double slit becomes a coherent superposition
of a paired state, where the photons emerge form the same
slit, and an antipaired state, where the photons appear from
opposite slits. The relative phase between both contributions
is the curvature phase �. The absolute balance between the
paired and antipaired components is described by state pa-
rameter �.

It is demonstrated how to engineer any two-photon state
in this form. The paired two-photon component dominates if
the crystal imaging scheme is used. The antipaired two-
photon component dominates if the far field of the source is
imaged onto the double slit. The precise balance between the
paired and antipaired components is controlled by tailoring
the magnification properties of these imaging systems. The
curvature phase � is fully controlled by utilizing the phase-
front curvatures of the pump profile Ep,z�x ;z� and phase-
matching profile �z�x ;z�. The phase-matching profile governs
the engineered two-photon state in the crystal imaging
scheme. The pump profile governs the engineered two-
photon state in the far-field imaging scheme.

We have shown that the two-photon interference pattern
in the far field of the double slit serves as a fingerprint of the

engineered two-photon state. The pattern directly yields the
one-photon visibility Vcon and the two-photon visibility dif-
ference V12. These visibilities conveniently relate to the po-
sition on the two-qubit Bloch sphere that we have presented
to graphically depict any engineered two-photon state. This
sphere is also highly convenient to read off the concurrence.

We have engineered and characterized more than 30 dif-
ferent two-photon states. Good agreement between measure-
ments and theory is observed. Two-photon states exhibiting
strong curvature phase, states with Vcon�0, and states with
−1�V12�0 have never been prepared before. Our experi-
ments with the crystal imaging scheme are phase-sensitive
measurements of the two-photon field structure in an image
of a plane close to the crystal center, i.e., within the Rayleigh
range of the phase-matching profile �z�x ;z�.

Using the crystal imaging scheme, we have presented
measurements of the unconditional one-photon visibility Vunc
in an image plane of the crystal center. In the far-field imag-
ing scheme, we have demonstrated the duality between Vcon
and Vunc for Gaussian pump profile that is loosely focused in
the crystal-center plane. The experimental results are in
agreement with theory.

VII. DISCUSSION: TUNING IN HIGH-DIMENSIONAL
HILBERT SPACE

In this paper, the tuning range of the engineered two-
photon states has been restricted to a two-dimensional Hil-
bert space spanned by two out of four maximally entangled
Bell states �see Eq. �4��. However, spatially entangled two-
photon states generated via SPDC allow for tuning in much
higher-dimensional Hilbert space. We will now discuss some
experimental tuning parameters that remained untouched in
this paper.

The entire four-dimensional Hilbert space of Eq. �3� be-
comes accessible if one allows asymmetric illumination
schemes with distinguishable photons. The coefficients c1
and c4 become uncoupled by allowing asymmetric illumina-
tion schemes. Such asymmetry could be achieved by apply-
ing an asymmetric pump profile or by moving the double slit
transversely to a noncentered position. The coefficients c2
and c3 become uncoupled if one uses distinguishable photons
in combination with an asymmetric illumination scheme.
Distinguishable spatially entangled photons can be produced
via type-II SPDC in a periodically poled crystal �7,24,27� or
by using two double-slit apertures positioned in the two out-
put ports of a beam splitter. An experiment where c2=−c3
has been demonstrated in Ref. �24� by placing birefringent
crystals in front of the double slit.

One can also turn to multidimensionally entangled two-
photon states by using multislit apertures �29–32�. To tune
between different multidimensionally entangled states, one
could use a variable pump profile based on a spatial light
modulator. Another interesting tuning parameter is the
temperature-dependent phase mismatch 
0 of the periodi-
cally poled crystal. The analysis in this paper may serve as
a good starting point to make the extension to quantum
state engineering of multidimensionally entangled two-
photon states.

FIG. 10. �Color online� Measured visibilities of two-photon
states engineered with the far-field imaging scheme of Fig. 3�b� at
pump beam defocus s�0. The annotated measurement corresponds
to fringe pattern �f� in Fig. 5.
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APPENDIX: VALIDITY OF VARIOUS
PHASE-MATCHING GEOMETRIES

The theoretical analysis in this paper is based on noncriti-
cal type-I phase matching �see Sec. II C�. In this Appendix,
however, we show that the analysis also applies to noncriti-
cal type-II as well as critical type-I phase matching. Noncriti-
cal phase matching is generally applied in quasi-phase-
matched processes, and critical phase matching is generally
applied in uniform crystals.

We will first give expressions for the two-photon field
profile in the crystal-center plane for various phase-matching
geometries. We consider a nonlinear crystal with two parallel
planar facets in transverse xy planes. For the critically phase-

matched cases treated below, the crystallographic optical axis
lies in the positive yz plane. Following Refs. �36� and �45�
we use a generic quasimonochromatic expression for the
two-photon field profile in the crystal-center plane.

Ãcrys�q1,q2� 
 Ẽp�q1 + q2�sinc� 1
2L�kz�q1,q2�� , �41�

where sinc�x��sin�x� /x, and the wave-vector mismatch

�kz�q1,q2� = kz�q1 + q2,	p,�p� − kz�q1,	0,�1�

− kz�q2,	0,�2� − �2��−1� , �42�

where kz�q ,	 ,�� is the z component of the wave vector of a
plane wave with transverse wave vector q, radial frequency
	, and polarization �. The fourth term between parentheses
does not apply to uniform crystals; it only applies to periodi-
cally poled crystals where � is the poling period. All other
symbols are defined in Sec. II C of the main text. Equation
�41� is valid for any type of phase matching as it is based on
a simple plane-wave expansion. The Taylor expansion of Eq.
�42� up to second-order becomes approximately

�kz�q1,q2� 
 C +
�q−�2

4n0	0/c
+ �0 for noncritical type I and type II

− ��q+�y for critical type I �e → oo�
+ 1

2��q+ − q−�y for critical type II �o → oe� ,
� �43�

where C is the wave-vector mismatch in the forward direc-
tion, q��q1�q2, n0 is the refractive index at the down-
converted frequency, and � is the walk-off angle for
extraordinary-polarized light ���0 if directed away from the
crystallographic optical axis�. We have omitted the relatively
small direction, frequency, and polarization dependencies of
the refractive index in all second-order terms. We have also
omitted the frequency dependence of the walk-off angle �.

In the noncritically phase-matched case, above equations
directly lead to Eqs. �8� and �9� describing the generated
two-photon field profile in the main text of this paper. We
therefore conclude that the analysis in this paper applies to
all noncritically phase-matched SPDC processes. For non-
critical type-II phase matching, one can easily add the polar-
ization dependence of the refractive to the phase-matching
profile in Eq. �9� of the main text by substituting n0 for
2n1n2 / �n1+n2�, where n1 and n2 are the refractive indices of
the two down-converted photons.

For critical type-I phase matching, a linear term appears
in the wave-vector mismatch in Eq. �43�. This linear term
can be neglected if the pump beam is sufficiently loosely
focused; loose focusing causes the momentum representation

Ẽp�q+� to become compact such that it over-rules the much
broader q+ dependence of �kz in Eq. �41�. This criterion is

met if the walk-off term 1
2L��q+�y in the argument of the sinc

function is much smaller than a radian at a typical value of
�q+�y =2 /wp, where wp is the width of the Gaussian pump
beam in real space and 2 /wp is the width of the pump beam
in transverse momentum space. The loose-focusing criterion
thus becomes L��wp for critical type-I phase matching,
simply stating that the transverse walk-off distance L� must
be much smaller than the pump beam width. In Sec. II C, we
have already assumed loose focusing �Rayleigh range
pump�crystal length� in order to obtain simple expressions
for the engineering parameters in Eqs. �14� and �18�. The
loose-focusing criterion L��wp for critical type-I phase
matching is generally stronger.

For critical type-II phase matching, the linear term cannot
be screened by loose focusing. It is immediately clear from
Eq. �43� that the linear term in �q−�y affects Eq. �41� even if

the momentum representation Ẽp�q+� is very compact. It is
therefore generally not correct to use Eqs. �8� and �9� for
critical type-II SPDC. Note, however, that even in this criti-
cal type-II case, our engineering description remains valid if
the slits are oriented in the y direction; the linear walk-off
term �q−�y becomes irrelevant if the transverse walk-off is
directed along the orientation of the slits.
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