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Crossover from weak localization to weak antilocalization in a disordered microbridge

M. G. A. Crawford and P. W. Brouwer
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501

C. W. J. Beenakker
Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands

(Received 18 September 2002; published 17 March 2003

We calculate the weak localization correction in the double crossover to broken time-reversal and spin-
rotational symmetry for a disordered microbridge or a short disordered wire using a scattering-matrix approach.
Whereas the correction has universal limiting values in the three basic symmetry classes, the functional form
of the magnetoconductance is affected by eventual nonhomogeneities in the microbridge.
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Interference of time-reversed paths causes a small negéation between the three symmetry classgis, to find an
tive quantum correction to the conductance of a disordereéxplicit expression fobG for L<L,, and(iii) to extend the
metal termed the weak localizatidn? This correction is theory for the crossover regime to the case of honhomoge-
suppressed by a time-reversal symmetry breaking magnetiteous wires, for which the electron density, impurity concen-
field, whereas in the presence of strong spin-orbit scatteringration, or cross section varies along the sample. In this case,
the sign of the correction is reverseth that case, the inter- both the crossover scale and the functional forné@fin the
ference correction is known as weak antilocalization. crossover are affected by nonhomogeneities. The fact that the

In a wire geometry at zero temperature, the weak localerossover scale, characterized by the spin-orbit lehggh
ization correction takes a particularly simple and universalnd the magnetic length,, is nonuniversal is well known,

form® both for homogeneous and for nonhomogeneous micro-
bridges!® Our finding that the functional form of the cross-
2e%(B—2) over is affected by the nonhomogeneity is markedly different
6G= W (1) from crossovers between the three basic symmetry classes in

quantum dots, where the functional forms are universal and
where the symmetry paramet@ denotes the appropriate given by random-matrix theofy.For homogeneous wires,
symmetry class: In the presence of an applied magnetic fieldG is a universal function of/lso andL/ly .
B=2 and without a magnetic fiel@=4 or 1 with or without The main assumption underlying our calculations is that
strong spin-orbit scattering, respectively. Equatidh was the wire widthW<L, i.e., quasi-one-dimensionality. We also
obtained using random-matrix thedry, and diagrammatic assume that the wire is well in the diffusive regime,
perturbation theor§:® and is valid if the length. of the wire ~ <L,lgo,l<¢, wherel is the elastic mean free path, and, for
is much smaller than the localization lengthand the a nonhomogeneous microbridge, that the number of propa-
dephasing length. ,, but much larger than the mean free gating channels at the Fermi lewdlhas only one minimum
path |. The validity of Eq. (1) extends to the case when along the wire(excluding the possibility of a “cavity). We
sample parameters are nonhomogeneous, e.g., for wires fifst discuss our calculations for homogeneous wires; the
varying cross section, mean free path, or electron detfsity. case of nonhomogeneous samples is discussed at the end of

For wires with weak spin-orbit scattering, a crossover bethis paper.
tween weak localization and weak antilocalization takes Starting point of our calculation is a random-matrix model
place when the spin-orbit scattering lengghbecomes com-  similar to that used by DorokhdV.A disordered wire witriN
parable toL or L, (whichever is smallgr Experimentally, propagating channels at the Fermi level is modeledN\oy
this crossover regime has been well studied in wires witrone-dimensional channels and periodically inserted scatterers
length L>L .~ In this regime, weakiantjlocalization  that scatter within and between the channels. The electronic
takes the form of a small correction to the conductivity of thewavefunction is represented by aNzZzomponent vector of
wire, rather than of a correction to the conductance. Theospinors. The Rl components of the wavefunction refer to the
retically, the weak localization to weak antilocalization transverse channel and to the left/right mover index. Linear-
crossover in the regime>L 4 has been considered in Refs. izing the kinetic energy in each of the channels, the Hamil-
14-16 using diagrammatic perturbation theory. The oppositéonianH takes the form of a differential operator with respect
regimeL <L ,, where the universal correctigf) to the con-  to the coordinatex along the wire and a I2-dimensional
ductanceG can be observed, would be relevant for relatively quaternion matrix with respect to the channel and left/right
short high-purity metal wire&’ or disordered microbridges. mover indices and spinor degree of freedom
The goal of this paper is threefoldi) to generalize the

random-matrix methods for quantum wires to the crossover p
between weak localization and weak antilocalization, thus - 7 Sy
extending the equivalence of the two methods to the interpo- H 170® 75 I X - E,: Violx—ia), @
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with o the 2<2 unit matrix for the spinor degree of free- In Eq. (7), u? andx; are random HermitialN x N matrices,
dom, 75 the Pauli matrix in left-mover/right-mover grading, uf, x=1,2,3, is a random anti-Hermitian matriug is a
HN the NX N unit matrix in the channel grading{j a Her- random Symmetric matrix, an_at", M:11213 and(b are ran-
mitian 2N X 2N quaternion matrix representing thith scat-  dom antisymmetric matrices. All of these random matrices
terer along the wire, and the distance between scatterers. Ahave independent and Gaussian distributions with zero mean
quaternion is a 82 matrix acting in the spinor grading with  and unit variance.(Variances are specified for the off-
special rules for transposition and complex conjugatfon: giagonal elements: diagonal elements have double variance
The “dual” X® of a quaternion matrix iX"=o0,X"0p; the  for symmetric matrices and are zero for antisymmetric ma-
quaternion complex conjugate is definedXds=(X")". We  trices) The parametera,, anda; describe the strength of the
have chosen units such that the Fermi velocity is one. Ayreaking of spin-rotational symmetry. The parametgysind
model similar to Eq(2) has been used in Ref. 21 to study ;. describe the strength of the breaking of time-reversal
weak localization in unconventional superconducting WireS-symmetry. Finally,l; is the elastic mean free path for for-
The ensemble-averaged conductag@ of the wire is  ward scattering antlis the transport mean free path.

given by the Landauer formula To find the conductance of the wire we calculate the
5 change ofy if one scatterer is added to the wire. To this end,
<G>:e_g, g=(tr(1—-r'r)), (3 Wwe expand the scattering mati$( of Eq. (4) in powers of
h V;, use the composition rul), and calculate the Gaussian

average over the potentid;. In the limit a<l of weak

wherer is theN X N quaternion reflection matrix of the wire. . '
disorder we thus find

To calculater, we start from a wire of zero length and add
slices of lengtha at the wire’s ends. The scattering matrix of

. . J
the jth scatterer is —2N|a—Lg=gz—h0+ 3h,. (8)
= bor)_2i-V, (4y We abbreviated
ey )2y

ho=(tr (1—rTr)(1—r*rR)), (9a)

Hence, if a scatterer is added at the lead end of the wire, the

new reflection matrix of the wire is calculated according to 1 8

the composition rule h1=§ 21 (tr(l—rTr)au(l—r*rR)aﬂ), (9b)
=

(=11 M. . o e .
r=ri+tr(l-rir) . ) and omitted terms that vanish in the diffusive regithe

(A similar composition rule, involving both transmission and <L.!so.!n<<NI. The subscripts 0 and 1 refer to singlet and

reflection matrices of the disordered wire, applies if a scatiriplet contributions, respectively. _
terer is added at the far end of the whje. To leading order i\, Eq. (8) can be solved without the

In left-mover/right-mover grading, the potenti] is pa-  interference correctionis, andhy, with the result
rametrized as

_ 2Nl +0(1) (10
UL ULR 9= L '
V= , (6)
URL URR corresponding to the Drude law for the conductance. The

O(1) correction in Eq(10) gives the weak localization cor-
rection 6g, which we now compute.

To find the weak localization correction, we need to cal-
culatehy and h;. Proceeding as before, we find that the
dependence oh,,, m=0,1 is governed by the evolution
equation

wherev, |, v r, UrL, andvgrg areNX N quaternion matri-
ces

ULL(afanf):U;{R(af )
a
_‘/If_N

3
+iaf2 U#@O’M
n=1

(U + 7x) @ o

2N|I= L

dhm (ZNI ) 8N?2|2
_2 _ m m -
(7a) (11)

+ where we abbreviated
vir(@p, ) =vR (@p, 17p)

B a
~ VI(N+1)

3
+iab21 up®o,
=

ko=(tr(1—r*r)), k=

3
;::1 (tr(l—r*crﬂraﬂ)}
(12

w| =

0
(Up+ 7pXp) ® a9

_ (7b) Evolution equations fok, andk, are obtained similarly and
read
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ko [ 2NI\?
el (133
2
ok, [ 2NI
= o —KZ, (13b)
H

where the length scalég andl/, are defined in terms of the
parameters of the random-matrix modeé),

IG2=2(1"292+17 4 1y?), (14a
I2=6(1"2ak+17 M a?), (14b)
r\N—2 -2 4 -2
()~ =14 +§ISO. (1490
Equations(11) and(13) have the solution

k —2N| t - 15
0= co anhI—H, (15a

2NI Iy L L
ho=——/ 1+ —cotanh— —cotanf—|.  (15b

L L Iy Iy

Expressions fok,; andh; are obtained from Eq.15) after
the substitution ,—1{,. Substitution ofhy andh, into Eq.
(8) then allows for the calculation of the weak-localization
correction to the conductance

|

2

Iy L 15 1?2
rcotanq—H—E—S

L2

!
1

L

L
69 cotanhl—, -
H

(16)
At zero magnetic field, Eq.16) simplifies to
1 912, 3lsn3 2L
g=5+——--— cotanh——. 1

Equation(17) reproduces the limit$G = —2e?/3h with-
out spin-orbit scattering andG=e?/3h with strong spin-
orbit scattering. Without spin-orbit scattering, Efj6) agrees
with the weak localization correction calculated in Ref. 22.
For large magnetic fieldd,>1,,, Eq. (16) simplifies to

—1/2

ly—3| 152+ 5158 , (18)

3

1
5g=E
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FIG. 1. The weak localization correctiofig plotted (a) as a
function of the magnetic field strengtbharacterized by the dimen-
sionless ratidglL) for fixed value of the spin-orbit scattering rate
(characterized bygcl,L). From bottom to top, the curves correspond
toL/lgp=0.1, 2, 4, 6, 10, 30, ane. (b) as a function of length.
for fixed I,]llso. From bottom to top, the curves correspond to
lh'so=2, 0.3,0.2, 0.1, and 0.

12 =3(h/WBe?. (19)
The case of a cylindrical wire of radiu®>| and magnetic
field perpendicular to the wire is obtained by the substitution
W?—3R?/2. Forl>W (or |>R) the crossover length, has
a more complicatettdependent expressiéh.

Figure Xa) showsdg as a function of the magnetic field
for several values of the spin-orbit coupling. In Figbjlwe
show &g as a function oflgiL for several values of the
magnetic field.

We now turn to a description of the weak localization
correction in a nonhomogeneous microbridge. Examples of
nonhomogeneous microbridges with varying widths are
shown in the inset of Fig. 2. If the wire cross section or the
electron density vary with the coordinatealong the wire,
the number of propagating channels at the Fermi Idlvalso
varies withx. We assume thai(x) has a minimum forx
=0 and thatdN/dx>0 (dN/dx<0) for all x>0 (x<0).
Further, x dependence of the impurity concentration, the

0.4
"0'80 5 10 15 20
lH,effL

FIG. 2. The weak localization correctiafy as a function of the
magnetic field strength for three different shapes of a disordered
microbridge(channels in a two-dimensional electron gdse three
different shapes are characterized $x) =1, s(x)=1+4|2x/L|

which has the same functional form as the weak localizationyngg(x) =1+ 4(2x/L)2, —L/2<x<L/2, see Eq(21), as shown in

obtained using diagrammatic perturbation thedr}®23
Comparison of Eq(18) and Refs. 14-16,23 allows us to
identify | 5o as the spin-orbit length, and, for a chanfwith

width W>1) in a two-dimensional electron gas in a perpen-

dicular magnetic field,

the inset. The three groups of curves correspond to strong, interme-
diate, and weak spin-orbit scattering from top to bottom, Within

the intermediate case chosen for each case to render the same cor-
rection ad ,jlﬂo. The magnetic field strength is measured in terms

of the effective magnetic lengthy, ¢, see Eq(23).
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smoothness of the boundary, the shape of the cross sectigfecause of the dependence of the length scalEandlso,

etc., causes ax dependence of the length scalesl,,  sg acquires an explicit dependence on the shape of the dis-

andlso. ordered microbridge or the nonhomogeneity of the mean free
The reflection matrix of the wire is constructed by build- path or the electron density in the crossover region between

ing the wire from thin slices, starting at the narrowest pointthe symmetry classes. For a large magnetic fidlg*l(

x=0. This way, the number of channels in the slices added. 1) ~the weak-localization correction can be found in
to both ends of the wire can increase, but not decrease. F@{osed form

the construction of an evolution equation for the conductance

g and for the auxiliary function$y, hy, ko, andk;, we 1

distinguish between two types of added slices: A thin slice 69= =y efi— 31} ef)
that contains a scattering site but for which the number of L ’
channels remains constant, and a thin slice without scatterer

in which N increases by unity. Addition of a slice of the 11 Iu(x)dx 10 14(x)dx
former type causes a small change in the reflection matrix IH,eﬁ::J — Q’eﬁzzj > (23
which is the same as for a quantum wire of constant thick- L) s(x) L) s(x)

ness, see Eq(5) above. Addition of a slice for whictN — Equation(23) simplifies to Eq.(18) in the case of(x) con-
increases by unity does not cause a change of the condugtant. The same result follows if E¢L8) is interpreted as a
tanceg or of the auxiliary function$ly, hy, ko, orky, ascan  quantum interference correction to the one-dimensional re-

seen by inspecting the cases 0 andx<0 separately: For  sistivity andl,, is takenx dependent. For weaker magnetic
x>0, an increase o does not cause additional reflection, fig|ds with I;1L of order unity, a numerical solution of the

and hence does not affect the reflection matrifor x<0,  eyolution equations is required.
an increment ofN changes the dimension of the reflection |, Fig. 2, we show results of a numerical solution ag

matrixr by 1, for the exampless(x) constant,s(x)=1+4|2x/L| and
s(x)=1+4(2x/L)?, —L/2<x<L/2. These functional

r 0 forms correspond to diffusive microbridges in a two-

r— 0o 1)’ (20 dimensional electron gas of the form shown in the inset of

Fig. 2 with uniform impurity concentration and mean free
but does not change the conductageer the functionshg,  path|<W. The three sets of curves in the figure represent
hy, ko, or ky. Combining the two types of slices, we con- strong, intermediate and weak spin-orbit scattering, respec-
clude that the only effect of the dependence ol andl is tively. For the intermediate cagmiddle set of curves in Fig.
indirect, through the explicit appearanceMfindl| in statis-  2), three different values ofso were chosen so that the
tics of the scattering matrix of the added slice, see(Eq.In  weak-localization correctionsg=0 is equal in the three
the diffusive regimeN(x) andl(x) only appear in the com- cases for zero magnetic field. The magnetic field is charac-
bination terized by the raticb,]yleﬁL, see Eq(23), in order to remove a

spurious shape dependence for the large-field asymptotes.

s(x)=N(x)I(x)/Nglg, (21)  While there is no dependence on the form of the function
s(x) in the limiting cases of zero and large magnetic fields,
we observe that, indeedg depends on the precise form of
. . . . the nonhomogeneity for intermediate magnetic field
considered continuous, and the evolution equations becomsefrengths, although, with proper scaling, the difference be-

differential equations Wh'Ch. now mclugle explicit referencetween the results for the three cases we considered is less
to the functions(x). If the wire lengthL is replaced by the than 10%

where Ny and |, are number of propagating channels and
mean free path at=0. For largeN the functions(x) may be

effective lengthL, In conclusion, we have shown that the scattering matrix
approach to quasi-one-dimensional weak localization can be

_ dx used to obtain a detailed description of the crossover be-

L= J )’ (22 tween the different universality classes. We have recovered

some results known from diagrammatic perturbation theory,
the evolution equations fag, hg, hy, Ko, andk; keep the  and have discovered one aspect of the problem that has not
same form as for homogeneous wires, provided we make thgeen noticed previously: The dependence of the functional
substitutionsN—Ng, L—L, I—lg, Ig—lg=I14/s(x), and  form of the crossover on nonhomogeneities in the conductor.

lso—1so=Iso/s(X). o o We thank V. Ambegaokar, N. W. Ashcroft, and D. Davi-

The functional form of the leading-iN- contribution to  govic for discussions. This work was supported by the NSF
the conductance remains unchang@d; (€/h)(2Nglo/L). under Grant Nos. DMR 0086509 and DMR 9988576, by the
Also, for the limiting cases of no spin-orbit scattering andPackard Foundation, by the Natural Sciences and Engineer-
strong spin-orbit scattering, the weak localization correctioring Research Council of Canada, and by the Dutch Science
5G is still given by the universal result E¢L).1° However, Foundation NWO/FOM.
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