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We report on an experimental observation of optical wave chaos in a resonator consisting of three
standard, high-reflectivity mirrors. The nonseparability of the wave equation necessary for chaos is in-
troduced by violating the paraxial approximation. Until recently progress in optical wave chaos was
hampered by the inherent difficulty in realizing suitable microscopic systems; now this novel, macro-
scopic approach offers complete and easy control and allows unprecedented study of optical wave chaos.
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Optical wave chaos is a topical field with highlights such
as localization of light and random laser action [1–8].
The material systems used so far are microscopic in na-
ture; these systems either have disorder present in the bulk
(powders [2,5] and suspensions [1,4]) or they show chaotic
behavior due to the nonseparability of the boundary condi-
tions (oval-shaped dielectric microresonators [7,8]). These
microscopic systems are generally difficult to fabricate and
reproduce and this has limited the experimental progress
in this field.

In contrast, wave-chaos experiments in the microwave
domain allow much better control; for instance, the use of
closed, stadium-type microwave resonators has led to spec-
tacular progress [9]. Extension of this degree of control
into the optical domain would be fundamentally important
since optical waves may display quantum aspects (sponta-
neous emission and lasing), contrary to microwaves.

In this Letter, we propose and demonstrate an optical
system that allows easy fabrication and superb control.
We have observed optical wave chaos in a macroscopic,
geometrically stable open resonator, formed by three stan-
dard high-reflectivity mirrors, where nonseparability of the
wave equation is realized by violating the paraxial approxi-
mation (Fig. 1). In historical perspective, we employ the
key idea to construct a laser, as introduced by Schawlow
and Townes [10], namely, the use of an open instead of a
closed resonator, but now in the context of wave chaos.

The violation of paraxiality destroys the separability of
the intracavity light field into the usual longitudinal and
transverse Hermite-Gaussian modes. In lowest order, non-
paraxiality can be parametrized in terms of the five Seidel
aberrations which can be found in any standard optics text-
book [11]: coma, astigmatism, spherical aberration, field
curvature, and distortion. Because of these aberrations the
mode indices labeling the Hermite-Gaussian modes lose
their meaning, especially for higher order modes. In such
a case we can no longer find a complete set of good quan-
tum numbers (or constants of motion). Depending on the
symmetry of the aberrations and their relative orientations,
one or both transverse mode indices are invalidated.

To achieve the required amount of nonparaxiality in a
two-mirror cavity, its numerical aperture (NA) must be-
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come inconveniently large. Instead, we use a three-mirror
folded linear cavity, formed by two high-reflectivity end
mirrors, which can be either flat or curved, and a high-
reflectivity curved folding mirror (see Fig. 1). This curved
folding mirror introduces very large aberrations [11], al-
lowing us to realize an effectively strong nonparaxiality,
and thereby nonseparability, with only a very modest NA,
so that standard high-reflectivity mirrors can be used. The
question whether this is sufficient to realize chaotic dy-
namics seems very difficult to answer theoretically, since
calculations of very-high-order transverse modes in non-
paraxial 3D open resonators are not yet within reach (con-
trary to the case of closed resonators). Therefore, we have
addressed this question with experiments.

The most striking effects of wave chaos can be found in
the spectral properties of chaotic systems. As a diagnos-
tic tool, the nearest-neighbor level spacing statistics has
received the most attention, as this will show strong level
repulsion for chaotic systems, contrary to the regular case.
For this method, and related techniques, it is essential that
every eigenfrequency in an interval can be resolved, since
missing, or spurious, peaks will quickly obscure the re-
sults. As we explain below, the eigenfrequency spectra for
our system show many overlapping peaks, making it im-
possible to extract every eigenfrequency. As a result, direct
spectral statistics are not feasible.

FIG. 1. Experimental setup. HeNe: helium-neon laser beam,
D: diffusor, M1,M2: resonator end mirrors, MF: folding mirror,
L: lens, and PM: photomultiplier. The figure shows the aberrated
resonator, which has a concave folding mirror MF. The use of
a flat folding mirror leads to a nonaberrated resonator.
© 2002 The American Physical Society 064101-1
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Fortunately, a diagnostic method dealing with such
“dirty,” potentially chaotic, spectra has been developed
in the context of highly excited molecules [12,13]. We
follow in particular the treatment of Wilkie and Brumer
[14], which is in effect a time-domain approach. The key
quantity is the wave packet survival probability function
P�t�, which describes the survival probability after a
mixing time t of an initial wave packet. P�t� can either be
found from the normalized wave function c�t� or can be
determined from the Fourier transform of the normalized
eigenfrequency spectrum S�v�,

P�t� � j�c�0� jc�t��j2 �

Ç Z
S�v�e2ivt dv

Ç2
,

P�0� � 1 .
(1)

Note that P�t� is the Fourier transform of the spectral au-
tocorrelation function. Methods using P�t� do not require
peak finding and are, therefore, in the case of imperfect
spectra with missing, spurious, or overlapping peaks, su-
perior to frequency domain methods [12].

After performing a double averaging, over both the ini-
tial conditions and different realizations of the system, we
obtain ����P�t�����. Through Fourier relations, short-range
spectral correlations, such as the nearest-neighbor distribu-
tion, affect the long time limit of ����P�t�����, while the short
time limit of ����P�t����� is determined by long-range spec-
tral correlations, e.g., the variance of the number of lines
in a long interval [9]. This short time limit is expected
to contain the useful information when dealing with lim-
ited spectral resolution in experiments. Wilkie and Brumer
[14] have shown theoretically that for a regular system
����P�t����� $ ����P�`����� for all t $ 0, while for a chaotic sys-
tem ����P�t����� , ����P�`����� for at least some values of t. In
other words, ����P�t����� must fall below its long time asymp-
tote in the case of chaotic dynamics, while it cannot do so
in the case of regular dynamics. Hence, this time-domain
method allows an unambiguous identification of the nature
of the dynamics. In essence, the lack of instrumental reso-
lution, which makes direct extraction of spectral statistics
from a single spectrum impossible, is compensated for by
averaging over an ensemble of many realizations.

This method applies equally to closed and open Ham-
iltonian systems; in the latter case one must take out the
trivial decay factor in ����P�t�����, caused by the dissipation,
leading to ����P�t�����0 instead of ����P�t�����. One then finds as
asymptotic behavior ����P�`�����0 � 2��N 1 1�, where N is
the number of lines in the spectral interval under consid-
eration. When applied to an optical resonator, S�v� is the
intensity transmission spectrum, c�t� is a short-hand no-
tation for the spatiotemporal field pattern in the resonator,
and N is the number of excited transverse modes.

Our resonator consisted of three high-reflectivity con-
cave mirrors with a diameter of 25 mm and a radius of
curvature of 1 m (Fig. 1). The half folding angle of the
resonator was chosen as a � 45±. The length of the arms
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was �10 cm and �19 cm; this yields roughly NA � 0.04.
These values correspond to the paraxially stable regime of
the folded resonator. A total length L � 29 cm leads to
a free spectral range (FSR) nFSR � t21

round-trip � c�2L �
0.5 GHz, where tround-trip is the cavity round-trip time.

We determine the eigenfrequency spectrum of the reso-
nator by injecting a monochromatic HeNe laser beam �l �
633 nm� and by measuring the transmitted intensity while
scanning the cavity length L over a few wavelengths. Be-
fore entering the cavity, the HeNe beam (with a diameter
of �0.8 mm) passes through a weak diffusor; this diffusor
produces a speckled input field and thus allows an appre-
ciable spatial overlap with a large number of transverse
modes. The number of excited modes, N , can be adjusted
by varying the distance between the diffusor and the cav-
ity and by choosing a diffusor with a different scattering
strength. We may estimate the number of excited modes
from the typical radius a of the light spot on the mirrors,
N � a4�l2L2 � 104 [15].

A key parameter is the finesse F of the resonator, de-
fined as nFSR�Dn, where Dn is the width of an indi-
vidual mode. If we remove the diffusor and paraxially
inject a laser beam into the resonator, thereby exciting
only a few, low-order, transverse modes, we obtain F �
1.8 3 103 �Q � n�Dn � 1.6 3 109� . This value is con-
sistent with the independently measured reflectivities of the
three mirrors. Since N . F the transmission spectrum
will be largely “filled” due to the overlap of peaks, so that
peak-finding methods cannot be used.

Experimentally, this filling is illustrated by the transmis-
sion spectrum shown in Fig. 2a. An important observation
is that all peaks that, through chance, can be individually
analyzed, keep their Lorentzian shape, and show the same
finesse as for a resonator in which only a few modes are
excited. This indicates that, in the presence of aberrations,

FIG. 2. Transmission spectra, normalized to the transmission
averaged over one free spectral range, for (a) an aberrated reso-
nator, using a concave folding mirror (chaotic dynamics), and
(b) a nonaberrated resonator, using a flat folding mirror (regular
dynamics).
064101-2
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the mode manifold of the (paraxially stable) resonator re-
mains largely decoupled from the free space modes.

The required averaging over initial conditions can be
achieved by averaging transmission spectra of the reso-
nator for various transverse positions of the diffusor. Av-
eraging over different realizations of the system is obtained
by varying the length of one of the arms of the resonator
over a relatively large range DL, typically �1 mm (i.e.,
much larger than the wavelength of the HeNe light). This
interval is sufficiently large to yield many different intra-
cavity field realizations since it corresponds to a change of
the Fresnel number NF � a2�lL by an amount of order
unity [16].

We have chosen ten transverse positions of the diffusor,
combined with 40 resonator arm lengths, yielding a total
of 400 transmission spectra. After normalizing with re-
spect to the area under the spectrum and calculating the
squared modulus of the Fourier transform, all results were
averaged. In Fig. 3, we have plotted as the black curve the
thus obtained ����P�t�����0, i.e., ����P�t����� corrected for the finite
cavity finesse, using the independently obtained value for
F . For small t�tround-trip, we observe a well-developed dip
where ����P�t�����0 , ����P�`�����0; this convincingly proves the
chaotic nature of the dynamics in our aberrated resonator.

Chaotic spectra as shown in Fig. 2a could be obtained
only around certain settings of the arm lengths of the reso-
nator. Other settings led to quasiperiodic spectra. This
is quantified by Fig. 4, where we plot the magnitude of
the principal-frequency Fourier component as a function
of the cavity length offset. We have preliminary evidence
that these quasiperiodic spectra are associated with scars
[17]; this will be reported in a future publication. In
the present Letter we restrict ourselves to cavity lengths
where these quasiperiodic spectra do not obscure chaotic-
ity. Around these lengths there are sufficiently large inter-
vals ��1 mm� to allow the many realizations that we need
for our diagnostics. We have checked that “nonquasiperi-
odic” intervals other than the one indicated in Fig. 4 yield
results similar to the black curve in Fig. 3.

FIG. 3. Wave packet survival probability function, averaged
over initial conditions and an ensemble of realizations, corrected
for the finite finesse. Black curve: aberrated resonator (chaotic
dynamics). Grey curve: nonaberrated resonator (regular dynam-
ics). Dashed line: long time asymptote.
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The shape and depth of the dip in the ����P�t�����0 curve
are roughly as observed for the nuclear data ensemble
(NDE), where fully developed chaos has been indepen-
dently established [18]; this suggests that also in our
system the chaos is reasonably well developed. Further-
more, we see that, for t�tround-trip . 800, ����P�t�����0 reaches
its asymptotic value of 2��N 1 1� � 1.6 3 1024, from
which we deduce N � 1.25 3 104. This value agrees with
our rough a priori estimate.

Our results are even more convincing when we contrast
them with ����P�t�����0 obtained from 600 transmission spec-
tra of a comparable regular resonator. For this, we have
replaced the curved folding mirror with a planar one, again
with high reflectivity. Since it is well known that a planar
mirror does not induce aberrations, this turns the cavity
into a trivially folded, effectively two-mirror resonator. In
Figs. 2a and 2b we compare the transmission spectra for
the two cases. Both spectra are “grassy,” but very differ-
ent, as are the ����P�t�����0 curves plotted in Fig. 3. For the
effective two-mirror resonator we observe that, within the
experimental uncertainty, ����P�t�����0 . ����P�`�����0 for all t,
thus confirming the regular nature of the dynamics. Fur-
thermore, the largest deviation between ����P�t�����0 obtained
for an aberrated and a nonaberrated resonator occurs for
small t, as expected.

It is gratifying to see that the nonparaxiality due to the
curved folding mirror is strong enough to produce chaos.
It would be very interesting to see how the strength of
this chaos depends on the cavity configuration. For in-
stance, we may study the onset of chaos as we increase
the amount of nonseparability from zero; this can be done
continuously, by varying either the NA or the folding angle
a, or both. Also, it seems possible to increase the number
of modes to 106 (in the setup of Fig. 1 this corresponds
to NA � 0.12) or more, exceeding what can be achieved
in microwave billiards [9]. Furthermore, we expect that

FIG. 4. Magnitude of the principal-frequency Fourier compo-
nent of the spectrum of the aberrated resonator of Fig. 1. This
magnitude is plotted as a function of the length offset of the
variable arm of the cavity. The curve is meant to guide the eye;
its shape is, as yet, unexplained. Note that the vertical scale is
logarithmic. Indicated is the 1-mm interval with relatively weak
quasiperiodicity which has been used to obtain the black curve
of Fig. 3.
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a nonplanar standing wave or ring resonator, again with
curved folding mirrors, will produce even stronger chaos
due to its lower symmetry.

The perfect spatial, temporal, and polarization control
offered by a standard optical resonator offers exciting per-
spectives for study of optical phenomena based on wave
chaos. A prime example is localization of light, a field
where many open questions remain [3,19]. Weak local-
ization or coherent backscattering [1] can be studied by
measuring the angle-resolved backscatter of the injected
HeNe beam from the resonator. We expect that a phase
transition to strong (or Anderson) localization [2] may oc-
cur as soon as the global disorder due to the Seidel aber-
rations has sufficient strength. Strong localization would
imply that a wide light beam, injected into the resonator,
splits up, due to destructive interference of transverse ray
components, into a number of diffraction limited filaments
with transverse extents of �l�NA. This can be studied
both spatially, using a CCD camera to record the intensity
pattern on one of the mirrors, and spectrally, through the
disappearance of level repulsion.

All this can be easily carried over from passive to active
systems, since it is simple to insert a gain medium into our
resonator. We may thus, for instance, build a (continuously
pumped) random laser; this will enable a detailed study of
the intriguing nature of threshold transition and quantum
noise that have been predicted for random lasers [4,20].
Breaking time-reversal symmetry is expected to drastically
affect the properties of a random laser [21]; this, too, can
easily be achieved, namely, by inserting a Faraday polar-
ization rotator in a nonparaxial ring resonator.

In conclusion, we have realized optical wave chaos
in an open resonator consisting of three standard, high-
reflectivity mirrors. The presence or absence of chaotic
behavior is determined only by the geometry of the reso-
nator: using a curved folding mirror, which introduces
strong aberrations, leads to chaotic dynamics, while a flat
folding mirror, which does not introduce aberrations, leads
to regular dynamics. The deepest reason for this is that
geometrical optics is essentially nonlinear as soon as one
goes beyond the paraxial approximation [22].

This work was supported by the “Stichting voor Funda-
menteel Onderzoek der Materie” (FOM).
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