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As is well known, the extrusion rate of polymers from a cylindrical tube or slit (a ‘‘die’’) is in practice
limited by the appearance of ‘‘melt fracture’’ instabilities which give rise to unwanted distortions or
even fracture of the extrudate. We present the results of a weakly nonlinear analysis which gives
evidence for an intrinsic generic route to melt fracture via a weakly nonlinear subcritical instability of
viscoelastic Poiseuille flow. This instability and the onset of associated melt fracture phenomena appear
at a well-defined ratio of the elastic stresses to viscous stresses of the polymer solution.
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FIG. 1. Illustration of the surface irregularities that occur in
the extrusion of a polymer fluid from a capillary tube (the
wider structure at the top) in the absence of sharkskin or spurt-
flow instabilities. For small speeds, the surface is smooth (a),
but beyond some flow speed surface irregularities develop
tic fluids is linearly stable. The absence of a clear linear
instability explains the focus on other mechanisms, such

(b),(c). The wavelength is of the order of twice the diameter
d of the capillary. After [1].
If a polymeric fiber is produced by extruding it from a
so-called die, a cylindrical tube or planar slit, the surface
often exhibits undulations or irregularities at higher flow
rates; see Fig. 1. For increasing flow rates the undulations
become progressively stronger, so much so that they can
eventually cause the extrudate to break, hence the name
melt fracture. A detailed understanding of this phenome-
non has remained elusive for over 30 years.

Depending on the geometry and type of polymer, vari-
ous types of phenomena seem to occur [2–4]. The short
wavelength deformations of the interface often referred
to as ‘‘sharkskin’’ instability appear to originate at the
outlet: the extrudate quasiperiodically sticks to the outlet,
widens, snaps loose, and narrows. In the ‘‘spurt-flow’’
regime, the extrudate shows intermittent bands of smooth
and irregular surfaces; there is good evidence that this
has to do with a stick-slip phenomenon at the wall of the
die. In spite of the multitude of possibilities, there is every
reason to believe that when these instabilities are absent,
as in the experiments of Fig. 1, polymer flow still exhibits
some elusive generic bulk flow instability: According to
the engineering literature [4], a qualitative change in the
flow behavior appears to occur at a more or less constant
ratio of the normal stress difference of the melt over the
shear stress for almost any polymer. Isolating this intrin-
sic mechanism is the main purpose of this Letter.
Our contribution also opens up new avenues for a more
general understanding of the rich variety of complex fluid
flow instabilities, such as polymer turbulence [5] or the
fact that complex fluids such as granular media are
prone to shear banding in standard shear configurations.

The first linear stability analysis of the flow in the die
of a viscoelastic fluid described by the so-called Oldroyd-
B constitutive equations [6], performed some 25 years ago
[7], showed that the flow was stable. Since then it is has
been generally accepted that Poiseuille flow of viscoelas-
0031-9007=03=90(2)=024502(4)$20.00 
as those mentioned above. In this Letter we present the
result of an analytical nonlinear amplitude expansion
which shows that viscoelastic Poiseuille flow exhibits a
weakly nonlinear (or ‘‘subcritical’’) instability due to
normal stress effects; this instability appears to make
melt fracture phenomena unavoidable for polymer fluids
with normal stress effects, even if care is taken to sup-
press instabilities associated with the wall or shape of the
die. Recent experiments on polymers whose rheology is
well captured by the Oldroyd-B model [1] confirm our
scenario as well as our quantitative predictions.

Although polymer fluids can exhibit all kinds of com-
plicated relaxation phenomena, the basic feature that
essentially all polymer fluids (and in fact most complex
fluids) share is the occurrence of elastic stress effects:
when the shear rate is sufficiently strong that the poly-
mers become stretched by the flow gradients, the forces
along the normals of a little cubical fluid element are
2003 The American Physical Society 024502-1
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FIG. 2 (color online). Summary of our main result for the
stability of viscoelastic Poiseuille flow in a cylinder in the zero
Reynolds number limit. (a) Semiquantitative sketch of the
bifurcation scenario. See text. (b) Our results for the threshold
values of the amplitude beyond which the flow is unstable;
these curves correspond to the dashed branch in (a). Dots
indicate the critical value of the shear rate at the wall (nor-
malized to the shear in the unperturbed case), and squares
indicate the critical value of the relative shear stress perturba-
tion, multiplied by 10.
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different in different directions, unlike what happens for
a Newtonian fluid where the pressure is isotropic.
Microscopically, this effect is due to the fact that in
sufficiently strong shear flows the polymers get stretched
(like little rubber bands) and acquire a nonisotropic ori-
entational distribution. Thus they ‘‘pull’’ differently on
fluid elements in the direction along the flow and along
the shear gradient. The simplest model to capture this
effect (and which hence has become the working horse of
theoretical studies of viscoelastic polymer flow [6,8,9]) is
the so-called Oldroyd-B model; we study it in the limit of
large polymer viscosity, in which case it is referred to as
the upper convected Maxwell (UCM) model. In this
regime it is defined by the following constitutive equation
for the shear stress tensor � in terms of the velocity shear
tensor rv through

� � ��@�=@t� v � r� � �rv�y � � � � � �rv��

	 ���rv� �rv�y�; (1)

This constitutive equation is characterized by one single
relaxation time �. The first two terms between square
brackets together constitute the total time derivative of a
fluid element moving with the flow; the other two non-
linear terms are required by frame independence, e.g., the
fact that a solid-body rotation of the fluid does not lead to
elastic stress effects. For fluids given by this constitute
equation, the velocity profile in Poiseuille flow is para-
bolic, just as in Newtonian fluids. Moreover, in a cylin-
drical tube with radius R and coordinates �
; r; z�, the
above-mentioned Weissenberg number (also called the
Deborah number), which is defined as

Wi 

�rr � �zz

�rz

�������wall
; (2)

becomes, upon following the usual convention to denote
the shear rate @vunp

z =@rjwall by _��,

Wi 	 2� _�� 	 4vmax�=R: (3)

Note that the Weissenberg number defined in (2) is indeed
the ratio of the so-called first normal stress difference
�rr � �zz at the wall over the shear stress at the wall.
Newtonian fluids are isotropic and hence the stress differ-
ence is zero; for Oldroyd-B model fluids the normal stress
difference �rr � �zz � _��2 [6], while the shear stress is
linear, �rz � _��; as a result Wi is simply linear in _��.

The weakly nonlinear instability scenario that our
calculations imply is illustrated in Fig. 2(a). Along the
vertical axis we plot the relative perturbation of the basic
flow profile (e.g., the relative shear perturbation at the
wall, or the relative shear stress perturbation at the wall)
as a function of Wi. Perturbations of the flow whose
amplitude is bigger than the value given by the thick
dashed line are unstable; their amplitude grows to some
nonlinear value indicated by the full line. This line
denotes nontrivial flow behavior with a characteristic
wavelength. Note that the dashed line never touches the
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horizontal axis, in agreement with the fact that Poiseuille
flow is always linearly stable [7], although the threshold
amplitude becomes very small for large Wi. Furthermore,
note that the full line merges with the unstable (dashed
line) branch (this is called a saddle-node bifurcation point
in technical terms); below the corresponding value Wic,
Poiseuille flow is nonlinearly stable to perturbations of
any amplitude. In this Letter, we focus on our results for
the cylindrical die, since this is the most relevant case.
For slits similar results are obtained [10].

Figure 2(b) shows our analytical results for the (dashed
line) branch that marks the threshold amplitude beyond
which the flow is unstable. As described in more detail
024502-2
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FIG. 3 (color online). Values of the critical shear stress
amplitude �c�k�, the ratio of the perturbation in the shear stress
�rz (normalized to the value �unprz of the unperturbed state) at
the wall above which the perturbation is nonlinearly unstable,
as a function of the wave number k of the perturbation.
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below, our analysis is based on an expansion to third order
in the perturbation amplitude; beyond some critical value
Wic  5, we find that the cubic terms in our expansion
lead to an instability, and from this we are able to calcu-
late the threshold value. Clearly, our results are fully
consistent with the scenario of Fig. 2(a): the flow is stable
to arbitrarily small (linear) perturbations, but perturba-
tions as small as a few percent in the shear stress at the
wall already render the flow unstable for values of Wi
around 10. The critical value of Wic we estimate from our
calculations is also in agreement with the very recent
experimental data on a model UCM fluid [1], and with
the range where long polymers have been reported to
show a change in the flow behavior [4].

Actually, a number of observations already made us
believe that the scenario summarized in Fig. 2 was a
viable one before we embarked on our analysis: (i) For
increasing Wi, the linear stability actually becomes arbi-
trarily weak (the damping of the linear modes decreases
as 1=Wi). (ii) In the zero Reynolds number limit, the flow
of an Oldroyd-B fluid in a Taylor-Couette cell (two con-
centric rotating cylinders) is linearly unstable above some
well-defined value of the Deborah number, which is
analogous to the Weissenberg number [8,9]. This linear
instability is due to the fact that ‘‘hoop stresses’’ generally
make flow along curved streamlines unstable [8,11].
However, recent experimental investigations [12] have
clearly demonstrated that the instability is subcritical:
as sketched qualitatively in Fig. 2(a), the nonlinear flow
branch corresponding to roll-type patterns in the Taylor-
Couette cell has been shown [12] to extend down to about
half the critical value where the linear instability occurs
(the point where the dotted line intersects the horizontal
axis). The subcritical character of the instability has been
argued not to depend on the curvature of the streamlines
which causes the linear instability in the Taylor-Couette
cell. Thus, it is reasonable to assume that both in visco-
elastic Poiseuille flow and in viscoelastic Taylor-Couette
flow there is a subcritical instability, and that the only
essential difference is that in the first case the dashed
branch never intersects the horizontal axis, while in the
second case it does. (iii) The transition to turbulence for
Poiseuille flow of Newtonian fluids is also subcritical [13].

Returning to our analysis, it is based on deriving the
first nontrivial nonlinear term in an amplitude expansion
for the perturbation to the velocity and shear stress fields
of Poiseuille flow of an UCM fluid. We write the constitu-
tive equation (1) and the Navier-Stokes equation in cylin-
drical coordinates and then study the evolution of the
amplitude A of a perturbation A��vr; �vz; ��

; ��rr;
��rz; ��zz�eikz�i!t, where the vector is normalized such
that the shear perturbation @�vz=@r at the wall equals A.
To first nontrivial order we then obtain an equation of the
form

dA=dt 	 �i!�k�A� c3jAj
2A� � � � : (4)

To linear order in A this equation simply reproduces the
024502-3
term !�k� of the dispersion relation of a single mode
eikz�i!t; this term is already contained in the old analysis
of [7]. In particular, since we know that every mode k is
linearly stable, Im!�k�< 0 for all k.

The crucial new feature of our analysis consists of
calculating the coefficient c3 explicitly; although this is
technically demanding, the analysis is standard and con-
ceptually straightforward. It will therefore be discussed
elsewhere [10]. In particular, the real part of c3 is of
importance for determining whether or not the flow is
nonlinearly unstable: if Rec3 < 0, then the nonlinear
terms increase the damping of the amplitude and the
unperturbed state is, within this approximation, also non-
linearly stable. On the other hand, if Rec3 > 0, then the
nonlinear term promotes the growth of the amplitude,
and, in particular, amplitudes

jAj > Ac 	

����������������
Im!�k�
Rec3

s
(5)

grow without bound. Hence, in this approximation Ac
constitutes the critical amplitude beyond which the flow
is nonlinearly unstable. The results presented in Fig. 2(b)
for Ac are obtained directly from our results for the
coefficient c3. In dimensionless units and with our nor-
malization, Ac immediately yields the relative shear rate
perturbation at the wall, necessary to make the flow
unstable. With a numerical factor that we obtain from
our analysis, Ac can be converted into a value for the
critical relative shear stress ratio �c, the perturbation in
the shear stress beyond which the flow is unstable.
024502-3
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FIG. 4 (color online). Plot of the width of the k band where
the corresponding modes render the basic Poiseuille flow
profile unstable.
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As we already discussed in connection with Fig. 2(b),
for Wi * 5, we find that there is some range of wave
numbers k for which Rec3 > 0, and hence for which the
Poiseuille profile is nonlinearly unstable. In Fig. 3 we
show for three values of Wi the relative critical shear
stress amplitude �c�k� beyond which the flow is unstable,
as a function of the wave number k. The further one gets
above the value Wic where the instability sets in, the wider
the band of k values is where we find an instability; the
values plotted in Fig. 2(b) for �c correspond to the mini-
mum values of the curves in Fig. 3, but, as this figure
shows for larger values of Wi, the bands are very flat so
that the strength of the instability does not appear to
depend very sensitively on k within the unstable band.

In Fig. 4 we plot the band in which modes are non-
linearly unstable beyond some threshold amplitude. It is
important to realize that k in this figure is the wave
number of the modulation of the Poiseuille flow inside
the tube: Since the flow changes upon exiting the tube,
this is not necessarily the same as the wave number of the
induced roughness modulation outside the die, as in
Fig. 1(c), but the two can be connected by equating the
frequency of the modulations measured at a fixed position.
Our numerical results show that the mode with kR 
3:75, which according to Fig. 4 emerges at Wi 	 Wic 
5, moves with a velocity of about v  1:9vav, where vav is
the average flow velocity. If the nonlinearities do not
change this speed too much, this suggests a frequency f
at onset of about 3:75v=�2�R�  1:13vav=R. Further
above threshold our amplitude expansion to cubic order
neither yields the speed of the finite-amplitude modulated
024502-4
stress pattern nor the selected wave number. However,
it is reasonable to assume that in the saturated nonlinear
regime, the pattern moves with speed vav in the tube.
From the band of unstable wave numbers shown in
Fig. 4, we then conclude that the frequency of the
extrudate modulations should then lie in the range
0:3vav=R & f & 0:72vav=R.

The fact that the critical Weissenberg number Wic  5
which we find is in good agreement with the transition
value noted empirically [4] is already a strong indication
that the instability which we have identified lies at its
origin. Further independent evidence comes from a series
of new experiments which we have performed on a range
of PVA (polyvinyl alcohol) Borax polymer solutions,
whose rheological behavior is well described by the
Oldroyd-B/UCM model. Our scenario implies that the
first transition to melt fracture should be hysteretic, i.e.,
occur at a higher value of Wi upon increasing the flow
rate than upon decreasing the flow rate; this is indeed
observed in the experiments. Likewise, the wavelength of
the roughness modulations is in good agreement with the
theoretical analysis [1].
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