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Exact quantization of a paraxial electromagnetic field
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A nonperturbative quantization of a paraxial electromagnetic field is achieved via a generalized dispersion
relation imposed on the longitudinal and the transverse components of the photon wave vector. This theoretical
formalism yields a seamless transition between the paraxial- and the Maxwell-equation solutions. This obviates
the need to introduce either ad hoc or perturbatively defined field operators. Moreover, our �exact� formalism
remains valid beyond the quasimonochromatic paraxial limit.
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In this Rapid Communication we seek an answer to the
question: What is the quantum-mechanical state of a photon
in a beam of light whose propagation can be classically de-
scribed by a paraxial wave equation? The problem of quan-
tum propagation of paraxial fields was considered by several
authors in the past �1�. In these contributions the approach
was either ad hoc or approximated. A notable exception was
the work of Deutsch and Garrison where the authors devel-
oped a perturbative quantization scheme �2�. However, al-
though their theory formally solves, order by order in a per-
turbation expansion, the problem of paraxial quantum
propagation, it suffers from two main limitations. First, it
does not provide any clear and easily manageable formula
for the paraxial quantum modes. Second, it requires the
quasimonochromatic approximation which is unsuitable for,
e.g., the description of the very quantum phenomenon of
propagation of broad-band entangled photons provided by
spontaneous parametric down-conversion �SPDC�. The in-
creasing importance, for quantum information in general �3�
and quantum cryptography �4� in particular, of a proper de-
scription of paraxial propagation of SPDC entangled pho-
tons, calls for an exact �namely, nonperturbative� theory of
paraxial quantum fields.

The aim of this Rapid Communication is to introduce a
nonperturbative method to quantize a paraxial electromag-
netic field. Our scheme is conceptually simple: we begin by
considering the quantized transverse electromagnetic vector
potential calculated at the �arbitrary� initial time t=0. Then
we select from the wave-vector space only those field con-
figurations which are exact solutions of the paraxial wave
equation, and let them evolve in time according to the
d’Alembert wave equation. This procedure automatically en-
sures the validity of both the canonical commutation rela-
tions and the transversality conditions for the fields. We
stress that our theory accounts for the axial propagation of
vector fields with any spectral and spatial bandwidth and
reproduces the well-known paraxial results in the limit of
narrow beamlike fields.

To begin with, let us consider the vector potential operator

Â�r , t�= Â�+��r , t�+ Â�−��r , t� in the Coulomb gauge which
can be written in the plane-wave basis as �5�

Â�+��r,t� =� d3k� �

16�3�0c�k��
1/2

�	
�=1

2

�����k�â��k�exp�ik · r − ic�k�t� , �1�

and Â�−��r , t� is the Hermitian conjugate of Â�+��r , t�. It

clearly satisfies the d’ Alembert wave equation �Â�r , t�=0.
The two unit polarization vectors �����k� ��=1,2� are trans-
verse �����k� ·k=0 and mutually orthogonal ��1��k� ·��2��k�
=0. Moreover, the annihilation and creation operators
satisfy the canonical commutation rules �â��k� , â��

† �k���
=�����

�3��k−k��. Since the fields considered in this paper are
mainly beams which propagate close to the z direction, we
find it convenient to introduce a finite quantization length L
along the z axis with discrete wave vector Cartesian z com-
ponents kz→	n= �2� /L�n �n=0,1 , . . . �. The choice n
0 im-
plies that only the parts of the field which propagate in the
positive z direction are included in Eq. �1�. The integral with
respect to dkz in Eq. �1� is then replaced by a sum�6,7�

dkxdkydkz→ �2� /L�	n
d2kT, where kT= �kx ,ky� and
d2kT�dkxdky. Moreover, we scale the annihilation and cre-
ation operators by defining â��k�=�L / �2��â��kT ,n�, in such
a way that

�â��kT,n�, â��
† �kT�,n��� = �����nn��

�2��kT − kT�� , �2�

where the Kronecker symbol replaces the delta function ac-
cording to ��kz−kz��→ �L /2���nn�.

A paraxial field is usually expressed as an envelope field
modulating a carrier plane wave with wave vector k0 and
angular frequency �0=c�k0�. Without lack of generality we
assume k0=k0ẑ and we choose k0�0 so that the carrier plane
wave propagates in the positive z direction. By using the
trivial identity

1 =
L
2�
�

0

2�/L
dk0

exp�ik0z − j�0t�
exp�ik0z − i�0t�

, �3�

where L is an arbitrary length, we can rewrite the vector
potential operator as
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Â�+��r,t� = Â�+��r,t� � 1

=
L
2�
�

0

2�/L
dk0 exp�ik0z − i�0t��̂�r,t� , �4�

where we have introduced the envelope field

�̂�r,t� = 	
n
� d2kT� �

8�2�0c�k�L�
1/2

	
�=1,2

�����k�â��kT,n�

� exp�i�k − k0ẑ� · r − i�c�k� − �0�t� , �5�

where k=kT+ ẑ	n. Now, the key idea is to find a subspace of
the three-dimensional wave vector k space where the initial

time envelope field �̂�r���̂�r , t=0� satisfies the paraxial
wave equation �8�

�2�̂�r�
�x2 +

�2�̂�r�
�y2 + 2ik0

��̂�r�
�z

= 0. �6�

If we substitute from Eq. �5� into Eq. �6� we obtain

	n/k0 = 1 − �kT�2/�2k0
2� . �7�

This generalized dispersion relation plays a key role through
this paper. It defines a two-dimensional domain in the k
space where both d’Alembert wave equation and paraxial
wave equation are satisfied. For sake of clarity we write
q=kT, q= �q� and define the dimensionless parameter
=q / ��2k0

2�. If we denote with �� �0,� /2� the angle be-
tween the wave vector k and the axis z, then q /k · ẑ=tan �

and from Eq. �7�, it follows that �2=−cot �+��2+cot2 ��.
This relation is exact; however, we can gain some
insight if we consider it in the limit ��1 where
�2�−�3 /6+O��5�. This equations shows that �2
=q /k0 is approximately equal to the divergence angle of a
Gaussian beam�9�. Moreover, by comparing  with Eq. �2.8�
by Deutsch and Garrison�2�, one recognizes �2�1 as their
perturbative expansion parameter. However, in our case the
only constraint is �1, as follows from Eq. �7� and the
condition 	n
0.

From Eq. �7� it readily follows that the exponential factor
in Eq. �5� can be written

exp�i�k − k0ẑ� · r − i�c�k� − �0�t�

= exp�iq · x − i2k0z�exp�− i�0t��1 + 4 − 1�� , �8�

where x��x ,y�. Clearly Eq. �7� affects also the value of the
polarization unit vectors in Eq. �5�. To see this, we first
write the total wave vector k in terms of q and k0 as
k= q̂q+ ẑk0�1−2�, where q̂�q / �q�, then we arbitrarily
choose �we always have this freedom� ��2��q ,�= ẑ� q̂. The
remaining unit vector ��1� is then uniquely fixed by the cyclic
relation ��1����2��k to the value

��1��q,� = �q̂�1 − 2� − ẑ�2�/�1 + 4�1/2. �9�

It is now possible to write explicitly the envelope field �̂�r�
restricted to the k subspace defined by the dispersion relation
Eq. �7�. From the definition of 	n and Eq. �7�, it follows that
we must select from the sum over n in Eq. �5� only those

terms corresponding to n=n�����k0L /2���1−2��IP,
where “IP” stands for integer part. This objective can be
achieved by replacing in Eq. �5� 	n→	n�n,n��, where
�n,n��=1 for n=n�� and �n,n��=0 otherwise. Finally, we
can write from Eq. �5�

�̂�r� = 	
n
� d2q� �

8�2�0�0�1 + 4�1/2L
�1/2

� 	
�=1,2

��1��q,�â��q,n��n,n��

�exp�iq · x − i2k0z� , �10�

where �����q ,� are given by Eq. �9� and previous formulas.
We have substituted everyplace in Eq. �10� 	n by Eq. �7�; this
operation is permitted by the presence of �n,n�� within the
sum. The only exception to these substitutions is represented
by the operators â��q ,n� which, for the moment, are left
unchanged.

At this point, we note that since the restriction to the
paraxial k subspace has already been achieved via Eq. �10�,
it is possible to make a step backward from the discrete
momentum 	n to the continuous paraxial frequency � :c	n
= �2�c /L�n→�. The reason for this choice for the name of
�, will become clear later �see discussion after Eq. �23��. The
other required replacements are 	n→ �L /2�c�
d�,
â��q ,n�=�2�c /Lâ��q ,�� and

�n,n�� =
2�c

L
�„� − ck0�1 − 2�… , �11�

in such a way that

�â��q,��, â��
† �q�,���� = ������� − �����2��q − q�� . �12�

Equation �4� can be then written as

Â�+��r,t� = �L
L
��

0

2�/L
dk0 exp�ik0z − i�0t� � d�� d2q

�� �

16�3�0k0�1 + 4�1/2�1/2

� 	
�=1,2

�����q,�â��q,���„� − ck0�1 − 2�…

�exp�iq · x − i2k0z�exp�− i�0t��1 + 4 − 1�� ,

�13�

where the irrelevant term L /L can be absorbed in the defi-

nition of Â�+��r , t�. This is not yet our final expression since
we can perform explicitly the integration with respect to �
which is still present in the expression for the annihilation
operator:

� d�â��q,���„� − ck0�1 − 2�… � �1 + 2â��q,�0� ,

�14�

where
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�â��q,�0�, â��
† �q�,�0��� = �����

�2��q − q�����0 − �0�� .

�15�

The use of Eq. �14� has been suggested to us by Visser and
Nienhuis who first introduced this technique �11�. Finally, we
can write, after redefining ck0��,

Â�+��r,t� =� d� exp�− i��t − z/c��� �

16�3�0c�
�1/2� d2q

� 	
�=1,2

E����q,�,z,t�â��q,��exp�iq · x − i
q2c

2�
z� ,

�16�

where we have defined the slowly varying polarization vec-
tors

E����q,�,z,t� � �����q,�� 1 + 2

�1 + 4�1/2

�exp�− i�t��1 + 4 − 1�� , �17�

and the unit vectors �����q ,� are given by Eq. �9� and pre-
vious formulas.

Equation �16� is the first main result of this work. It rep-
resents a vector potential field operator which is a bona fide
transverse field obeying the d’Alembert wave equation for
any time t�0, whose corresponding envelope field satisfies
the paraxial wave equation �6� at t=0. We stress that this
expression is exact; no approximations were made.

Now, we are ready to address the problem of building the
quantum mechanical state describing a photon in a paraxial
beam. To this end, we first note that until now the creation
operators â�

†�q ,�� have passed untouched through all our
operations. In fact, they still satisfy the canonical commuta-
tion relations Eq. �12�. However, their form is not the most
suitable one to deal with paraxial fields; therefore we intro-
duce the Fourier-transformed operators�7,10�

â��x,�� =
1

2�
� d2qâ��q,��exp�iq · x� , �18�

such that

�â��x,��, â��
† �x�,���� = ������� − �����2��x − x�� . �19�

If we substitute Eq. �18� in Eq. �16� we obtain, after some
algebra,

Â�+��r,t� = 	
�=1

2 � d�
e−i��t−z/c�

�4��0c�/��1/2Â
����x,z,�,t� ,

�20�

where r= �x ,z� and we have introduced the exact slowly
varying photon annihilation vector operators

Â����x,z,�,t� � � d2x�F����x,z,x�,�,t�â��x�,�� .

�21�

Moreover, in Eq. �21� we have defined the Maxwell-paraxial
�MP� slowly varying modes

F����x,z,x�,�,t� =
1

�2��2 � d2qE����q,�,z,t�

�exp�iq · �x − x�� − i
q2c

2�
z� . �22�

Equation �22� displays the second main result of this paper. It
describes the field in the plane z at time t due to a point
source with paraxial frequency � located at x� in the
transverse plane z=0. As its shape clearly suggests,
F����x ,z ,x� ,� , t� is the quantum analog of the classical
Huygens-Fresnel diffracted field. This may be seen more
clearly by writing Eq. �22� in the narrow-beam limit which is
achieved by restricting the transverse momentum integral to
the domain C�= �q :q�� /c�. It is easy to see that within this
domain =qc /��2�1, and E����q ,� ,z , t�e����q�, where
e�1��q�= q̂+O�� and e�2��q�= ẑ� q̂, are the zeroth order po-
larization unit vectors. In this limit Eq. �22� reduces to the
well-known paraxial Green’s function P����x ,z ,x� ,���8�

P����x,z,x�,�� = �
C�

d2q

�2��2e����q�ei�q·�x−x��−�q2c/2��z�,

�23�

here generalized to vector fields. From Eq. �23� it is clear
that in the narrow-beam limit the paraxial frequency reduces

to the actual frequency � and Â����x ,z ,� , t� becomes time
independent. Now, it is straightforward to show that at a
fixed time t, in each transverse plane z, the MP functions
F����x ,z ,x� ,� , t� are quasiorthogonal

� d2xF����x,z,x�,�,t� · F����x,z,x�,�,t�

= ���� d2q

�2��2� 1 + 2

�1 + 4�1/2

exp�iq · �x� − x��� ,

�24�

that is, the right side of this equation approaches
�����2��x�−x�� in the narrow-beam limit →0, as expected
from the orthogonality of the classical paraxial Green’s func-
tions for free space propagation. This result was already
found by Visser and Nienhuis�11� who suggested to interpret
the Fourier-transformed creation operator â�

†�x ,�� as the op-
erator which creates at t=0 a photon with polarization � in
the paraxial mode exp�i�z /c�P����x ,z ,x� ,��. More gener-
ally, the interpretation of F����x ,z ,x� ,� , t� as single-photon
wave function can be put on a rigorous basis by introducing
the “transverse-position” states �x ,� ,��� â�

†�x ,���0�.
Then it readily follows that �0�Â�+��x� ,z , t��x ,� ,��
�F����x� ,z ,x ,� , t�exp�−i��t−z /c��.

Now, the definition of �x ,� ,�� makes it possible to asso-
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ciate to any single-photon state ���, its corresponding
Maxwell-paraxial wave function ���x ,����x ,� ,� ���.
Then, for example, the MP wave function associated
to the plane wave state �q ,� ,��� â�

†�q ,���0�, is simply
given by the Fourier relation �x ,�� ,�� �q ,� ,��
= �exp�iq ·x� /2���������−���. More generally, for a given
complete set of orthogonal transverse functions �nm�x ,�� as,
e.g., the Hermite- or the Laguerre-Gaussian beams �9�, it is
possible to build the corresponding MP single-photon state
as

�n,m,�,�� =� d2x�nm�x,���x,�,�� , �25�

where �x ,�� ,�� �n ,m ,� ,��=�nm�x ,���������−���.
This equation is our third and final main result: it repre-

sents the exact quantum-mechanical state of each of the pho-
tons in the classical paraxial beam �nm�x ,��. It should be
noticed that while Eq. �25� is always well defined in our
perfectly general framework, its interpretation in terms of
paraxial beams is limited by the classical condition

�̃nm�q ,���0 for q�� /c, where �̃nm�q ,�� is the two-
dimensional Fourier transform of �nm�x ,��.

In conclusion, a nonperturbative quantization scheme for
electromagnetic paraxial fields has been introduced. It relies
on the fact that it is possible to select some initial field con-
figurations which are exact solutions of the paraxial wave
equation. These configurations are then evolved at later times
with the d’Alembert wave equation. In this way we were
able to find explicit and manageable expressions for the ex-
act field in both momentum �Eq. �16�� and in position �Eqs.
�20�–�22�� representation. Moreover we gave an unambigu-
ous definition for Maxwell-paraxial quantum states �Eq.
�25��. The usefulness of the present theory, first introduced
by us in �12�, has been very recently confirmed by Calvo et
al. �13�, who used our formalism to illustrate some properties
of photon angular momentum.

It is a pleasure to acknowledge Jorrit Visser and Gerard
Nienhuis for fruitful discussions. We also acknowledge sup-
port from the EU under the IST-ATESIT contract. This
project was also supported by FOM.

�1� R. Graham and H. Haken, Z. Phys. 213, 420 �1968�; H. Yuen
and J. H. Shapiro, IEEE Trans. Inf. Theory IT-24, 657 �1978�;
T. A. B. Kennedy and E. M. Wright, Phys. Rev. A 38, 212
�1988�; J. C. Garrison, H. Nathel, and R. Y. Chiao, J. Opt. Soc.
Am. B 5, 1528 �1988�; M. I. Kolobov, Rev. Mod. Phys. 71,
1539 �1999�.

�2� I. H. Deutsch and J. C. Garrison, Phys. Rev. A 43, 2498
�1991�.

�3� M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information, reprinted 1st ed. �Cambridge University
Press, Cambridge, UK, 2002�.

�4� N. Gisin, G. Ribody, W. Tittel, and H. Zbinden, Rev. Mod.
Phys. 74, 145 �2002�.

�5� R. Loudon, The Quantum Theory of Light, 3rd ed. �Oxford
University Press, Oxford, UK, 2000�.

�6� T. D. Lee, Particle Physics and Introduction to Field Theory,

revised and updated 1st ed. �Harwood Academic, Chur, Swit-
zerland, 1988�.

�7� K. J. Blow, R. Loudon, S. J. D. Phoenix, and T. J. Shepherd,
Phys. Rev. A 42, 4102 �1990�.

�8� L. Mandel and E. Wolf, Optical Coherence and Quantum Op-
tics 1st ed. �Cambridge University Press, Cambridge, 1995�.

�9� A. E. Siegman, Lasers �University Science Books, Mill Valley,
CA, 1996�.

�10� A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C.
Teich, Phys. Rev. Lett. 87, 123602 �2001�.

�11� G. Nienhuis �private communication�; J. Visser, Ph.D. thesis,
Leiden University, 2005, �unpublished�.

�12� A. Aiello and J. P. Woerdman, e-print quant-ph/0502164.
�13� G. F. Calvo, A. Picón, and E. Bagan, e-print quant-ph/

0509040.

A. AIELLO AND J. P. WOERDMAN PHYSICAL REVIEW A 72, 060101�R� �2005�

RAPID COMMUNICATIONS

060101-4


