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Chapter 4

Classification of 3D
point-group-symmetric
order parameter tensors

Rotational symmetry breaking of the three dimensional (3D) orthogonal
group O(3) plays an important role in many condensed matters systems,
from classical and quantum spins to molecular and strongly correlated
electronic nematic liquids [17, 11, 118, 119]. In familiar instances, like
the Heisenberg ferromagnet and the uniaxial nematic, the full rotational
group O(3) is broken to O(2) and DŒh, respectively. However these
are in fact only two special cases of the rich landscape of O(3) symmetry
breaking. Indeed, as a matter of principle, matter can break the rotational
symmetries of isotropic space O(3) to any of its subgroups, leading to
long range orientational order characterized by complicated tensors order
parameters.

The subgroups of O(3) have been mathematically identified for a long
time, however, it appears that the zoo of point-group orientational orders
has never been explored in full generality. Needless to say, the classifica-
tion of rotational order parameters for some non-broken symmetries has
been gradually accumulating since the past century due to various mo-
tives. Firstly, in the soft matter literature the unixial (DŒh) and biaxial
(D2h) order parameter have been shown to be characterized by second-
rank tensors [11], which have been intensively studied in various theories
[72–74, 71, 86, 75, 120, 93]. In addition, higher rank ordering tensors for
the Td-tetrahedral [89–91, 97], Oh-cubic [18, 88, 96] and Ih-icosahedral
[121–123, 88, 89, 124] orders have been discussed by many authors e.g. in
the context of Landau theories and nematic lattice models. Nonetheless,
these cover still only a small subset of all 3D point group symmetries and,
to the best of our knowledge, the order parameters for most instances are
not known explicitly nor have they appeared within a single unified classifi-
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cation scheme. These general order parameters, however, are becoming of
more practical interest. New exotic orientational orders may be realized in
ensembles of anisotropic constituents, especially nano- and colloidal parti-
cles of di�erent shapes [81, 82]. In particular, the increasing experimental
ability to control such degrees of freedom [80, 125, 126, 78] is especially
promising in this regard. Secondly, many unconventional orientational
orders have also been proposed for quantum magnets [127, 128, 116] and
spinor condensates [129, 130]. In all these cases, the order parameters
associated with each symmetry are indispensable to eventually verify the
symmetry of these phases and the associated physics.

Now we will use the gauge theory we introduced in Chapter 3.1 to
develop a systematic way of deriving the tensor order parameter with
arbitrary point groups. In particular, we will highlight the order pa-
rameters for physically interesting symmetries including all the crystal-
lographic point groups, the icosahedral groups arising in the context of
quasi-crystalline ordering, and the five infinite axial groups {CŒ ƒ SO(2),
CŒv ƒ O(2), CŒh, DŒ, DŒh} exhibiting a continuous rotational SO(2)-
axis. We show that in order to uniquely characterize a point-group-
symmetric orientational order of a phase, at most two order parameter ten-
sors and a pseudoscalar are needed: the second ordering tensor is required
by the finite axial groups {Cn, Cnv, S2n, Cnh, Dn, Dnh, Dnd}, whereas the
pseudoscalar chiral order parameter is a requisite associated with the
handedness or chirality of the proper point groups {Cn, Dn, T , O, I} that
are subgroups of the group of proper three-dimensional rotations SO(3).

4.1 Construction of orientational ordering tensor
4.1.1 Warm up: Heisenberg ferromagnetic order and uni-

axial nematic order
Let us begin by recalling the characterization of rotational ordering in
the familiar context of the Heisenberg ferromagnet and the conventional
uniaxial nematic.

In the ferromagnetic phase of a classical Heisenberg magnet, the rota-
tional O(3) symmetry of the Hamiltonian breaks down to the point group
CŒv ƒ O(2) defined by the axis of magnetization M. The order parame-
ter M = ÈniÍ is given by the macroscopic averaging of local spins ni and is
a 3D vector with an orientational order parameter space O(3)/O(2) ƒ S2.

On the other hand, for uniaxial liquid crystals or spin nematics, where
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Figure 4.1. Sketch of DŒh uniaxial molecules. The orientation of a molecule
can be defined by a single axis.

the O(3) symmetry is broken to the point group DŒh in the ordered
phase, the system exhibits a macroscopic ordering along an axis n. The
uniaxial symmetry DŒh acts on the order parameter as n æ ≠n and
these describe the same macroscopic ordering. Often depicted as being
formed of explicitly rod-like “molecules” (Fig. 4.1), a coarse-grained order
parameter can be formulated in terms of a local vector ni along the “long”
axis of each “molecule”, with the identification of ni with ≠ni. To define
the uniaxial orientational order, one therefore needs a second rank tensor,
Q[n] = n ¢ n ≠ 3 , which is characterized by its invariance under n æ ≠n.
Accordingly, the global order parameter is defined as Q[n] = ÈQ[ni]Í in the
coarse-grained order parameter theory and formally relates to the uniaxial
order parameter space O(3)/DŒh ƒ S2/Z2 ƒ RP2, the real projective
plane.

4.1.2 General 3D orientational order

The above familiar examples share the key feature of having an O(2)
symmetry in the plane perpendicular to the ordering vector, which is why
the underlying physics is so apparent: the order parameter is defined by
one axis and the rotations in the perpendicular plane are trivial, and the
degrees of freedom e�ectively reduce to 1D objects (the spins and the rods
in the above examples).

Nonetheless, for general 3D point-group-symmetric ordering, the order
parameter and the coarse grained degrees of freedom form intrinsic 3D
objects (Fig. 4.2). To define the 3D orientation one therefore has to depart
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Figure 4.2. To define the orientation of a 3D object in general, one need an
O(3) triad. Here an icosahedron is used for instance.

from a full O(3) rotation matrix R,

R =
1

l m n
2T

. (4.1)

The rows {l, m, n} of R form an orthonormal triad n– = {l, m, n}. In
other words, R is a rotation that brings the triad n– = {l, m, n} into
coincidence with a fixed “laboratory” frame ea = {e1, e2, e3} and can be
defined by three Euler angles with respect to the unit vectors ea. The
determinant of R defines the handedness or chirality of the triad,

‡ = det R = ‘abc(l ¢ m ¢ n)abc = l · (m ◊ n) = ±1, (4.2)

which is a pseudoscalar and invariant under the proper rotations SO(3).
Moreover, due to O(3) = SO(3) ◊ { , ≠ }, we have the decomposition

R = ‡ ÂR = ‡(Âl Êm Ân)T (4.3)

where ÂR œ SO(3) and its rows ñ– = {l̃, m̃, ñ} are pseudovectors. The
O(3) constraints RT R = RRT = and det R = ±1 of course reduce the
free parameters to the three Euler angles W = (◊, „, Ï) and chirality in the
frame ea but we will find the vector notation with the O(3)-constraints
understood very useful in the following.

The order parameter has to be invariant under all unbroken point-
group transformations. As a result, an orientational order parameter with
a point group symmetry G is defined by G-invariant tensors constructed
from the triad R or n– = {l, m, n}. These tensors are equivalent to higher
order multipoles or (three-dimensional) spherical harmonics. We will de-
note these order parameters tensors composed of the triads generically
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as OG, where the additional label specifies the symmetry group G when
appropriate. Concretely, in the two examples in Section 4.1.1, the order
parameter tensor is the magnetization vector OCŒv [n] = n and the second
rank tensor or director ODŒh [n] = Q[n], respectively. Finally, we note
that besides the orientational order, the composite chiral order parameter
‡ defined in Eq. (4.2) is needed for proper point-group symmetries such
as {Cn, Dn, T , O, I} due to the breaking of the chiral symmetry of O(3).

As OG needs to be uniquely invariant under a given symmetry G, it
is in general highly non-trivial to construct its explicit form, even though
the polynomial invariants of 3D points groups have been computed a long
time ago [94, 95] and the representation theory of SO(3) is known.

4.1.3 Deriving the ordering tensors from the gauge theory
Let us now establish the relation of the ordering tensors with the gauge
theory introduced in Chapter 3.1. The goal is to construct a coarse-grained
order parameter with certain point group symmetry.

As it has been briefly discussed in Chapter 3.1.3, theunderlying princi-
ple of deriving the order parameters is the fundamental gauge theoretical
result: all physical observables have to be gauge invariant, since gauge
symmetries cannot break spontaneously [28]. By construction, the model
Eq. (3.5),

H = ≠
ÿ

ÈijÍ
Tr

Ë

RT
i JUijRj

È

≠
ÿ

⇤

ÿ

C
µ

KC
µ

”C
µ

(U⇤)Tr
Ë

U⇤
È

, (4.4)

embodies the symmetry of the order parameter tensors by the gauge sym-
metry. In particular, if we integrate out the gauge fields in the Hamilto-
nian, the terms that survive are gauge invariant local combinations of the
matter fields, corresponding to the order parameter tensors. This can be
most easily accomplished in the strong coupling limit of the gauge theory
KC = 0. In this limit, the gauge theory Eq. (3.5) reduces to

H = ≠
ÿ

ÈijÍ
Tr

Ë

RT
i JUijRj

È

, (4.5)

and the gauge fields have no independent dynamics. The result is es-
sentially the e�ective Hamiltonian of the orientational probability density
fl({Ri}) ≥ 1

Z

q

{U
ij

} e≠—H [{R
i

},{U
ij

}], but in order to find the order param-
eter tensors we do not need the e�ective Hamiltonian in closed form and
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can simply utilize the high-temperature expansion for small —. The cou-
plings J do not a�ect the general form of the expansion and we set them
to be isotropic J = J for simplicity and measure the temperature in the
units —J © —.

The partition function of the model Eq. (4.5) is defined in the usual
way,

Z =
ÿ

{R
i

}

ÿ

{U
ij

}
e≠—H [R

i

,U
ij

]

=
ÿ

{R̃
i

}

ÿ

{‡
i

}

ÿ

{U
ij

}
e≠—H [R̃

i

,‡
i

,U
ij

], (4.6)

where the summations are naturally discrete over the lattice and discrete
or continuous over the groups G and O(3). In the second line we used
made the handedness field explicit by Eq. (4.2), Ri = ‡i

ÂRi. In order to
integrate over the gauge fields, the partition function is Taylor expanded
in the high temperature limit — π 1,

Z =
ÿ

{R̃
i

}

ÿ

{‡
i

}

ÿ

{U
ij

}

Ÿ

ÈijÍ

Œ
ÿ

n=0

1
n!

(≠—Hij)
n. (4.7)

The integration over the gauge fields can be explicitly performed on the
lattice order by order in the expansion. By construction, the terms ap-
pearing must be local terms that are composed of contractions of gauge
invariant tensors. The result is therefore an expression starting with con-
tractions ≥ Tr [OG

i · OG
j ] coming from the lowest order non-zero terms

nmin ≥ rank OG in the expansions. In other words, the lowest order non-
trivial terms are composed of the lowest order invariant tensors that can
be found from Table 4.1. We emphasize that by construction these tensors
are the minimal and simplest possible set of invariant tensors allowed by
the symmetries.

4.2 Minimal invariant tensors
4.2.1 Order parameter table
In Table 4.1 we show the lowest order invariant tensors for all the 32
crystallographic point groups, the 2 icosahedral groups and the 5 infinite
axial groups.
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The standard Schönflies notation [131, 95] is used in Table 4.1. The
point groups are defined in the coordinate system spanned by the unit
triad vectors n– = {l, m, n} set up in the following way. All point groups
have the origin as their fixed point. The rotational axis of cyclic rotation
groups Cn of is chosen to be n. The dihedral group Dn has an additional
generator in terms of a fi-rotation along the vector l or m. The group Cnv

is augmented with a “vertical” reflection in the plane (l, n). The groups
Cnh and Dnh have an additional “horizontal” reflection plane (l, m). The
group Dnd has vertical reflection planes in terms of bisectors of the dihedral
fi-rotation axes. The groups S2n are composed of n-fold rotations in the
plane l, m. The polyhedral groups T , Td, Th and O, Oh are defined in terms
of a (tetrahedron embedded) in a cube with face normals n– = {l, m, n}.
The group Ih is the symmetry group of an icosahedron with vertices at
cyclic permutations of the coordinates ±· l ± m ± 0 · n and I its proper
subgroup, following the conventions in [132].

Accordingly, OG = OG[l, m, n] and OG = {AG, BG} denote the or-
dering tensor for polyhedral groups and for axial groups, respectively,
where AG = AG[n] is the order parameter for the main axis n and
BG = BG[l, m] or BG[l, m, n] for the in-plane structure for the finite
axial groups. Together with the handedness fields ‡, they can uniquely
define the order parameter for the symmetries mentioned above.

Amongst the ordering tensors in Table 4.1, the C1 order parame-
ters OC1 [l, m, n] = {ACŒv [n], BC1 [l, m]} = {l, m, n} simply constitute
the original O(3)-rotor order parameter R of a phase with no unbroken
symmetry (C1 is the trivial group); OD2h = {ODŒh [n], BD2h [l, m]} com-
pose the well known order parameter tensors for D2h-biaxial nematics;
OCŒv [n] and ODŒh [n] are the classical Heisenberg spin n and uniaxial
director Q[n], respectively; OO

h [l, m, n] has been discussed in Ref. [18];
OT

d [l, m, n] and OI
h [l, m, n] appear in a di�erent form in Ref. [89], where

an incomplete classification of order parameters for subgroups of SO(3)
is also discussed. However, many of the order parameter tensors in Table
4.1 are new and have not been classified in the context of a single unified
framework.
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Table 4.1. Classification of order parameters for three dimensional
point groups. The first column specifies the symmetries and the second column
specifies the type {O, A, B} of the order constructed from the O(3) triad R =
(l, m, n)T . The third column gives the explicit form of ordering tensors in the
chosen coordinates. They are traceless and vanish in the isotropic phase. The
infinite axial groups {CŒ, CŒv, CŒh, DŒ, DŒh} require a single ordering tensor,
A[n], describing the orientation of their primary symmetry axis, chosen to be
n; the finite axial groups {Cn, Cnv, Cnh, S2n, Dn, Dnh, Dnd} require two ordering
tensors, A[n] and B[l, m] or B[l, m, n], for their primary axis and perpendicular
in-plane structure, respectively; the polyhedral groups {T , Td, Th, O, Oh, I, Ih},
which treat {l, m, n} symmetrically, require only one ordering tensor O[l, m, n].
Due to the symmetry hierarchy, many point groups share ordering tensors (see
Section 4.2.3). Together with the chiral order parameter ‡ = det R = ±1 arisen
for proper point groups, these ordering tensors uniquely define the orientational
ordering of three dimensional point groups. For example, the order parameters
for finite proper axial groups are given by OG = {AG, BG, ‡}. ¢n denotes the
tensor power, e.g., n¢2 = n ¢ n and ”ab

o

µ=a,b eµ = ”abea ¢ eb. · = (1 +
Ô

5)/2
is the golden ratio.

q

cyc runs over cyclic permutations of {l, m, n}.
q

perm sums
over all non-equivalent combinations of the indices of the tensor.

q

permÕÕ in the
{C6v, D6, D6h} cases sums over all the six permutations of the indices d, e and f ,
and

q

permÕ =
q

perm ≠ q

permÕÕ .
q

{+,≠} for the {I, Ih} is a sum over the four
combinations of the two ± signs.
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Symmetry
Groups Type Ordering Tensors Tensor

Rank
C1, C1h B[l, m] l, m 1

S2 B[l, m, n] l ¢ m, m ¢ l, m ¢ n, n ¢ m, n ¢ l, l ¢ n 2
C2, C2h B[l, m] l ¢ m, m ¢ l 2

C2v, D2, D2h B[l, m] l ¢ l ≠ 1
3 , m ¢ m ≠ 1

3 2
S4 B[l, m, n]

1

l ¢ l ≠ m ¢ m
2

¢ n 3
D2d B[l, m, n]

1

l ¢ m + m ¢ l
2

¢ n 3

C3, C3h B[l, m]

1

l¢3 ≠ l ¢ m¢2 ≠ m ¢ l ¢ m ≠ m¢2 ¢ l
2

,
1

m¢3 ≠ m ¢ l¢2 ≠ l ¢ m ¢ l ≠ l¢2 ¢ m
2 3

C3v, D3, D3h B[l, m]
1

l¢3 ≠ l ¢ m¢2 ≠ m ¢ l ¢ m ≠ m¢2 ¢ l
2

3

S6 B[l, m, n]

1

l¢3 ≠ l ¢ m¢2 ≠ m ¢ l ¢ m ≠ m¢2 ¢ l
2

¢ n,
1

m¢3 ≠ m ¢ l¢2 ≠ l ¢ m ¢ l ≠ l¢2 ¢ m
2

¢ n
4

D3d B[l, m, n]
1

m¢3 ≠ m ¢ l¢2 ≠ l ¢ m ¢ l ≠ l¢2 ¢ m
2

¢ n 4
C4, C4h B[l, m] l¢3 ¢ m ≠ m¢3 ¢ l 4

C4v, D4, D4h B[l, m]

l¢2 ¢ m¢2 + m¢2 ¢ l¢2 ≠
4
15”ab”cd

o

µ=a,b,c,d eµ +
1
15

1

”ac”bd
o

µ=a,c,b,d eµ + ”ad”bc
o

µ=a,d,b,c eµ

2

,
l¢4 + m¢4 ≠ 2

15
q

perm ”ab”cd
o

µ=a,b,c,d eµ

4

C6, C6h B[l, m]

1

l¢3 ≠ l ¢ m¢2 ≠ m ¢ l ¢ m ≠ m¢2 ¢ l
2

¢
1

m¢3 ≠ m ¢ l¢2 ≠ l ¢ m ¢ l ≠ l¢2 ¢ m
2

,
1

m¢3 ≠ m ¢ l¢2 ≠ l ¢ m ¢ l ≠ l¢2 ¢ m
2

¢
1

l¢3 ≠ l ¢ m¢2 ≠ m ¢ l ¢ m ≠ m¢2 ¢ l
2

6

C6v, D6, D6h B[l, m]

1

l¢3 ≠ l ¢ m¢2 ≠ m ¢ l ¢ m ≠ m¢2 ¢ l
2¢2

+
4

105
q

permÕ ”ab”cd”ef
o

µ=a,b,c,
d,e,f

eµ ≠
2
21

q

permÕÕ ”ad”be”cf
o

µ=a,d,b,
e,c,f

eµ,
1

m¢3 ≠ m ¢ l¢2 ≠ l ¢ m ¢ l ≠ l¢2 ¢ m
2¢2

+
4

105
q

permÕ ”ab”cd”ef
o

µ=a,b,c,
d,e,f

eµ ≠
2
21

q

permÕÕ ”ad”be”cf
o

µ=a,d,b,
e,c,f

eµ

6

Cn, Cnv, CŒ, CŒv A[n] n 1
CŒh A[n] ‡n 1

S2n, Cnh, Dn,
Dnh, Dnd, DŒ, DŒh

A[n] n ¢ n ≠ 1
3 2

T O[l, m, n]
q

cyc l ¢ m ¢ n 3
Td O[l, m, n]

q

cyc
1

l ¢ m + m ¢ l
2

¢ n 3

Th O[l, m, n]

m¢2 ¢ l¢2 + l¢2 ¢ n¢2 + n¢2 ¢ m¢2 ≠
2
5”ab”cd

o

µ=a,b,c,d eµ + 1
10

1

”ac”bd
o

µ=a,c,b,d eµ +

”ad”bc
o

µ=a,d,b,c eµ

2

4

O, Oh O[l, m, n] l¢4 + m¢4 + n¢4 ≠ 1
5

q

perm ”ab”cd
o

µ=a,b,c,d eµ 4

I, Ih O[l, m, n]

q

cyc
Ë

l¢6 +
q

{+,≠}

1

1
2 l ± ·

2 m ± 1
2· n

2¢6È

≠
1
7

q

perm ”ab”cd”ef
o

µ=a,b,c,
d,e,f

eµ
6
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4.2.2 Structure of the ordering tensors

Continuous axial groups

The five infinite axial groups {CŒ, CŒv, CŒh, DŒ, DŒh} require only one
tensor to define the associated orientational order. This is because these
groups contain a plane perpendicular to the vector n with continuous
SO(2) or O(2) rotations, hence their in-plane structure is trivial and the
order parameter e�ectively reduces to a vector (CŒ, CŒv), a pseudovector
(CŒh) or a director (DŒ, DŒh), up to an additional chiral order parameter
‡ for the proper point groups.

Finite axial groups

Finite axial groups {Cn, Cnv, S2n, Cnh, Dn, Dnh, Dnd} require two ordering
tensors {A, B}: A = A[n] describes the orientation of the primary axis,
which is always chosen as n in Table 4.1, and tensors B = B[l, m] or
B[l, m, n] for the perpendicular in-plane order. This generalizes well-
known structure of the order parameters of biaxial (D2h) liquid crystals.
Due to symmetry relations which will be discussed later, the primary
ordering tensors A[n] for {Cn, Cnv, } and {S2n, Cnh, Dn, Dnh, Dnd} are
identical to the order parameters OCŒv [n] and ODŒh [n], respectively.

Polyhedral groups

The finite symmetry groups {T , Td, Th, O, Oh, I, Ih} related to the regular
tetrahedron, octahedron and icosahedron, respectively, require only one
ordering tensor involving the whole triad n–. These symmetries permute
{l, m, n} “isotropically” amongst each other, so there is no primary axis
and the three axes appear symmetrically in the order parameter tensor.

Proper point groups: chirality

Besides the orientational order parameters, the proper point group sym-
metries {Cn, Dn, T , O, I} are chiral and have an additional chiral order
parameter. The simplest chiral order parameter is just the pseudoscalar
handedness or chirality ‡ of the triad defined in Eq. (4.2). By defini-
tion, proper point groups do not possess any inversions and reflections
and therefore cannot change the chirality or handedness of the triad.
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4.2.3 Point groups and ordering tensors

As one may have already noticed from the above discussion and Table 4.1,
although a symmetry can be uniquely defined by the collection of order
parameter tensors OG and the handedness ‡, owing to the group structure,
many orientational ordering tensors are shared by di�erent symmetries.
We will now clarify this by discussing their group structures.

Firstly, the primary ordering tensor AG[n] for Cn and Cnv groups is
just the order parameter tensor of the CŒ and CŒv groups, AC

n [n] =
AC

v [n] = OCŒ [n] = OCŒv [n]. This is due to the simple fact that Cn

and Cnv groups do not transform n, hence they di�er from CŒ and CŒv

only by their in-plane structure related to BG[l, m]. Similarly, the groups
{S2n, Cnh, Dn, Dnh, Dnd} have the same e�ect on n, n æ ≠n. Therefore,
neglecting the l and m components, these symmetries lead to the same
primary ordering tensor A[n] = Q[n], the uniaxial director.

Moreover, the groups {Cn, Cnh, Cnv, Dn, Dnh} are closely related in
terms of symmetries. Cn and Cnh = Cn ◊ { , ‡h} only di�er by a reflec-
tion ‡h : n æ ≠n in the horizontal mirror (l, m)-plane perpendicular to n.
Thus Cn and Cnh have the same in-plane structure leading to the same sec-
ondary order parameter BC

n [l, m]. For the point groups {Cnv, Dn, Dnh},
we have Dnh = Dn ◊ { , ‡h} and Cnv and Dn can be represented as semi-
direct products Cnv = Cn o { , ‡v} and Dn = Cn o { , c2(l)}, where ‡v

is a reflection (l,n)-plane and c2(l) is a two-fold rotation around the axis
l,

‡v = ‡ln =

Q

c

a

1 0 0
0 ≠1 0
0 0 1

R

d

b

, c2(l) =

Q

c

a

1 0 0
0 ≠1 0
0 0 ≠1

R

d

b

. (4.8)

It is immediately clear that, ‡v and c2(l) have the same action on the
l and m components. Therefore, {Cnv, Dn, Dnh} also have the same in-
plane order parameter B[l, m].

The common structures of the finite axial groups have a direct implica-
tion on the associated phase transitions. For a phase with the symmetry of
a finite axial group, it is in principle possible to disorder the primary and
secondary order separately before the transition to the isotropic phase. If
we first disorder the secondary order in a plane, the following sequences

71



of phase transitions can happen

Cn, Cnv æ CŒv æ O(3),
S2n, Cnh, Dn, Dnh, Dnd æ DŒh æ O(3), (4.9)

related to the restoration of the in-plane O(2) symmetry followed by disor-
dering of order along the principal axis n. These transitions generalize the
biaxial-uniaxial-isotropic liquid transition of biaxial liquid crystals [72, 71].
We have numerically verified the transition sequences in Eq. (4.9) for a
large number of symmetries and will present the detailed analyses for their
phase diagrams in the next chapter.

Finally, in the case of the polyhedral groups, Th = T ◊ { , ≠ },
Oh = O ◊ { , ≠ } and Ih = I ◊ { , ≠ } are generated from the proper
subgroups T , O and I by adding the inversion ≠ . Since the ordering ten-
sors of I and O in Table 4.1 are of even rank, this di�erence is not reflected
directly in the orientational order parameters. There exist higher order
invariant tensors that can distinguish O (I) from Oh (Ih), nonetheless one
needs to consider at least a rank-5 (rank-7) tensors and it is therefore
more convenient to distinguish them by the chirality ‡ (see Section 4.3.3
for more details).

Improper groups possessing only reflections but not the inversions ≠ ,
including all axial groups Cnv for all n, {S2n, Cnh, Dnh} for odd n, Dnd

for even n and the regular tetrahedral group Td, have non-vanishing odd-
rank order parameters in general. In these order parameters, terms re-
lated with right and left handed triads appear equally, making the order
parameter invariant under certain improper reflections but not inversions.
This will be reflected in the structure of the associated order parameters.
For instance, as can be seen from Table 4.1, the order parameter for the
tetrahedral-Td group, OT

d consists of a left and right handed copy of that
of the tetrahedral-T group (see Section 4.3.3 for more details).

4.2.4 Determining the symmetry of a phase and phase tran-
sitions with ordering tensors

The ordering tensors we show in Table 4.1 generalize the local director
tensor Qab for uniaxial nematics. The macroscopic order parameters are
defined as coarse grained averages over the system

ÈOGÍ =
1
V

ÿ

i

ÈOG
i Í, (4.10)
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where V denotes the spatial averaging volume. To verify the symmetry of
a phase, one need in principle consider all independent entries of the order
parameter tensor. This is in general quite involved since the number of
the entries grows exponentially with the rank of the tensor.

However, for interactions favoring homogeneous a nematic order, such
as the interaction in the gauge model Eq. (4.5), the symmetry of the phase
can be revealed by the scalar two point functions in the limit of large
separation. Since ÈOG

i Í will develop a finite value in the ordered phase, at
long distances the scalar two point function of the order parameter tensor
behaves as

lim
|i≠j|æŒ

È(OG
i )abc...(OG

j )abc...Í

=

I

Tr ÈOG
i Í2 > 0 nematic

0 otherwise.
(4.11)

The contractions in Tr (•) are determined up to the tensor symmetries of
the order parameter. This allows us to define a strength for the ordering
tensors,

q =
Ò

È(OG
i )abc...Í2, (4.12)

and the symmetry of the phase can be defined by the lowest order tensor
and “smallest” group G with q ”= 0. Accordingly, a phase transition
associated with ÈOG

i Í can be identified from the susceptibility ‰(q) of the
ordering strength,

‰(q) = —V
1

Èq2Í ≠ ÈqÍ2
2

. (4.13)

We have numerically computed q and ‰(q) in the model Eq. (4.5) for
large number of point group symmetries [23]. Our simulations showed that
‰(q) will exhibit a clear peak at the temperature where the heat capacity
peaks, indicating that q in combination of simple symmetry arguments
is indeed su�cient to determine the symmetry of a nematic phase with
homogeneous distribution of order parameters.

However, we note that, when non-homogeneous distributions of order
parameters are preferred, the symmetry of a state can be compatible but
not identical to G, as also discussed, e.g., in Ref. [92]. In these cases, a
non-zero q is not su�cient to identify the symmetry of the state, and one in
principle need consider all components of ÈOG

i Í. However, the symmetry of
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a phase may be also determined by the “eigenvalues” and the distribution
of non-zero entries of ÈOG

i Í [133]. Studies with this regard so far mostly
concentrate on the rank-2 DŒh and D2h ordering tensors [134–136, 120];
it would be interesting to consider the ordering of the tensors in Table 4.1
in full generality without assumptions on microscopic configurations of a
particular model.

4.3 Examples and discussion

In this section we will discuss some concrete examples of deriving the order
parameter tensors in Table 4.1. For all finite and discrete point groups,
we can integrate over the gauge fields in the expansion Eq. (4.7). For the
continuous axial groups, we can do the integrations in closed form. The
results are by construction composed of local contractions of the simplest
gauge invariant tensors allowed by the symmetries, i.e. the tensors in
Table 4.1.

4.3.1 Continuous axial groups: unixial nematics

The integration over the gauge groups {CŒ, CŒv, CŒh, DŒ, DŒh} will
lead to the familiar results. We will use the DŒ-uniaxial nematic as
an example of the general procedure of deriving uniaxial nematic order
parameters, the others being similar. The key point is the elimination of
the triad vectors l, m in the plane where the SO(2)-symmetry acts from
the Hamiltonian upon integrating out the SO(2)-gauge fields, since there
can be no gauge invariant combinations of these components in any finite
order.

The gauge fields Uij œ DŒ can be generated by the transformations
{c◊(n), c2(m)}, where

c◊(n) =

Q

c

a

cos ◊ ≠ sin ◊ 0
sin ◊ cos ◊ 0

0 0 1

R

d

b

, c2(m) =

Q

c

a

≠1 0 0
0 1 0
0 0 ≠1

R

d

b

(4.14)

are a rotation about n by an angle ◊ œ [0, 2fi) and a fi-rotation about
m, respectively. We note that the “usual” uniaxial symmetry is given by
DŒh = DŒ ◊ { , ≠ } and follows with minimal modifications. We focus
on the terms in the (l, m)-plane and parametrize the gauge transformation
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as

Uij =

Q

c

a

‡11 cos ◊ij ‡12 sin ◊ij

≠‡21 sin ◊ij ‡22 cos ◊ij

‡33

R

d

b

œ DŒ, (4.15)

where ◊ij œ [0, 2fi) parametrizes the CŒ rotation and the constrained
signs ‡–— = ±1 are determined by the presence of the fi-rotation in the
orthogonal (l, n)-plane. This gives from Eq. (4.5), with J = J ,

H [l, m, n, ◊, ‡–— ]

=
ÿ

ÈijÍ

C

cos ◊ij

1

‡11li · lj + ‡22mi · mj

2

+ sin ◊ij

1

‡12li · mj ≠ ‡21mi · lj
2

+ niUij,33 · nj

D

. (4.16)

Now we proceed to integrate over the SO(2) angle ◊ij

e≠—He�[l
i

,l
j

,m
i

,m
j

,‡
–—

]

=
Ÿ

ÈijÍ

1
2fi

ˆ 2fi

0
d◊ij e≠H [l

i

,l
j

,m
i

,m
j

,◊
ij

,‡
–—

]

=
Ÿ

ÈijÍ
I0(J1

Ò

A2
ij + B2

ij). (4.17)

where I0(z) is a Bessel function of the first kind with the argument

A2
ij + B2

ij

=
Ë

‡11l(i) · l(j) + ‡22m(i) · m(j)
È2

+
Ë

‡12l(i) · m(j) ≠ ‡21m(i) · l(j)
È2

= (li · lj)2 + (mi · mj)
2 + (mi · lj)2 + (li · mj)

2

+ 2‡11‡22(mi · mj)(li · lj) ≠ 2‡12‡21(li · mj)(mi · lj). (4.18)

Now, since det2◊2 Uij = ‡11‡22 cos2 ◊ij + ‡12‡21 sin2 ◊ij = ±1 = det Uij ◊
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U33,ij , we can simplify

A2
ij + B2

ij

= (li · lj)2 + (mi · mj)
2 + (mi · lj)2 + (li · mj)

2

+ 2 det
2◊2

Uij

Ë

(mi · mj)(li · lj) ≠ (li · mj)(mi · lj)
È

= 1 + (ni · nj)
2 + 2 det

2◊2
Uij‡i‡jni · nj

= (‡i‡jni · nj + det
2◊2

Uij)
2, (4.19)

where on the second-to-last line we used the O(3) relation li ◊ mi = ‡ini.
Using det2◊2 Uij = Uij,33 gives the result

He�[ni, Uij ] = ≠
ÿ

ÈijÍ
—ni · Uij,33nj + log I0

1

—|‡i‡jni · nj + Uij,33|
2

,

(4.20)

where Uij,33 = ±1 œ Z2 since for Uij œ DŒ/CŒ ƒ { , c2(m)} = Z2 when
acting on ni. We recall that

I0(z) =
Œ

ÿ

k=0

(z2/4)k

(k!)2 , (4.21)

meaning that to lowest order in —, we generate the term

”He� [ni, Uij,33]

≥
ÿ

ÈijÍ

—2

4

C

1 + 2‡i‡jni · Uij,33nj + (ni · nj)
2
D

+ O(—4)

≥
ÿ

ÈijÍ

—2

2
ÂniUij,33 · Ânj + higher orders, (4.22)

in addition to the original Hamiltonian in terms of ni. By integrating out
Uij,33 œ Z2 one will find that all odd powers of ni · nj vanish and the first
non-trivial term is second order with DŒ-invariant scalar contractions

(ñi · ñj)
2 = (ni · nj)

2 = Tr[Qi · Qj ] + const., (4.23)

due to the fact that a pseudovector and a vector are indistinguishable for
even powers. At the same time, this is the minimal DŒh-invariant tensor
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contraction Tr[Qi · Qj ]. Higher order terms in Eq. (4.7) are high order
even functions such as [(ni · nj)2]2, [(ni · nj)2]3 etc. that can be neglected
as irrelevant. Note however, that the full expansion Eq. (4.7) for DŒ
contains odd powers of — with terms of the form —3‡i‡j [(ni · nj)2 + · · · ]
that feature the chiral order parameter ‡i. These chiral terms vanish
identically for the case DŒh when summing over the gauge fields Uij =
{ , ≠ } in DŒh = DŒ ◊ { , ≠ }.

4.3.2 Biaxial nematics
The DŒ- and DŒh-uniaxial nematics we just discussed are a well-known
and relatively simple case in the generalized nematic family. Since the
symmetries {CŒ, CŒv, CŒh, DŒ, DŒh} all contain a SO(2) part in the
plane perpendicular to the n, the vectors l and m disappear from the order
parameter, as we saw above. For the symmetries {Cn, Cnv, Cnh, S2n, Dn,
Dnh, Dnd} with finite n, however, there will be in-plane rotational symme-
try breaking and we need a secondary “biaxial” order parameter B[l, m]
or B[l, m, n] to capture these phase transitions.

D2h-biaxial order parameter

As can be seen from Table 4.1, for some axial nematics, there exist more
than one biaxial order parameters B. A familiar example is the biaxial
D2h-nematic, where we have the order parameters {B

D2h

1 , B
D2h

2 },

B
D2h

1 = l ¢ l ≠ 3 , (4.24a)

B
D2h

2 = m ¢ m ≠ 3 (4.24b)

which are both clearly invariant under D2 generated by {c2(n), c2(l)}
and as well as the inversion ≠ . Correspondingly, when integrating over
Uij œ D2h in the expansion Eq. (4.7), in the first non-trivial order one
will obtain the scalar contractions

≥ (lalb)i(lalb)j + (mamb)i(mamb)j + (nanb)i(nanb)j

= Tr[Q · Q] + Tr[BD2h

1 · B
D2h

1 ] + Tr[BD2h

2 · B
D2h

2 ] + const., (4.25)

which cannot be written as a contraction a single local quantity like in
Eq. (4.23). However, due to the O(3)-constraint,

l ¢ l + m ¢ m + n ¢ n = , (4.26)
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the commonly used D2h biaxial order parameter tensor B = l ¢ l ≠ m ¢ m
is just a linear combination of {B

D2h

1 , B
D2h

2 } and Eq. (4.25) reduces to
contractions of the two independent rank-2 tensors.

Generalized biaxial order parameters

To show how more complicated order parameters are derived using the
gauge theory, we next discuss the derivation of the secondary in-plane
order parameters BG of higher rank using the the order parameters of
D2d, D4h and C6h symmetries as examples.

We take D2d symmetry as an example of a nematic with a third-rank
order parameter. The D2d group is generated by {c2(n), c2(m), ‡d}, where

c2(n) =

Q

c

a

≠1 0 0
0 ≠1 0
0 0 1

R

d

b

, ‡d =

Q

c

a

0 1 0
1 0 0
0 0 1

R

d

b

(4.27)

are a 2-fold rotation about n and a reflection about the (l + m, n) plane
and c2(m) is as that in Eq. (4.14).

These lead to a 4-fold symmetry in the (l, m)-plane. To obtain the
order parameter describing this symmetry breaking, we follow the same
procedure discussed in the previous section, but now the gauge fields Uij

in Eq. (4.7) are elements of D2d. Integrating over Uij œ D2d, one will find
that the first non-trivial order is the second order with a term (ni · nj)2,
which indicates as expected that Q[n] is as well an order parameter for D2d

nematics. The 4-fold rotational symmetry combined with the reflections
starts showing up at the third order in Eq. (4.7), where one finds the
following contractions up to a constant factor

≥ ‡i‡j

Ë

(l̃i · m̃j)(m̃i · l̃j) + (l̃i · l̃j)(m̃i · m̃j)
È

(ñi · ñj)

= [(lamb + malb)nc]i[(lamb + malb)nc]j

= Tr
C

Ë

(l ¢ m + m ¢ l) ¢ n
È

i
·
Ë

(l ¢ m + m ¢ l) ¢ n
È

j

D

, (4.28)

where the third-rank contraction Tr(•abc · •abc) is determined up to the
symmetries of the order parameter tensor (symmetric in the first two
indices). By construction, the local quantity appeared in Eq. (4.28) is
D2d invariant, hence can be used to define a D2d-biaxial order parameter,

BD2d = (l ¢ m + m ¢ l) ¢ n. (4.29)
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The full order parameter of a D2d nematic is therefore given by

OD2d [l, m, n] = {ADŒh [n], BD2d [l, m, n]}. (4.30)

Continuing to D4h symmetry, after integrating out the gauge fields for
D4h, at the fourth order one will find the following contractions up to
constant factors and terms solely depending on the axial axis n,

≥ Tr
Ë

(l¢4
i + m¢4

i ) · (l¢4
j + m¢4

j ) + 3(l¢2
i ¢ m¢2

i

+ m¢2
i ¢ l¢2

i ) · (l¢2
j ¢ m¢2

j + m¢2
j ¢ l¢2

j )
È

. (4.31)

One can therefore recognize two D4h-invariant local tensors,

B
D4h

1 = l¢2 ¢ m¢2 + m¢2 ¢ l¢2 ≠ 4
15”ab”cd

p

µ=a,b,c,d
eµ

+
1
15

1

”ac”bd

p

µ=a,c,b,d
eµ + ”ad”bc

p

µ=a,d,b,c
eµ

2

, (4.32)

B
D4h

2 = l¢4 + m¢4 ≠ 2
15

ÿ

perm
”ab”cd

p

µ=a,b,c,d
eµ, (4.33)

where we have subtracted the isotropic trace-part for convenience (“perm”
denotes the summation over all non-equivalent pairings of the indices of
the Kronecker delta functions).

However, these two tensors are not independent. Due the O(3) rela-
tions Eq. (4.26), they satisfy

B
D4h

1 + B
D4h

2 = (l¢2 + m¢2)¢2 = ( ≠ n¢2)¢2. (4.34)

This in turn means that both B
D4h

1 and B
D4h

2 have dependence on the
axial axis n. Therefore, similarly to the D2h case, it is more convenient
to use the linear combination B

D4h

1 ≠ B
D4h

2 to characterize a D4h order.
In case of C6h symmetry, the biaxial order parameters are rank-6 tensor

and defined by the local contractions

≥ Tr
Ë

B
D6h

1,i · B
D6h

1,j + B
D6h

2,i · B
D6h

2,j + B
C6h

1,i · B
C6h

1,j + B
C6h

2,i · B
C6h

2,j

È

, (4.35)

up to constant factors and terms depending on the axial axis n, where
the explicit form of these tensors are given in Table 4.1. The D6h order
parameters appear here since D6h/C6h ƒ { , c2(l)} is a multiplicative
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group of order two acting trivially at even powers, leading to redundancy
at even orders of the expansion Eq. (4.7). The same phenomenon of
course occurs for the C6 quotients of {C6v, D6, D6h}, etc., and the sixth
order expansions coincide for the groups with identical order parameters.

Again due to the O(3) relation Eq. (4.26) and Eq. (4.2), these or-
der parameters are not independent. B

D6h

1 + B
D6h

2 = (l¢2 + m¢2)¢3 =
( ≠ n¢2)¢3 depends solely on n, and B

C6h

1 ≠ B
C6h

2 can be expressed as
a function of the pseudovector Ân. As a consequence, the linear combi-
nation B

D6h

1 ≠ B
D6h

2 and B
C6h

1 + B
C6h

2 are the appropriate in-plane order
parameters for these symmetries.

The above procedure of deriving the biaxial order parameter is valid
for all axial nematics with finite n-fold rotational symmetries. Naturally,
the rank of the biaxial order parameter tensor increases with n and be-
comes infinite when n æ Œ. This reflects the fact that a biaxial order
parameter does not exist for phases with an in-plane SO(2) symmetry,
{CŒ, CŒv, CŒh, DŒ, DŒh}.

4.3.3 Polyhedral nematics
Let us finally discuss the order parameters for the polyhedral groups.

Tetrahedral symmetries T , Td and Th

The proper tetrahedral group T can be generated by a two-fold rotation
c2(n), as that in Eq. (4.27), and a three-fold rotation acting as a cyclic
permutation of {l, m, n} given by

c3(l + m + n) =

Q

c

a

0 1 0
0 0 1
1 0 0

R

d

b

. (4.36)

These result in 12 proper rotations that leave a tetrahedron embedded in a
cube with normals l, m, n invariant. After summing over gauge fields Uij œ
T in the expansion Eq. (4.7), one finds in the third order the following
local contractions,

≥ ‡i‡jTr
Ë1

l̃ ¢ m̃ ¢ ñ
2

i
·
1

ÿ

cyc
l̃ ¢ m̃ ¢ ñ

2

j

È

=
1
3Tr

Ë1

ÿ

cyc
l ¢ m ¢ n

2

i
·
1

ÿ

cyc
l ¢ m ¢ n

2

j

È

, (4.37)
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where
q

cyc runs over cyclic permutations of {l, m, n}. Hence we can
define the T -invariant local tensor,

OT = OT
1 =

ÿ

cyc
l ¢ m ¢ n. (4.38)

OT in Eq. (4.38) contains only cyclic permutations of the three local
axes and carries a chirality, as there are no improper operations in the T
group. By interchanging two of these axes corresponding to a reflection,
we obtain an equivalent T -invariant tensor but with di�erent handedness,

OT
2 =

ÿ

cyc
m ¢ l ¢ n. (4.39)

One realizes that a linear combination of OT
1 and OT

2 will give an or-
dering tensor that is invariant under the symmetry group of a regular
tetrahedron, Td. Indeed, integrating out the gauge fields for the Td group,
where Td = T o { , ‡d} and ‡d defined in Eq. (4.27) generating the odd
permutation, one will find in the third order of Eq. (4.7)

≥ ‡i‡jTr
C

1

l̃ ¢ m̃ ¢ ñ
2

i
·
Ë

ÿ

cyc
(̃l ¢ m̃ + m̃ ¢ l̃) ¢ ñ

È

j

D

=
1
6Tr

C

Ë

ÿ

cyc
(l ¢ m + m ¢ l) ¢n

È

i
·
Ë

ÿ

cyc
(l ¢ m + m ¢ l) ¢ n

È

j

D

(4.40)

giving precisely the order parameter tensor

OT
d =

ÿ

cyc
(l ¢ m + m ¢ l) ¢ n (4.41)

as expected.
There is yet another point group belonging to the tetrahedral group

family, the group Th. Interestingly, due to Th = T ◊ { , ≠ }, all odd
orders in the expansion Eq. (4.7) vanish and the first non-trivial terms
appear in the fourth order with the contractions,

≥Tr
Ë1

l¢4 + m¢4 + n¢4
2

i
·
1

l¢4 + m¢4 + n¢4
2

j

È

+ Tr
Ë1

l¢2 ¢ m¢2 + m¢2 ¢ n¢2 + n¢2 ¢ l¢2
2

i

·
1

l¢2 ¢ m¢2+m¢2 ¢ n¢2 + n¢2 ¢ l¢2
2

j

È

. (4.42)
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The second term in the above expression gives the Th invariant order
parameter tensor

OT
h = O

T
h

1

= l¢2 ¢ m¢2 + m¢2 ¢ n¢2 + n¢2 ¢ l¢2 ≠ 2
5”ab”cd

p

µ=a,b,c,d
eµ

+
1
10

1

”ac”bd

p

µ=a,c,b,d
eµ + ”ad”bc

p

µ=a,d,b,c
eµ

2

, (4.43)

where we have subtracted the trace. The first term in Eq. (4.42) actually
coincides with the Oh ordering tensor OO

h . This is because Oh/Th ƒ
{ , ≠‡d} is a group of order two that leads to some redundant information
at even orders in the expansion. OT

h in Eq. (4.43) is not invariant under
interchanging l and m , which corresponds to the four fold rotation in Oh.
Therefore, we can define another Th-invariant tensor,

O
T

h

2 = m¢2 ¢ l¢2 + n¢2 ¢ m¢2 + l¢2 ¢ n¢2 ≠ 2
5”ab”cd

p

µ=a,b,c,d
eµ

+
1
10

1

”ac”bd

p

µ=a,c,b,d
eµ + ”ad”bc

p

µ=a,d,b,c
eµ

2

. (4.44)

Due to the O(3) constraints, however, this and the two terms in Eq. (4.42)
are not independent,

OO
h + O

T
h

1 + O
T

h

2

= (l ¢ l + m ¢ m + n ¢ n)¢2 + const.
= ¢ + const.. (4.45)

Therefore, both O
T

h

1 and O
T

h

2 su�ce to describe the Th orientational order.

Cubic symmetries O and Oh

The O group consists of all 24 proper rotations leaving a cube invariant,
and Oh in addition contains inversions, Oh = O ◊ { , ≠ }, and thus in
total has 48 elements. A set of generators for Oh is given by {c4(n), c3(l +
m + n), c2(m + n), ≠ }, where c3(l + m + n) is defined in Eq. (4.36), and
c4(n) and c2(m + n) are given as

c4(n) =

Q

c

a

0 ≠1 0
1 0 0
0 0 1

R

d

b

, c2(m + n) =

Q

c

a

≠1 0 0
0 0 1
0 1 0

R

d

b

. (4.46)
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Non-zero terms for Oh appear likewise in fourth order of the expansion
Eq. (4.7) and now one will obviously find the same contraction as the first
term in Eq. (4.42) up to some a constant factor, hence one can define the
Oh order parameter tensor as

OO
h = l¢4 + m¢4 + n¢4 ≠ 1

5
ÿ

perm
”ab”cd

p

µ=a,b,c,d
eµ. (4.47)

For the proper subgroup O, we have an additional non-trivial third order
in the expansion, which is simply ≥ ‡i‡j giving the chiral order parameter.

Icosahedral symmetries I and Ih

The icosahedral group I consists of all 60 proper rotations that leave
a icosahedron invariant and Ih = I ◊ { , ≠ } contains additionally 60
improper rotations. An icosahedron centered at (0, 0, 0) can be defined
by its 12 vertexes at [132]

(±1
2, 0, ±·

2 ), (±·

2 , ±1
2, 0), (0, ±·

2 , ±1
2 ), (4.48)

where · = (
Ô

5 + 1)/2 is the golden ratio. It is invariant under a five fold
rotations about its six diagonals. The axis l + ·n is the diagonal passing
trough vertices (≠1

2 , 0, ≠ ·
2 ) and ( 1

2 , 0, ·
2 ). A set of generators of Ih is given

by {c5(l + ·n), c3(l + m + n), c2(n), ≠ }, where c3(l + m + n) and c2(n)
are defined in Eq. (4.36) and Eq. (4.27), respectively, c5(l + ·n) is given
by

c5(l + ·n) =

Q

c

a

1/2 ≠·/2 1/(2· )
·/2 1/(2· ) ≠1/2

1/(2· ) 1/2 ·/2

R

d

b

. (4.49)

The minimal non-trivial Ih invariant tensor appears in the sixth order
in the expansion Eq. (4.7), leading to a rank-6 tensor,

OI
h =

ÿ

cyc

Ë

l¢6 +
ÿ

{+,≠}

11
2 l ± ·

2m ± 1
2·

n
2¢6È

≠ 1
7

ÿ

perm
”ab”cd”ef

p

µ=a,b,c,
d,e,f

eµ. (4.50)

Moreover, similar to the O-nematic case, an I-invariant order parame-
ter consists of an orientational part and a chiral part and is accordingly
defined as OI = {OI

h , ‡}.
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4.4 Concluding remarks
The rotational symmetries of three dimensional isotropic space O(3) can in
principle break to any non-trivial point group. According to the Landau-
de Gennes paradigm, each symmetry is accompanied by a order parameter
and associated phase transitions. These order parameters are high-rank
tensors and quite involved in general. In virtue of the gauge theory intro-
duced in previous chapter, we have developed a systematic way of classi-
fying these order parameter tensors and have presented the explicit form
of these order parameters for an extensive selection of the physically most
relevant symmetries. Although we arrived at these results utilizing a par-
ticular gauge theoretical lattice model, the results are of course indepen-
dent of the gauge theoretical machinery. With these order parameters it
is in principle possible to study the nematic phases via Landau-de Gennes
theories by considering all symmetry allowed couplings of the order pa-
rameters, for example using the approach outlined in Ref. [91]. Given the
universality of the applications of the orientational tensor order parame-
ters our work is of general interest for many di�erent fields; in particular
we anticipate that our results can provide for a road map for the search
of new nematic phases of matter.
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