
 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/39638 holds various files of this Leiden University 
dissertation. 
 
Author: Pelt D.M. 
Title: Filter-based reconstruction methods for tomography 
Issue Date: 2016-05-03 
 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/39638
https://openaccess.leidenuniv.nl/handle/1887/1�


7
Integrating TomoPy and the

ASTRA toolbox

7.1 Introduction
In transmission X-ray tomography experiments performed at synchrotron facilities,
large amounts of projection data are produced in a short time. Current detector
technology allows collection of projections at kHz frame rate, enabling 3D imaging of
dynamic systems [Gib+15], in–situ studies of materials [Pat+16], and monitoring the
evolution of biological systems [Moo+13].

Processing these datasets in a time comparable with data collection is essential to
properly capture the sample evolution and adjust the instrument settings during the
experiment; this requires algorithms optimized for high-performance computing (HPC),
which have to be easily available and usable by the beamline users. Furthermore,
many advanced experiments, such as those with extremely high spatial or temporal
resolutions [SA10; Mok+13] and of dose-sensitive objects [Lov+13], require a variety
of pre-processing, post-processing, and reconstruction algorithms to reduce artifacts in
the final reconstruction.

In this chapter, we present the integration of two Python toolboxes which, to-
gether, allow users to easily apply advanced tomographic algorithms on large-scale
experimental datasets in an efficient way: the TomoPy toolbox [Gür+14] and the

This chapter is based on:
D. M. Pelt, D. Gürsoy, W. J. Palenstijn, J. Sijbers, F. De Carlo, and K. J. Batenburg. “Integration
of TomoPy and the ASTRA toolbox for advanced processing and reconstruction of tomographic
synchrotron data”. Journal of Synchrotron Radiation (Submitted for publication).

107



108 CHAPTER 7. INTEGRATING TOMOPY AND THE ASTRA TOOLBOX

ASTRA toolbox [Aar+15]. By combining both toolboxes, we are able to leverage the
advantages of both to create an improved workflow for beamline users.

The TomoPy toolbox is specifically designed to be easy to use and deploy at a
synchrotron facility beamline. It supports reading many common synchrotron data
formats from disk [De +14], and includes several pre-processing and post-processing
algorithms commonly used for synchrotron data. TomoPy also includes several re-
construction algorithms, which can be run on multi-core workstations and large-scale
computing facilities. The algorithms in TomoPy are all CPU-based, however, which
can make them prohibitively slow in the case of iterative methods, which are often
required for advanced tomographic experiments.

The ASTRA toolbox provides highly efficient tomographic reconstruction methods
by implementing them on Graphic Processing Units (GPUs). It includes advanced
iterative methods and allows for very flexible scanning geometries. The ASTRA tool-
box also includes building blocks which can be used to develop new reconstruction
methods, allowing for easy and efficient implementation and modification of advanced
reconstruction methods. However, the toolbox is only focused on reconstruction, and
does not include pre-processing or post-processing methods that are typically required
for correctly processing synchrotron data. Furthermore, no routines to read data from
disk are provided by the toolbox.

By integrating the ASTRA toolbox in the TomoPy framework, the optimized GPU-
based reconstruction methods become easily available for synchrotron beamline users,
and users of the ASTRA toolbox can more easily read data and use TomoPy’s pre-
processing and post-processing methods.

This chapter is structured as follows: in Section 7.2, we give a more detailed
explanation of TomoPy and the ASTRA toolbox, and explain how we integrated them.
In Section 7.3, we give general instructions on how to install and use the combined
toolboxes in practice. An example for a specific dataset is given in Section 7.4, and we
conclude the chapter in Section 7.5.

7.2 Integrating TomoPy and the ASTRA toolbox

TomoPy

TomoPy is an open-source Python toolbox to perform tomographic data processing
and image reconstruction tasks, developed at the Advanced Photon Source of Argonne
National Laboratory [Gür+14]. The aim of the toolbox is to provide a high-level
interface for data analysis and tomographic reconstruction of datasets at synchrotron
light sources. TomoPy relies on standard scientific packages like NumPy, SciPy, and
Scikit, and offers a free, open-source, modular, readable and manageable framework
that researchers can use and contribute to easily. Python also offers easy integration
with C or Fortran code through shared libraries in situations where computation speed
is critical. In addition, the native control software running at several synchrotron



7.2. INTEGRATING TOMOPY AND THE ASTRA TOOLBOX 109

facilities, EPICS1, is accessible via Python2, allowing simultaneous data analysis and
real-time feedback on the instrumentation status. So far, TomoPy has been employed in
reconstructions for various techniques from micro-CT [Duk+15] to X-ray fluorescence
tomography [Gür+15b], X-ray scattering tomography [Gür+15a], Lorentz electron
microscopy [PG15] and deployed on large scale computing facilities [Biç+15].

TomoPy includes a plethora of processing functions from pre-processing to im-
age reconstruction of synchrotron tomographic data. It includes ring removal algo-
rithms, such as generalized Titarenko’s algorithm [Miq+14], the Fourier Wavelet ap-
proach [Mün+09], and recently, the ring correction based on median filters [MWC15].
The estimation of rotation center can be calculated using the image entropy calcu-
lation based method [DBS06] or Vo’s Fourier method [Vo+14]. A single-step X-ray
phase retrieval algorithm based on Paganin filtering is also available for phase-contrast
datasets [Pag+02].

In addition to Gridrec [Dow+99], which is the traditionally used analytical image
reconstruction algorithm, TomoPy also offers variants of algebraic reconstruction meth-
ods (ART, BART, SIRT), and maximum-likelihood expectation maximization (ML-EM)
approaches, as well as their regularized variations (PML). Ordered-subset implemen-
tations of all algorithms are also available for efficient calculations, for example, the
well-known ordered-subset expectation maximization (OSEM) algorithm. Another
important property of TomoPy is that it provides X-ray matter interaction simulation
tools, such as X-ray transmission or wave propagation, that can be used to evaluate
efficiency of various coding scenarios or as a platform for modeling. TomoPy algorithms
are also suitable for grid-computing and massive parallelization when needed. Exper-
iments with iterative algorithms and large tomography datasets show that TomoPy
iterative methods can scale up to 8K cores on an IBM BG/Q supercomputer with almost
perfect speedup and can reduce total reconstruction times for large datasets by more
than 95.4% on 32K cores relative to 1K cores. Moreover, the average reconstruction
times are improved from 2 hours (256 cores) to 1 minute (32K cores), thus enabling
near-real-time use [Biç+15].

The ASTRA toolbox
The ASTRA toolbox is an open-source software toolbox developed at the University
of Antwerp, Belgium, and at the Centrum Wiskunde Informatica (CWI), Amsterdam,
The Netherlands, that is focused on the reconstruction of 2D and 3D tomographic
datasets [Aar+15]. The aim of the toolbox is to provide a fast and flexible development
platform for tomographic reconstruction algorithms. Because of its flexibility, it can be
applied to various scanning geometries and acquisition modes, such as (bio)medical and
industrial µCT [Pla+15], electron tomography [Roe+12], neutron tomography [PL13;
Van+15], and synchrotron tomography [Rei+13]. The toolbox uses Graphics Processing
Units (GPUs) to perform accelerated parallel computations, reducing the computation
time of many tomographic operations [PBS11]. Most 2D operations can also be run on

1http://www.aps.anl.gov/epics
2http://pyepics.github.io/pyepics/



110 CHAPTER 7. INTEGRATING TOMOPY AND THE ASTRA TOOLBOX

Method CPU GPU Method CPU GPU

To
m

oP
y

ART ×

A
ST

R
A

ART ×
BART × BP × ×
Gridrec × CGLS × ×
MLEM × FP × ×
OSEM × FBP × ×
PML × MLEM ×
OSPML × SART × ×
SIRT × SIRT × ×

Table 7.1: List of tomographic reconstruction methods included in TomoPy and ASTRA for two-dimensional
parallel-beam geometries.

standard CPUs, in which case the toolbox supports different projection kernels, i.e. ways
of discretizing the projection operations. A comparison of various projection kernels
can be found in [XM06]. Through a MATLAB and Python interface, the tomographic
operations can be easily used and combined with advanced numerical code. The
toolbox also provides a matrix-like interface to linear tomography operators, allowing
them to be easily used in existing and new code [Ble+15].

The ASTRA toolbox includes many popular tomographic reconstruction methods
(see Table 7.1), such as the analytic filtered backprojection (FBP) method and the
iterative SIRT and CGLS methods. These methods support various parameters that can
help improve reconstruction quality, for example the choice of filter to use in the FBP
method, and additional nonnegativity constraints in the SIRT method. An important
feature of the ASTRA toolbox is that it also provides building blocks that can be used
to develop advanced tomographic reconstruction methods. For example, using the
optimized methods for the forward projection of objects and the backprojection of
sinograms, it is possible to develop efficient advanced iterative methods, such as total
variation regularized methods, using the ASTRA toolbox. A recent addition to the
toolbox is a plugin system, which enables algorithm developers to easily distribute new
tomographic reconstruction methods, and ASTRA users to easily install and use them
with minimal changes in production scripts. With the TomoPy integration presented in
this chapter, these ASTRA plugins will automatically be usable in TomoPy as well.

Implementation
The code to integrate TomoPy and the ASTRA toolbox is written in the Python language,
since TomoPy is mainly written in Python and the ASTRA toolbox includes a Python
interface as well. Specifically, a first step was to add code to TomoPy that enables the
use of other Python libraries to perform tomographic reconstruction instead of TomoPy’s
included algorithms. Using this new feature, code was added which enables the use
of the ASTRA toolbox to perform the reconstruction. Note that other tomographic
reconstruction libraries that include a Python interface can be integrated in TomoPy in
the same way.



7.3. INSTALLATION AND USAGE 111

Figure 7.1: Schematic overview of the workflow of processing a dataset with the integrated TomoPy and
ASTRA framework. Note that the reconstruction step can be performed by either TomoPy or the ASTRA
toolbox.

In the interfacing code, the geometry defined by TomoPy (i.e., the number of detec-
tor pixels, the angles for which projections are acquired, and the center of rotation) is
translated to a corresponding ASTRA geometry, and the chosen ASTRA reconstruction
method is performed. Afterwards, the result of the reconstruction is stored in TomoPy
memory, and all ASTRA objects are cleaned up. In this way, the reconstruction step is
completely self-contained and independent of any pre-processing or post-processing
step. An advantage of this independence is that user scripts do not have to be rewritten
to use the ASTRA toolbox: only the reconstruction function call has to be modified.
Also, changing between different reconstruction methods, between CPU and GPU im-
plementations, and between different reconstruction parameters usually only requires
changes in a single line of the user script. Examples of these minimal changes are
shown in Section 7.3. A schematic overview of the full processing workflow from
loading the raw data to analysis is shown in Fig. 7.1.

7.3 Installation and usage

Installation
Both TomoPy and the ASTRA toolbox can be installed using the Conda package man-
agement system.3 The advantage of using Conda over other Python package manage-
ment systems is that Conda allows for the inclusion of non-Python library dependen-
cies, which are commonly needed for numerical toolboxes such as TomoPy and the
ASTRA toolbox. Since the goal of both toolboxes is to be easily installable at the var-
ious workstations and computational clusters available at synchrotrons, which may
each be running a different environment of installed libraries and library versions, the
ability to tightly control the library dependencies is important to create a user-friendly
installation process. To install TomoPy in a Conda environment, the following com-
mand can be used:

$ conda install tomopy \
-c https://conda.anaconda.org/dgursoy

A similar command can be used to install the ASTRA toolbox:
3http://conda.pydata.org



112 CHAPTER 7. INTEGRATING TOMOPY AND THE ASTRA TOOLBOX

$ conda install astra-toolbox \
-c https://conda.anaconda.org/astra-toolbox

Note that both toolboxes can be installed and used independently from each other.
TomoPy will automatically detect whether the ASTRA toolbox is available, and enables
the use of ASTRA methods if this is the case. Both toolboxes can also be compiled
and installed from source code, which can be downloaded from their respective git
repositories.4,5 Compared to installing using Conda, it is easier to make modifications
and contribute to the development of the toolboxes when installing from source code,
but the compilation step requires the availability of several library dependencies on
the workstation.

Usage
We will now show how the new features can be used after installation of both tool-
boxes. The following example script shows a simple standard TomoPy workflow, load-
ing data from disk, normalizing the data using the flatfield and darkfield images, and
finally reconstructing with the standard TomoPy gridrec method:

1 import tomopy
2

3 # Read data from APS 32ID beamline
4 prj, flat, dark =
5 tomopy.exchange.read_aps_32id('data.h5')
6

7 # Normalize data
8 prj = tomopy.normalize(prj, flat, dark)
9

10 # Define acquired angles
11 ang = tomopy.angles(1024)
12

13 # Reconstruct data using TomoPy gridrec
14 rec = tomopy.recon(prj, ang, algorithm='gridrec')

To modify this script to reconstruct using the ASTRA toolbox instead, only line 14 has
to be changed, replacing gridrec with tomopy.astra, specifying which method to
reconstruct with in the method option, and specifying which type of projection kernel
to use in the proj_type option. An overview of common options that are used when
reconstructing with the ASTRA toolbox is given in Table 7.2. For example, to recon-
struct with FBP using a voxel-driven kernel, we change the final part of the above
script to:

13 # Reconstruct data using ASTRA FBP
14 rec = tomopy.recon(prj, ang, algorithm=tomopy.astra,
15 options={'method': 'FBP', 'proj_type': 'linear'})

4https://github.com/tomopy/tomopy
5https://github.com/astra-toolbox/astra-toolbox



7.3. INSTALLATION AND USAGE 113

Option Description Example values

'method' Which reconstruction method to use 'FBP_CUDA', 'SIRT',
'CGLS_CUDA', . . .

'proj_type' Which projection kernel to use 'linear', 'strip',
'cuda', . . .

'num_iter' Number of iterations to use in
iterative method

10, 100, 200, . . .

'extra_options' Python dictionary with extra
method-specific options

method-specific

'gpu_list' List of GPU indices to use for
reconstruction

[0, 1, 2, 3], . . .

Table 7.2: List of common options that are used when reconstructing with the ASTRA toolbox through
TomoPy.

When running on a machine with a GPU with CUDA capabilities, the same recon-
struction can be performed using optimized GPU code, greatly decreasing the needed
computation time. This can be realized by specifying cuda as the projection kernel,
and use a GPU-enabled method (FBP_CUDA):

13 # Reconstruct data using ASTRA FBP on the GPU
14 rec = tomopy.recon(prj, ang, algorithm=tomopy.astra,
15 options={'method': 'FBP_CUDA', 'proj_type': 'cuda'})

Iterative methods can be used by specifying the corresponding ASTRA method (e.g.
CGLS_CUDA for a GPU-enabled CGLS method), and the number of iterations to use in
the num_iter option:

13 # Reconstruct data using ASTRA CGLS on the GPU
14 rec = tomopy.recon(prj, ang, algorithm=tomopy.astra,
15 options={'method': 'CGLS_CUDA', 'proj_type': 'cuda',
16 'num_iter': 10})

Most reconstruction methods in the ASTRA toolbox support several parameters that can
help improve reconstruction quality. In the TomoPy integration, these parameters are
specified by supplying them in the extra_options setting. For example, to add a non-
negativity constraint to the GPU-enabled SIRT method, we add 'MinConstraint':0 to
the extra_options setting (note that lower bounds other than zero can also be used):

13 # Reconstruct data using ASTRA SIRT on the GPU,
14 # with nonnegativity constraint
15 extra_options = {'MinConstraint':0}
16 rec = tomopy.recon(prj, ang, algorithm=tomopy.astra,
17 options={'method': 'SIRT_CUDA', 'proj_type': 'cuda',
18 'num_iter': 100, 'extra_options': extra_options})

An overview of the various parameters that are supported by the reconstruction methods
can be found on the website of the ASTRA toolbox.6

6http://sourceforge.net/p/astra-toolbox/wiki/Home/



114 CHAPTER 7. INTEGRATING TOMOPY AND THE ASTRA TOOLBOX

If multiple GPUs are installed in the workstation running TomoPy and the ASTRA
toolbox, the computations can be distributed over multiple GPUs by specifying a list
of GPU indices in the gpu_list option. Since each slice of the reconstruction can be
computed independently from the other slices, a significant reduction of computation
time can be achieved by distributing the computations in this way. For example, to
use four installed GPUs, labeled 0 through 3, we use [0, 1, 2, 3] as the gpu_list:

13 # Reconstruct data using ASTRA CGLS on 4 GPUs
14 rec = tomopy.recon(prj, ang, algorithm=tomopy.astra,
15 options={'method': 'CGLS_CUDA', 'proj_type': 'cuda'
16 ,'num_iter': 10, 'gpu_list': [0, 1, 2, 3]})

Finally, ASTRA plugins can be used by first registering them with the ASTRA toolbox
itself, and using the method name defined by the plugin as the method option. Extra
parameters for the reconstruction can be specified using the extra_options setting,
similar to standard ASTRA methods. An ASTRA plugin is typically distributed as a
Python class within a Python package, which has to be imported separately. After im-
porting, the astra.plugin.register method is used to register a plugin with the AS-
TRA toolbox. For example, suppose that there is a plugin class tvtomo.plugin within
the tvtomo package, with the method name TV-FISTA and an additional parameter
tv_reg. To use this plugin in TomoPy, the following code can be used:

13 # Reconstruct data using an ASTRA plugin,
14 # performing FISTA total variation minimization
15 import astra
16 import tvtomo
17 astra.plugin.register(tvtomo.plugin)
18 extra_options = {'tv_reg':1}
19 rec = tomopy.recon(prj, ang, algorithm=tomopy.astra,
20 options={'method': 'TV-FISTA', 'proj_type': 'cuda',
21 'num_iter': 100, 'extra_options':extra_options})

Computation time
In Fig. 7.2, a comparison is shown between the computation times per slice of recon-
structions computed with different methods of both TomoPy and the ASTRA toolbox,
for a single slice of a dataset with 1200 detector pixels and 1024 projections. All
reconstructions were computed on a workstation with two Intel Xeon E5-2623 v3 CPUs
(four cores each) and two Geforce GTX Titan Z cards (two GPUs each), running the
Fedora 21 operating system. We compare the computation times of gridrec computed
using TomoPy, FBP computed using the ASTRA toolbox, and 100 iterations of SIRT
computed using both TomoPy and the ASTRA toolbox. For the CPU-based methods of
TomoPy and the ASTRA toolbox, computation times are shown for using both a single
core and all eight cores of the machine. For the GPU-based methods of the ASTRA
toolbox, computation times are shown for using both a single GPU and all four installed
GPUs.



7.4. EXAMPLE 115

Figure 7.2: Computation time per slice of reconstructing with the gridrec method computed with TomoPy,
the FBP method computed with the ASTRA toolbox, and 100 iterations of the SIRT method computed with
both, for 1024 projections and a detector width of 1200 pixels. Results are shown for using a single CPU
core, 8 CPU cores, a single GPU, and 4 GPUs.

The results of Fig. 7.2 show that for the SIRT method, a significant reduction of
computation time can be achieved by using GPUs instead of CPUs for computation,
with the computation time per slice when using TomoPy and eight CPU cores is roughly
700 times the computation time when using the ASTRA toolbox and four GPUs. Note
that this reduction of computation time can be important in practice, since in this
case, computing the SIRT reconstruction of 200 slices would take roughly 3 minutes
with four GPUs, compared to more than 33 hours with eight CPU cores. Therefore, by
using GPU-based methods, it is possible to compute iterative reconstructions during
experiments, enabling direct inspection of the reconstructions and the possibility of
making adjustments to improve the experimental results during the experiment itself.

In contrast to the iterative SIRT method, TomoPy’s CPU-based gridrec method
takes approximately the same time to compute as the GPU-based FBP method. This is
expected for problems with a relatively large number of projections, since the most
costly computations of the gridrec method are the 2D Fourier transforms, for which the
computation time is independent of the number of projections. On the other hand, in
the FBP method the most costly computation is the backprojection operation, for which
the computation time scales linearly with the number of projections. Note that the
reconstruction quality of gridrec and FBP reconstructions are usually similar [MS12].

7.4 Example
In this section, we give an example of the full processing workflow of reconstructing
a tomographic synchrotron dataset, acquired at the 32-ID beamline of the Advanced



116 CHAPTER 7. INTEGRATING TOMOPY AND THE ASTRA TOOLBOX

(a) (b) (c) (d)

Figure 7.3: Reconstructions of a single slice of a sample in a high pressure diamond anvil cell which blocks 86
of the 359 projections over 180°, with 2560 detector pixels per projection. Reconstructions are computed with
(a) gridrec (TomoPy), (b) and (c) SIRT with a nonnegativity constraint (ASTRA), and (d) TV-minimization
using FISTA (ASTRA plugin). In (a), (c), and (d), a ring-removal pre-processing step [Mün+09] was applied
using TomoPy. A line profile of the center, indicated in (a) by a dotted line, is shown for each reconstruction,
as well as a cropped 128× 128 pixel section of the upper left part of the sample.

Photon Source of Argonne National Laboratory. We compare the resulting reconstruc-
tions of a single slice using various reconstruction methods, both with and without
ring-removal pre-processing applied. The dataset is of a sample under pressure in a
diamond anvil cell, whose frame blocks part of the acquired projections, rendering
them unusable. The result is a limited-angle tomographic problem, where the acquired
projections do not span the entire 180° range. Specifically, projections of 2160× 2560
pixels were acquired in 0.5° intervals over a 137° range, for a total of 273 projections. It
is typically difficult to obtain accurate reconstructions for limited-angle problems, with
standard methods producing wedge artifacts in the direction of the missing projection
angles [DB98].

In Fig. 7.3, reconstructions are shown of a single slice of the sample, reconstructed
with various reconstruction methods. In each reconstruction except for the one shown in
Fig. 7.3b, a ring-removal pre-processing method that is included in TomoPy [Mün+09]
was used to suppress ring artifacts. In Fig. 7.3a, the reconstruction computed with
TomoPy’s gridrec method is shown. In Figs. 7.3b and 7.3c, ASTRA’s GPU-enabled SIRT
method was used to compute the reconstructions. Finally, a reconstruction regularized
with total variation minimization is shown in Fig. 7.3d, computed using an ASTRA
plugin that implements the FISTA method [BT09a]. The Python script used to compute
the reconstruction of Fig. 7.3c is given below. Note that the scripts used to compute the
other reconstructions are similar, only requiring minimal changes like the ones given
in Section 7.3.

1 import tomopy
2 import numpy as np
3

4 # Set up dataset variables
5 file_name = './data.h5'



7.4. EXAMPLE 117

6 center = 1286 # center of rotation
7 start = 740 # first slice
8 end = 1500 # last slice
9 miss_ang = [142, 228] # blocked angle range

10

11 # Read data from APS 32ID beamline
12 prj, flat, dark =
13 tomopy.exchange.read_aps_32id(file_name,
14 sino=(start, end))
15

16 # Remove the blocked projections
17 ang = tomopy.angles(359)
18 prj = np.concatenate((prj[:miss_ang[0]], prj[miss_ang[1]:]),
19 axis=0)
20 ang = np.concatenate((ang[:miss_ang[0], ang[miss_ang[1]:]))
21

22 # Normalize data
23 prj = tomopy.normalize(prj, flat, dark)
24

25 # Remove ring artifacts
26 prj = tomopy.remove_stripe_fw(prj)
27

28 # Setup ASTRA options
29 opts = {}
30 opts['method'] = 'SIRT_CUDA'
31 opts['num_iter'] = 100
32 opts['proj_type'] = 'cuda'
33 opts['extra_options'] = {'MinConstraint':0}
34

35 # Perform reconstruction
36 rec = tomopy.recon(prj, ang, algorithm=tomopy.astra,
37 options=opts)
38

39 # Export reconstructed slices as TIFFs
40 tomopy.io.writer.write_tiff_stack(rec, fname='./recs',
41 start=start)

The results of Fig. 7.3 show that the gridrec reconstruction includes large amounts
of noise artifacts, especially visible in the line profile, as well as wedge artifacts resulting
from the missing projection angles. These artifacts can make further analysis, such
as volume estimation, difficult or impossible, even with further post-processing. The
iterative reconstructions, which can be computed efficiently using the GPU-enabled
methods of the ASTRA toolbox, include less artifacts, significantly reducing noise in
the reconstructed image. Note, however, that significant ring artifacts are present in
Fig. 7.3b, where we did not use one of TomoPy’s ring-removal pre-processing methods.
In the reconstruction of Fig. 7.3c, the ring artifacts are significantly reduced, which
shows that TomoPy’s advanced pre-processing methods can be used to improve the
reconstruction quality of ASTRA’s reconstruction methods. Finally, the total variation



118 CHAPTER 7. INTEGRATING TOMOPY AND THE ASTRA TOOLBOX

minimization reconstruction of Fig. 7.3d shows that advanced regularized reconstruc-
tion methods can be distributed as ASTRA plugins and be used in combination with
TomoPy to minimize artifacts in the final reconstruction.

7.5 Conclusions
In this chapter, we presented the integration of two Python toolboxes used for pro-
cessing tomographic data: TomoPy and the ASTRA toolbox. The integration allows
for combining the advanced I/O, pre-processing, and post-processing capabilities of
TomoPy with the advanced tomographic reconstruction methods of the ASTRA toolbox.
One advantage of the integration is that it enables the use of GPU-enabled methods
included in the ASTRA toolbox to significantly improve computation time, especially
for iterative reconstruction methods. Another advantage is that advanced iterative
methods can be written and distributed as ASTRA plugins and subsequently used within
TomoPy. Code has been added to TomoPy that automatically creates the necessary
ASTRA objects, cleaning them up after computation has finished. As a result, only
minimal changes are needed in user scripts to use the ASTRA toolbox within TomoPy.

We have shown how to install both toolboxes on a single machine, and how to
use the various features of the integrated software. In particular, we have shown
how to adjust an existing TomoPy script to reconstruct with the ASTRA toolbox, how
to change between different ASTRA reconstruction methods and between CPU and
GPU implementations, and how to specify options for each method. Furthermore, an
example was given where an ASTRA plugin was used to reconstruct the acquired data.
For a specific dataset, we compared the computation time of various methods included
in TomoPy and the ASTRA toolbox, which showed that the GPU-enabled iterative SIRT
method of the ASTRA toolbox significantly reduced computation time compared to
the CPU-based SIRT method of TomoPy. Finally, we computed reconstructions using
different reconstruction methods for a single slice of experimental data, showing how
ASTRA’s advanced reconstruction methods in combination with TomoPy’s advanced
pre-processing methods can help reduce artifacts in reconstructions of tomographic
synchrotron data, in particular in challenging scenarios where only a limited set of
projections are available.


