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6
Application of NN-FBP in

Electron Tomography

6.1 Introduction
Gold nanoparticles (NPs) have truly unique electronic, optical as well as catalytic
properties, rendering them ideal for numerous applications in fields as diverse as photo-
voltaics, optoelectronics and biomedicine [ZCG09; ZO11; RM05; CL14]. Furthermore,
gold NPs can be prepared with almost any desired shape. Crucial to their application,
however, is their exact structure, and specifically their anisotropy as well as the surface
facets they expose. Currently, it is empirically understood how particle size and shape
may be controlled during synthesis [Pér+05; Grz+08; Sán+06; THY08]. Although
transmission electron microscopy (TEM) has become a routine tool to investigate e.g.
particle size, (atomic) structure and shape, increasingly advanced TEM is required for a
more in-depth characterization. For example, the surface facets of Au nanorods have a
major influence on crucial effects such as reactivity and ligand adsorption and there has
been controversy regarding facet indexing [Pec+08; Car+10; Kat+10]. Indeed, TEM
images are only two-dimensional (2D) projections of three-dimensional (3D) objects.
To overcome this problem, 3D electron microscopy, or “electron tomography” was
developed [Kos+97; Fra92]. In 2003, Paul Midgley and co-workers demonstrated the
potential of the technique in materials science based on high angle annular dark field
scanning transmission electron (HAADF-STEM) microscopy [MW03; MD09]. Since
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94 CHAPTER 6. APPLICATION OF NN-FBP IN ELECTRON TOMOGRAPHY

then, different electron microscopy modes have been combined successfully with to-
mography, leading to a broad variety of 3D structural and compositional information
at the nanoscale [Wol+10; Wey+06; Bar+08; MB12; Gor+11; Kos+00]. Very often,
electron tomography is used to determine the size and shape of the particles and
nowadays, 3D reconstructions can even be obtained with a resolution at the atomic
level [Gor+12a; Van+11]. Although these investigations provide very precise infor-
mation on the NP morphology, both the acquisition of tilt series as well as the 3D
reconstruction is very time consuming and it is consequently not straightforward to
acquire results in 3D that are statistically relevant, which is a major drawback e.g. when
using electron tomography to optimize the synthesis of NPs. This problem will be even
more essential for anisotropic NPs that are currently receiving a lot of attention because
of the increased flexibility they provide to tune the final (optical) properties [GS07;
NPK10; GGL12]. Since the optimization of the production of NPs with a specific shape
would largely benefit from statistical 3D results with a nanometer resolution, one of the
emerging challenges in the field of electron tomography is to increase the throughput
of 3D reconstructions of NPs. At the same time, the quality of the reconstructions
should be maintained and should enable one to obtain reliable and quantitative results
concerning parameters such as particle size and surface morphology.

In this chapter, we will determine the 3D shape and size of a large set of anisotropic
Au NPs. We will make effective use of a new approach for electron tomographic
reconstructions that is based on artificial neural networks. The neural network filtered
backprojection method (NN-FBP) is a recently developed reconstruction technique
that has been applied successfully to X-ray tomography (see Chapter 5); however
the implementation for electron tomography is completely new. The method that we
propose will enable us to reduce the number of necessary projection images for a 3D
reconstruction by a factor of 5 or more. In this manner, the acquisition time and time
that is necessary for a 3D reconstruction is significantly reduced, enabling 3D results
that are of statistical relevance.

6.2 Neural network filtered backprojection method
The sample that was investigated contains Au NPs yielding different morphologies:
nanorods, nanotriangles, nanoprisms and nanospheres. An HAADF-STEM overview
image of the sample is provided in Fig. 6.1.a. Although this image only corresponds to
a 2D projection of a set of 3D objects, it is already clear that different morphologies
occur. In conventional electron tomography, a large set of 2D projection images is
acquired from the same region of interest over a large tilt range with a tilt increment
of typically 1° or 2°. As all the investigated nanoparticles have a thickness below 100
nm, the projection requirement for tomography is satisfied [MW03; Erc+06]. Once
this so-called “tilt series” is aligned, the images serve as an input for a mathematical
algorithm that enables one to reconstruct the original 3D structure. Very often, the
3D reconstruction is performed using the “Weighted Backprojection” algorithm (also
known as Filtered Backprojection) or using the “Simultaneously Iterative Reconstruction
Technique” (SIRT). The outcome of this procedure for the different NPs in Fig. 6.1.a is
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(a) (b)

Figure 6.1: (a) The HAADF-STEM overview image shows the presence of several morphologies in the sample,
with indication of (1) a nanotriangle, (2) a nanosphere and (3) a nanorod. (b) 3D volume renderings of the
corresponding nanoparticles are presented.

visualized in Fig. 6.1.b. The reconstructions are calculated using the SIRT algorithm and
are based on a series of 151 images, acquired over a tilt range of± 75°. Since the quality
of 3D reconstructions based on the conventional approach is predominantly determined
by the number of projection images [CDK70; Gil72; MVB11], these experiments are
very time-consuming and require sufficient measurement time at the TEM.

The key to increasing the image quality if only a small number of 2D projections are
available, is the effective use of prior knowledge in the reconstruction. By exploiting
rather generic features of the particles, without assuming a specific shape or morphology,
this additional knowledge is used to compute a particle shape that better approximates
the true morphology. Various algorithms involving prior knowledge are currently in use
in electron tomography (e.g. the DART algorithm for discrete tomography [BS11] and
multiple methods for Total Variation Minimization [Gor+12b]), where the particular
prior knowledge is encoded by the user and various parameters have to be set. These
prior-knowledge based methods are typically very time-consuming, which limits the
throughput of 3D reconstructions that can be achieved by using them for reconstruction.
Furthermore, implementing these methods can be difficult and time-consuming as
well, since they rely on advanced mathematics. In this chapter, we propose an alterna-
tive approach called Neural Network Filtered Backprojection (NN-FBP), described in
Chapter 5 of this thesis, which can effectively exploit sample characteristics to improve
reconstruction quality, while still being highly computationally efficient. Here, we apply
this new technique for the first time to electron tomography data. The application
of NN-FBP to electron tomography consists of two phases: (i) a learning phase, in
which full tilt series and their corresponding reconstructions are used to calibrate the
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(a) (b) (c) (d)

Figure 6.2: Three reconstructions of a phantom image from 10 projections: (a) the phantom image, (b)
WBP with a single filter, (c) a linear combination of two WBP reconstructions, and (d) a combination of two
WBP reconstructions with a pixel-wise nonlinear scaling operation. In each reconstruction, the weights and
filters are chosen such that the mean squared error with the phantom image is minimized.

reconstruction algorithm and (ii) a reconstruction phase, in which large batches of
limited tilt series (i.e. using fewer projections) are rapidly reconstructed. In the next
subsections, we will first briefly explain how the reconstructions are formed in the
reconstruction phase, followed by an overview of how the calibration is performed in
the learning phase.

Reconstruction phase
Reconstructions obtained by standard Weighted Backprojection are commonly plagued
by a range of reconstruction artifacts when reconstructing from a limited tilt range
and few projection angles. Streaks can be observed due to the limited number of
projections, and the limited angular range leads to elongation and blurring in the
Z-direction. In Chapter 5, it was found that strong improvements on the reconstruction
quality from limited data can be obtained by combining a small number (e.g. 2 or 4)
of WBP reconstructions, each obtained using a different filter.

In the reconstruction phase, the NN-FBP algorithm computes a reconstructed
volume from limited projection data by combining multiple WBP reconstructions with
different filters into a single reconstruction. A key ingredient of the algorithm is the
application of a pixel-wise nonlinear scaling operation to each of the WBP images.
Following this operation, the images are combined by taking a weighted sum of the
scaled WBP images. As a final step, another nonlinear scaling operation is applied to
this combined image (see reconstruction phase in Fig. 6.3).

Note that without these nonlinear scaling operations, the final reconstruction can
also be obtained by first creating a weighted sum of the different filters, and performing
a Weighted Backprojection with the resulting filter, as the WBP algorithm is a linear
method with respect to the used filter. Because of this, such a method will not be able
to produce more accurate reconstructions than standard Weighted Backprojection with
an appropriately chosen filter. Also, because of the nonlinear scaling operation, it is
not possible to directly compare the filters of the NN-FBP method with standard filters
for WBP.

By using the nonlinear scaling operation, the NN-FBP algorithm is able to reduce the
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artifacts that are usually present in standard Weighted Backprojection reconstructions
when only a small number of projections are available. An example image with standard
Weighted Backprojection, a linear combination of two Weighted Backprojections, and
a combination of two Weighted Backprojections with nonlinear scaling is shown in
Fig. 6.2. As expected, the figure shows that the linear combination is identical to a
single Weighted Backprojection reconstruction, while the combination with nonlinear
scaling is significantly more accurate.

Learning phase
The question remains how the different filters and weights have to be chosen, such that
the method produces accurate reconstructions. In Chapter 5, it is shown that ideas from
artificial neural network theory can be used to find good filters and weights. Specifically,
filters and weights can be learned by the NN-FBP method in a separate learning phase,
in which the method is presented with high-quality reconstructions of a set of training
objects. In artificial neural network theory, this technique is called supervised learning.
In the learning phase, the filters and weights are iteratively adjusted until the NN-FBP
reconstructions match the presented high-quality reconstructions. Afterwards, the
trained filters and weights can be used to accurately reconstruct objects that are similar
to the ones used for training, using only a limited number of projections. The angle
distribution of the limited number of projections has to be specified during the learning
phase, and the learned filters and weights will be specific to the chosen distribution.
To reduce the influence of the specific angles that are chosen, NN-FBP uses angle-
independent filters, i.e. the same filters are used for each projection. An important
requirement of the NN-FBP method is that the reconstructed objects should consist
only of materials that were also present in the training objects. When this requirement
is satisfied, the NN-FBP method is able to produce accurate reconstructions, even for
objects with different shapes and/or sizes as the training objects. A schematic overview
of both the learning phase and subsequent reconstruction of the NN-FBP method is
given in Fig. 6.3.

As opposed to previous advanced reconstruction methods, specific prior knowledge
is not explicitly used in the NN-FBP method. Instead, the method learns to exploit
certain characteristics of the training objects by adjusting the filters and weights appro-
priately. Because the exploited characteristics are learned automatically by the method,
it has a broader applicability than previous advanced 3D reconstruction methods. Also,
since NN-FBP is based on the efficient Weighted Backprojection algorithm, it is com-
putationally efficient as well, enabling high throughput of 3D reconstructions. An
additional advantage is that existing implementations of the Weighted Backprojection
algorithm can be used to easily implement the NN-FBP method. A final advantage is
that it is possible to include the segmentation step in the NN-FBP method by using
segmented high-quality reconstructions of the training objects in the learning phase.
In this case, the NN-FBP method will reconstruct objects with voxel values that are
very close to their segmented value, and the final segmentation can be performed by
simple rounding to the nearest segmented value. This removes the need for manual
segmentation, which can be problematic for other methods when only a limited set of
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Figure 6.3: Schematic overview of the NN-FBP procedure. In the learning phase, the extended acquisition
series are used as an input to learn filters and weights specific to the training objects. In the reconstruction
phase, the learned filters are used in multiple WBP reconstructions with an additional pixel-wise nonlinear
scaling operation, which are combined to obtain a single reconstruction of a limited tilt series.

projections is available.

6.3 Results

Qualitative results
In a first experiment, tilt series of a nanosphere, a nanorod and a nanotriangle are
acquired over an angular tilt range of ± 75° with a tilt increment of 1°. These three
series are used as training series, resulting in a set of filters that will be used during
the NN-FBP approach. The resulting NN-FBP algorithm is applied to a limited tilt
series that was acquired from a different nanotriangle. Although only 10 projection
images obtained over a range of ± 75° are used during the NN-FBP reconstruction, it
needs to be pointed out that we also acquired an extended series of 151 projection
images. The SIRT reconstruction of the extended dataset was used as ground truth,
in order to evaluate the NN-FBP outcome. Figure 6.4.a presents a volume rendering
of this full range SIRT reconstruction. In all experiments, we used 200 iterations
for the SIRT reconstructions, which was empirically verified to produce accurate
reconstructions. The result of the NN-FBP algorithm is shown in Fig. 6.4.b. It must
be stressed that in this case only 10 projection images were used. It can be seen that
the 3D volume visualization of the NN-FBP reconstruction is in very good agreement
with the SIRT reconstruction of the full data series. The top and side facet can clearly
be distinguished in the corresponding orthoslices in Fig. 6.4.e,i,m and f,j,n. On the
other hand, when comparing the SIRT reconstruction based on the extended series
with the SIRT reconstruction based on 10 projection images (Fig. 6.4.c,g,k,o), it can
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 6.4: Reconstructed volumes of a nanotriangle using (a) the full dataset of 151 projections and the
SIRT algorithm, and a limited dataset of only 10 projections using (b) the NN-FBP, (c) the FBP and (d) the
SIRT algorithm. Xy, xz and yz orthoslices through the (e,i,m) full SIRT, (f,j,n) the NN-FBP, (g,k,o) the limited
SIRT and (h,l,p) the limited WBP reconstructions of the nanotriangle.

be seen that the faceted shape is less pronounced. In the WBP reconstruction applied
on 10 projection images (Fig. 6.4.d,h,l,p), severe noise and streaking artifacts can be
distinguished. These artifacts can be prohibitive for further analysis of the scanned
object, such as volume or shape calculations. Therefore, the WBP reconstruction will
be left out in the further analysis. The benefits of NN-FBP become obvious; the number
of images required for a 3D reconstruction using NN-FBP is reduced by a factor of 15,
but the quality is comparable to a reconstruction based on a full data series with a tilt
increment of 1°.

In Fig. 6.5 and Fig. 6.6, results for a nanosphere and a nanorod are presented,
respectively. Here, the training of the filters was again obtained by 3 training series. For
the nanosphere, extended series of the nanorod and both nanotriangles were used. The
training step for the nanorod was performed by the extended series of the nanosphere
and both nanotriangles. These nanostructures yield less facets and as a consequence,
the general morphology as visualized in Fig. 6.5.b,c and Fig. 6.6.b,c appears to be
better preserved when using only 10 projections. However, missing wedge artifacts can
be clearly seen in the orthoslices presented in Fig. 6.5.f,i,l and Fig. 6.6.f,i,l. Because
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.5: Reconstructed volumes of a nanosphere using (a) the full dataset of 151 projections and the SIRT
algorithm, and a limited dataset of only 10 projections using (b) the NN-FBP and (c) the SIRT algorithm.
Xy, xz and yz orthoslices through the (d,g,j) full SIRT, (e,h,k) the NN-FBP and (f,i,l) the limited SIRT
reconstructions of the nanosphere. The white arrows indicate the presence of surface roughnesses. It is clear
that these features are visible both in the orthoslices through the full SIRT and in the orthoslices through the
NN-FBP reconstruction; however, in the limited SIRT reconstruction they are not detectable.

of such artifacts, some features of the morphology indicated by white arrows in both
the orthoslices through the full SIRT reconstruction (Fig. 6.5.d,g,j) and the NN-FBP
reconstruction (Fig. 6.5.e,h,k) are not clearly visible in the orthoslices through the
limited SIRT reconstruction (Fig. 6.5.f,i,l).

Quantitative results
As a quantitative measure, a difference reconstruction for the nanosphere is constructed
by subtracting the SIRT (Fig. 6.7.a) and NN-FBP reconstructions based on 10 projection
images (Fig. 6.7.b) from the full SIRT reconstruction of the nanorod. The threshold
value for the full SIRT reconstruction is obtained from the histogram. The histogram of
the limited SIRT reconstruction, however, is largely influenced by the lack of projection
images. In Fig. 6.8, comparisons are shown between the histograms of the full SIRT
reconstruction and the limited SIRT reconstruction for each nanoparticle. Clearly, one
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.6: Reconstructed volumes of a nanorod using (a) the full dataset of 151 projections and the SIRT
algorithm, and a limited dataset of only 10 projections using (b) the NN-FBP and (c) the SIRT algorithm.
Xy, xz and yz orthoslices through the (d,g,j) full SIRT, (e,h,k) the NN-FBP and (f,i,l) the limited SIRT
reconstructions of the nanorod.

(a) (b) (c) (d)

Figure 6.7: Difference reconstructions of the nanosphere constructed by subtracting (a) the SIRT and (b) NN-
FBP reconstruction of 10 projection images from the full SIRT reconstruction representing the missing volume
and its orthoslices (c) and (d), respectively. The volume misinterpretation for the NN-FBP reconstruction
equals only 1.6%, which is indicated by the fine shell of the difference reconstruction. The thicker shell
present in the difference reconstruction of the limited SIRT equals a volume misinterpretation of 21.5%.
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Figure 6.8: Histograms of SIRT reconstructions of the nanorod (a), the nanosphere (b), and the nanotriangle
(c), with all 151 projections (Full), and only 10 projections (Limited). It is clear that the poor quality of the
limited SIRT reconstruction hampers an objective choice of a threshold for segmentation purposes.

(a) (b) (c) (d)

Figure 6.9: Difference reconstructions of the nanorod constructed by subtracting (a) the SIRT and (b)
NN-FBP reconstruction of 10 projection images from the full SIRT reconstruction representing the missing
volume. Corresponding orthoslices through the difference reconstruction of a nanorod using (c) SIRT and
(d) NN-FBP on 10 projections are shown. The volume misinterpretation for the NN-FBP reconstruction
equals only 2.3%, which is indicated by the fine shell of the difference reconstruction. The thicker shell
present in the difference reconstruction of the limited SIRT equals a volume misinterpretation of 13.1%.

(a) (b) (c) (d)

Figure 6.10: Representation of the shape misinterpretation, which for (a) the limited SIRT reconstruction
shows a volume underestimation at the center of the nanotriangle and a volume overestimation at the tips
of the nanotriangle. In (b) the shape misinterpretation for the limited NN-FBP reconstruction is visualized.
(c) and (d) represent the orthoslices through the limited SIRT and NN-FBP reconstruction, respectively. The
shape misinterpretation for the NN-FBP reconstruction equals 7.5%, which is indicated by the fine shell of
the difference reconstruction. The thicker shell present in the difference reconstruction of the limited SIRT
equals a shape misinterpretation of 16.5%.
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Figure 6.11: Plots of the relative error in the shape and the volume of segmented limited SIRT reconstructions
of the nanorod (a), the nanosphere (b), and the nanotriangle (c), compared to the full SIRT reconstruction,
for different thresholds of the limited SIRT reconstruction. The error in shape is defined as the number
of voxels that are labeled differently in the segmentations of the limited in comparison to the full SIRT
reconstruction. The error in volume is defined as the absolute value of the difference between the volumes
of the segmented limited SIRT reconstruction and the segmented full SIRT reconstruction. The errors for a
threshold of 0.4, 0.5 and 0.6 are indicated with arrows and intermediate thresholds are shown by a line. The
errors of the NN-FBP method for each nanoparticle are also shown. Note that for each nanoparticle, the error
of the NN-FBP reconstruction is closer to the origin than the error of any thresholded SIRT reconstruction.

would have trouble choosing correct threshold values on the basis of the limited SIRT
histograms. Therefore, the same threshold value as the full SIRT reconstruction is used
for the limited SIRT reconstructions. Since the NN-FBP reconstructions are already
segmented, no threshold value is needed for them. Both from the visualization in
Fig. 6.7.a, as well as the corresponding orthoslices through the difference reconstruction
in Fig. 6.7.c, the volume misinterpretation of the limited SIRT reconstruction is clearly
detectable. The orthoslices through the limited SIRT difference reconstruction of the
nanosphere show a thick white shell. Here, the larger amount of white pixels indicates
a volume misinterpretation of 21.5% when using the SIRT algorithm on the dataset
of only 10 projection images. From Fig. 6.7.b and its corresponding orthoslices in
Fig. 6.7.d, it is clear that the volume reconstructed with NN-FBP on 10 projection images
is close to the actual volume. The NN-FBP reconstruction has only 1.6% of volume
underestimation. For the nanorod (Fig. 6.9), the volume for SIRT applied to a limited
dataset results in an underestimation of 13.1%. The NN-FBP reconstruction leads to a
misinterpretation of only 2.3%. For the nanotriangle, the volume misinterpretation for
the limited SIRT reconstruction equals 2.7%. When reconstructing the 10 projection
dataset with the NN-FBP algorithm, the volume misinterpretation equals 2.4%. For
the nanotriangle, the volume misinterpretation of the limited SIRT reconstructions
is close to the misinterpretation of the NN-FBP reconstruction. In this case, however,
the volume misinterpretation of the limited SIRT reconstruction gives a misleading
result, due to a volume underestimation at the center of the nanotriangle and a volume
overestimation at the tips of the nanotriangle. In general, the volume misinterpretation
can be misleading due to the canceling out of overestimation and underestimation.
Clearly, the evaluation of the quality of the reconstruction can not only be based on
an inspection of the volume error. Therefore, the shape error is introduced, which
corresponds to the number of voxels that are labeled differently in the segmentations
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Figure 6.12: Distribution of the radii of nanospheres reconstructed using SIRT on full datasets of 151
projections (white), NN-FBP (black) and SIRT on limited datasets of 10 projections (gray). The distributions
of SIRT full and NN-FBP 10 projections are in good agreement. When SIRT is applied on the limited datasets,
a different distribution is found due to the misinterpretation of the volume.

of the limited data reconstructions in comparison to the full SIRT reconstruction. In
this manner, both the local volume underestimation at the center as well as the volume
overestimation at the tips is taken into account. For the nanotriangle, there is a 16.5%
shape misinterpretation for the limited SIRT reconstruction (Fig. 6.10). The shape error
for the NN-FBP reconstruction equals 7.5%, which is clearly smaller in comparison to
the shape error of the limited SIRT reconstruction. An extended investigation of the
influence of the chosen threshold value on the shape error and volume error of the
limited SIRT reconstructions is shown in Fig. 6.11. Note that from Fig. 6.11, one can
conclude that the errors depend heavily on the chosen threshold value, showing the
difficulties one would have when choosing a threshold value both optimizing shape
and volume error for limited SIRT reconstructions.

Statistical results
In general it is difficult to obtain statistical results when applying electron tomography.
As pointed out previously, the acquisition of tilt series for electron tomography is
very time consuming and a large electron dose is required in the case of small tilt
increments. The NN-FBP algorithm is therefore of great interest as it can be applied
to reduce the acquisition time. In this manner a large set of nanostructures can be
investigated in an efficient manner, leading to statistical results. Using the NN-FBP
approach explained above, training was performed on a set of 20 nanoparticles, and
a total of 71 nanospheres was investigated. The number of nanoparticles to train
on was chosen empirically, such that there were both enough particles to use in the
learning phase, and enough particles to obtain statistical results from. In Fig. 6.12, the
distribution of the radii of these nanospheres is evaluated. In order to investigate the
reliability of the NN-FBP approach, extended tilt series of 151 images were acquired for
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all particles. The outcome of the NN-FBP algorithm and the SIRT algorithm, using only
10 projections, is then compared to the measurements based on the SIRT reconstruction
using 151 projections. The distribution indicated in gray in Fig. 6.12 presents the radii
distribution for the nanospheres reconstructed using SIRT applied to limited datasets
and clearly gives a different distribution in comparison to the radii distribution of the
full SIRT reconstruction, which is presented in white. The average radius found in
this manner equals (24.1 ± 0.59) nm, which is significantly smaller than the actual
radius which equals (27.1 ± 0.25) nm, found through the full SIRT reconstructions.
As the optical properties, such as the absorption cross section, are dependent on
the shape and size of the nanoparticles, it is of key importance to retrieve the real
nanoparticle morphology. A small difference of a few nanometer can already influence
the outcome of the optical response [LE00; Per+10]. The radii distribution of the NN-
FBP reconstruction (black), however, is in good agreement with the results extracted
from the full SIRT data (white). The average radius of the NN-FBP reconstructed
nanospheres equals (26.8 ± 0.29) nm. This value is in good agreement with the actual
average radius and shows a clear overlap of the error bars. It is again clear that the SIRT
algorithm can not provide reliable information when limited datasets are investigated.
These results confirm the reliability of the NN-FBP algorithm and demonstrate the
possibility of combining electron tomography and statistical measurements.

6.4 Conclusion
We have shown that the NN-FBP reconstruction algorithm is able to yield electron
tomography reconstructions based on highly limited data with a comparable quality to
a reconstruction based on a full data series with a tilt increment of 1°. The decrease
in acquisition time and the use of an efficient reconstruction method enables us to
examine a broad range of nanostructures in a statistical manner. The NN-FBP algorithm
also has promising prospects for the 3D investigation of beam sensitive samples, where
only a limited amount of projection images need to be acquired.




