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5
Neural network filtered

backprojection

5.1 Introduction
The main problem in tomography is the reconstruction of an unknown image from its
projections, acquired along a range of angles. This problem occurs in many real world
applications, such as X-ray tomography in medical imaging and electron tomography
in materials science. Because of its practical relevance, a large amount of research has
been devoted to developing tomographic reconstruction methods (see [KS01; Nat01;
Buz08] for an overview). Most common reconstruction methods can be divided into
two groups: analytical methods and algebraic methods.

Analytical methods, of which filtered backprojection (FBP) is the most widely used
example, are based on a continuous representation of the reconstruction problem.
An analytical inverse formula of the Radon transform is discretized to obtain a re-
construction algorithm. The advantage of analytical methods is that they are usually
computationally inexpensive. However, the approach is based on the assumption that
the projection data is available for all angles, which is clearly not feasible in practice. As
a result, the reconstruction quality of analytical methods tends to become unacceptable
when data is only available for a small number of angles.

In several applications of tomography, practical considerations limit the number
of angles for which data can be acquired. These reconstruction problems are known
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66 CHAPTER 5. NEURAL NETWORK FILTERED BACKPROJECTION

as limited-data problems. For example, in electron tomography, the electron beam
damages the sample, imposing a strong limitation on the number of angles [MDG95].
Furthermore, in most applications, acquiring data for more projection angles requires
more time. In industrial tomography, process speed considerations limit the total scan
duration, making only a limited number of angles possible [Sip93]. For such problems,
algorithms are needed that can create accurate reconstructions from limited data.

Algebraic reconstruction methods, such as ART and SIRT [KS01], often handle
limited-data problems better than analytical methods. They are based on a discrete
representation of the problem, which leads to a system of linear equations. These equa-
tions can be solved using iterative methods. Since these methods are based on a model
of the data that is actually available, they can lead to more accurate reconstructions
than analytical methods. The computational cost of these methods is high however,
often several orders of magnitude larger than analytical methods, even when using
highly optimized implementations on graphic processor units (GPUs) [XM05].

Recently, a range of algebraic methods have been developed that exploit prior knowl-
edge about the unknown image to solve limited-data problems even more accurately.
For example, total variation minimization based methods, such as FISTA [BT09a], can
compute accurate reconstructions if the image has a sparse gradient [SP08]. In discrete
tomography, reconstruction methods like DART [BS11] can solve limited-data problems
where the original image is known to consist of only a small number of different gray
levels. Although these methods produce accurate results in many cases, they have
two main disadvantages: (i) they are based on algebraic methods, sharing their high
computational cost; (ii) the specific prior knowledge can limit the types of images that
can be reconstructed. As an example of the second point, total variation minimization
methods can only accurately reconstruct objects with a sparse gradient.

In this chapter, we present a reconstruction method for limited-data problems that
is specifically designed to avoid both problems. The method is computationally similar
to analytical methods, ensuring a low computational cost. Furthermore, the method
learns how to use problem specific knowledge to produce more accurate reconstructions
than existing analytical methods. This learning is accomplished by using an artificial
neural network (ANN). No specific prior knowledge has to be presented to the method,
making it applicable to any type of image. The result is a very general method, able to
produce accurate reconstructions in short time.

Artificial neural networks have been applied to tomographic reconstruction prob-
lems by several authors (see, e.g. [SH10] for an overview in the context of medical
imaging). Some previous approaches have focused on directly solving a single instance
of the tomographic reconstruction problem using a Hopfield neural network as an
optimization tool [SHO93; Cic+95; WW97; Cie08; Cie09]. These methods compute
reconstructions by minimizing the difference between the measured projection data
and projections of the reconstructed object. As such, they are essentially algebraic
reconstruction methods, since the objective function that is minimized is algebraic
in nature. Since the neural networks have to solve a nonlinear system instead of a
linear one, the reconstruction time of these methods is often even larger than the
reconstruction time of linear algebraic methods.

Other previous work on using neural networks to solve tomographic problems is
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based on methods with a separate training phase, where the neural network is trained
on a set of example images [KB95a; KB95b; Rod+01; BK06; DKM07]. In subsequent
reconstruction steps, no additional training is performed. In these methods, the neural
network reconstructs the entire image from the available projection data, an approach
that leads to large network sizes. Because of this large size, the training phase of these
methods can take a long time. Furthermore, the number of example images that the
network can be trained on is typically small, limiting the reconstruction accuracy and
generalizability that can be obtained (see, for example, [Rod+01]). In particular, we
have not found reports on successful application of such methods to reconstruction
problems involving large images (i.e. slices of 512×512 pixels or larger).

In this chapter we present a novel neural network approach to tomography, which
does not have the aforementioned drawbacks. Our approach has some similarities to
previous methods, such as a separate training phase, yet we use a different network
model. In our model, the network reconstructs a single pixel of the reconstruction
grid, using reduced projection data. This approach leads to small network sizes, which
leads to fast training times, and enables us to use advanced neural network training
methods. Furthermore, in our approach, each pixel of an example image can be used
as an independent example during training. Therefore, we are able to use a large
number of examples to train the neural network on. As a result, the trained networks
yield accurate reconstructions from limited data, as well as robustness to noise.

A somewhat similar method is given in [BK06; VKB11], where the reconstruction
step is implemented by using the neural network as a black box, resulting in a slow
reconstruction method. In the current chapter, a different network model is chosen,
such that it can be viewed as an analytical reconstruction method, having both a low
computational cost and a high reconstruction accuracy. As a result, our approach can
be applied to large datasets, at a computational cost that is comparable to analytical
methods.

This chapter is structured as follows. In Section 5.2, we formally define the tomo-
graphic reconstruction problem and artificial neural networks. Section 5.3 introduces
the new reconstruction method, which is the key contribution of this chapter. We
discuss how we implemented this method in Section 5.4. In Section 5.5, we describe
the experiments that we performed to compare the reconstruction time and accuracy
of the new method with existing methods. The results of these experiments are given
in Section 5.6, along with a discussion of these results. We conclude the chapter in
Section 5.7 with a summary and some final remarks.

5.2 Notation and concepts

In this section, we will define the mathematical notation that is used in the rest of the
chapter, and introduce the relevant concepts. First, we formally define the tomographic
reconstruction problem, and the popular filtered backprojection algorithm. Then, we
introduce artificial neural networks, the mathematical construct on which our new
method is based.
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Figure 5.1: The tomography model used in this chapter. Several parallel lines, rotated by angle θ , are
passing through the object f . Each line has a characteristic equation t = x cosθ + y sinθ , with constant t.
The projection Pθ of f is given by the line integrals of f over the different parallel lines.

Problem definition
We will focus in this chapter on reconstructing two-dimensional objects from parallel-
beam projections with a single rotation axis. The unknown object is modeled as a
two-dimensional finite and integrable function f : R2→ R with bounded support. We
define a projection Pθ of f as the line integral of f (x , y) over line lθ :

Pθ (t) =

∫

lθ

f (x , y)ds (5.1)

=

∫∫

R2

f (x , y)δ(x cosθ + y sinθ − t)dxdy (5.2)

This integral transform is called the Radon transform of f .
Given an image f (x , y), we can model the projection geometry in parallel-beam

tomography as a number of parallel lines going through f , each rotated by a certain
projection angle θ . A point (x , y) on one such line lθ obeys the equation t = x cosθ +
y sinθ . For each line lθ , a unique constant t defines all points on that line. This model
is shown graphically in Fig. 5.1. The basic tomographic problem is to reconstruct the
unknown image f (x , y) from the measured projections.

In practice, only discrete projection data is available, which consists of a matrix
of measured values, one for each combination of Nθ projection angles θ ∈ Θ =
{θ0,θ1, . . . ,θNθ−1} and Nd detectors p ∈ {0, 1, . . . , Nd − 1}. The position of a detector p
relative to the central detector is given by τp:

τp = d
�

p−
Nd − 1

2

�

, (5.3)
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where d is the width of a detector. The entire set of detector positions is given by
T = {τ0,τ1, . . . ,τNd−1}.

The projection data is used to reconstruct f on an N × N grid of square pixels.
Without loss of generality, we define that each pixel has a width and height of one, and
that the center of the grid is positioned at the origin. In this case, the center of pixel
(x i , y j) is situated in row j and column i of the pixel grid, with i ∈ {0,1, . . . , N − 1}
and j ∈ {0, 1, . . . , N − 1}, and x i = yi = i − (N − 1)/2.

Filtered back projection
One way of solving the reconstruction problem is to find a direct inverse of Eq. (5.2).
To perform this inversion, we first convolve the projection data with a filter hθ (t):

qθ (t) =

∫ ∞

−∞
hθ (τ)Pθ (t −τ)dτ (5.4)

We can also perform this operation in the Fourier domain, where P̂ and H denote the
Fourier transforms of P and h:

qθ (t) =

∫ ∞

−∞
P̂θ (u)Hθ (u)e

2πıutdu (5.5)

By taking the formal adjoint of the Radon transform, it can be shown that if Hθ (u) = |u|,
we obtain a direct inverse of Eq. (5.2) [KS01]:

f (x , y) =

∫ π

0

qθ (x cosθ + y sinθ )dθ (5.6)

In practice, Eq. (5.6) cannot be used directly, since Pθ (t) can only be measured for
a finite set of angles Θ and a finite set of detector positions T . Therefore, we need to
discretize both variables to obtain a usable reconstruction algorithm. Inserting Eq. (5.4)
in Eq. (5.6) and discretizing, we obtain the filtered back projection method (FBP):

f (x , y)≈ FBPh(x , y) =
∑

θd∈Θ

∑

τp∈T

h(τp)Pθd
(t −τp) (5.7)

where t = x cosθd + y sinθd . Because the projection data is discretized, interpolation
is needed to obtain values at t −τp, for τp ∈ T . Linear interpolation is often adequate,
since projection data is usually reasonably smooth.

The convolution operation in Eq. (5.7) can be performed in Fourier space, leading
to an efficient implementation of FBP: first convolve the projection data with filter
h in Fourier space in O (NθNd log Nd) time and afterwards backproject the result to
obtain the reconstruction in O (NθN2). Various discrete approximations of the ideal
filter Hθ (u) = |u| are used in practice, such as the Ram-Lak (ramp), Shepp-Logan, and
Hann filters [Far+97]. The Ram-Lak filter, obtained by setting Hθ (u) to 0 when u> uc
for some uc is often used. This filter is shown in real space in Fig. 5.2.
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Figure 5.2: The widely used discrete Ram-Lak filter for the FBP algorithm (Eq. (5.7)). In this image, d is the
distance between adjacent detector positions. This filter is an approximation of the ideal filter, obtained by
taking the Fourier transform Hθ (u) = |u| of the ideal filter, and setting Hθ (u) = 0 when u> uc for some uc .

(a) (b) (c)

Figure 5.3: Various reconstructions of the Shepp-Logan head phantom on a 512× 512 pixel grid. In (a) the
phantom was reconstructed by FBP using 512 projection angles ∈ [0,π). In (b) and (c), only 32 projection
angles were used to reconstruct the phantom. FBP was used in (b), while the image (c) was obtained by
using SIRT, an iterative algebraic method, with prior knowledge about the minimum and maximum possible
image values.

FBP is one of the most widely used reconstruction methods in practice, because
of the low computational cost compared to other methods, and good reconstruction
quality if data of enough projections are available. The accuracy of the reconstructions
depends on how well Eq. (5.7) approximates Eq. (5.6). If data of many projection
angles are available (say, several hundreds), the approximation is often very good.
When using FBP with a small number of angles, artifacts appear in the reconstructions.
These artifacts can make further analysis of the reconstruction, such as segmentation,
very difficult. An example of artifacts in an FBP reconstruction of limited data is shown
in Fig. 5.3b. Note that a reconstruction of the same data by an algebraic method,
shown in Fig. 5.3c, contains less artifacts, but takes more time to compute.

Artificial neural networks
An artificial neural network (ANN) is a computational model that processes input
data using artificial neurons. The model is inspired on the workings of the human
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Figure 5.4: A multilayer perceptron with three input nodes zi , two hidden nodes hi , and one output node
o. The input vector is multiplied by the weight matrix W to obtain hidden node inputs, and the hidden
node output vector is multiplied by the weight matrix Q to obtain the input of the output node. Note that
the biases b and bo of Eq. (5.10) are modeled as an additional input node and hidden node of value −1.
Activation functions σh and σo are applied to the hidden nodes and output node.

brain, although ANNs can also be interpreted mathematically as a class of functions.
Neural networks have many uses, from simple curve fitting to complex pattern recogni-
tion [Yeg09; Hay09].

An artificial neural network can be used to model an unknown function r : Rn→ Rm.
One method to accomplish this is called a multilayer perceptron [Hay09]. A multilayer
perceptron consists of three distinct layers: the input layer, the hidden layer and the
output layer. The input layer consist of n nodes, one for each input value, and the
output layer has m nodes, one for each output value. The hidden layer consists of Nh
hidden nodes, where Nh can be chosen freely. Generally, it is difficult to know what
the optimal number of hidden nodes is for a given problem. Take too few nodes, and
the network will be unable to model the unknown function. Take too many, and the
resulting network will be slower and more prone to overfitting [TLL95]. The problem
of overfitting and the way it is addressed in this chapter are explained in Section 5.4.

In a multilayer perceptron, each input node is connected to all hidden nodes, and
each hidden node is connected to all output nodes. Every connection has a certain
weight, and the weights can be adjusted to fit different functions r. The weights of the
connections from the n input nodes to the Nh hidden nodes can be written as an n×Nh
matrix W, where the value wi j in row i and column j gives the weight of the connection
between input node i to hidden node j. Similarly, the weights from hidden nodes to
output nodes can be written as an m×Nh matrix Q. We denote a single column i of W
as wi , and a single column i of Q as qi .

Scalar offsets b ∈ R are subtracted from the output of each hidden node and output
node. Furthermore, nonlinear activation functions σh : R→ R and σo : R→ R are
applied to the outputs of these nodes, making the entire model nonlinear in nature. In
this chapter, we used the sigmoid function as activation function:

σh(t) = σo(t) =
1

1+ e−t
(5.8)

The equation for the output of a multilayer perceptron, with a vector z as input, is
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given by:

nQ,W,b,bo
(z) = σo

�Nh−1
∑

i=0

qi gwi ,bi
(z)− bo

�

(5.9)

where the activation function σo is evaluated element-wise on its input vector, and
gwi ,bi

is the output of a hidden node:

gw,b(z) = σh (w · z− b) (5.10)

The question remains how to choose Q, W, b, and bo, such that nQ,W,b,bo
(z)≈ r(z).

In this chapter, supervised learning [AB09] is used, where we assume that, although
the function r is unknown, a set of T inputs {Z0, Z1, . . . , ZT−1} with corresponding
outputs {O0, O1, . . . , OT−1} of r are known, where Zi ∈ Rn and Oi ∈ Rm. Learning
is then defined as the minimization of the sum of squared differences between the
perceptron output and the correct output:

e(Q,W,b,bo) =
T−1
∑

i=0

�

nQ,W,b,bo
(Zi)−Oi

�2
(5.11)

Ql ,Wl ,bl ,bo l = argmin
Q,W,b,bo

e(Q,W,b,bo) (5.12)

Because of the mathematical form of a perceptron, partial derivatives of the parameters,
such as ∂ e

∂ wi j
, can be calculated quickly and accurately by applying the chain rule. The

fact that these partial derivatives are easily obtained leads to efficient applications of
gradient based minimization methods to train such networks. Different methods can
be used for training, each with their own advantages and disadvantages. The specific
method used in this chapter is given in Section 5.4.

5.3 Neural network filtered backprojection
In this section, we present the key contribution of this chapter: the neural network
filtered backprojection method (NN-FBP). We start by defining a neural network model
to reconstruct a single pixel of an image. We show that this model can be viewed as a
combination of FBP steps, obtaining an efficient implementation of the method. Finally,
we give examples of how the new method can be used in practice.

Neural network model
To solve the basic tomographic problem using an artificial neural network, we need to
define a network model: a method of converting the given projection data to input for
the neural network. As explained above, we want to be able to view the chosen model
as a combination of filtered backprojection steps. Therefore, it is informative to look at
the equation of the FBP method:

FBPh(x , y) =
∑

θd∈Θ

∑

τp∈T

h(τp)Pθd
(x cosθd + y sinθd −τp) (5.13)
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A first observation is that Eq. (5.13) gives the value of a single point (x , y) of the FBP
reconstruction. To mimic this, we choose to use a network model that reconstructs a
single pixel (x i , y j). The neural network only has a single output node, and the output
of the network is a single value in R.

A second observation is that the FBP method is linear shift invariant [KS01]. Suppose
we shift an object f by δx horizontally and δ y vertically to obtain a shifted object f ′.
The original projections Pθ shift accordingly to new projections P ′

θ
:

P ′θ (τ) = Pθ (τ− (δx cosθ +δ y sinθ )) (5.14)

For the FBP reconstruction of f , denoted by FBP f
h , and the FBP reconstruction of f ′,

denoted by FBP f ′

h , we have:

FBP f ′

h (x +δx , y +δ y) = FBP f
h(x , y) (5.15)

To mimic the linear shift invariance of FBP, we want the neural network model to
treat every pixel of the reconstruction grid the same, independent of its actual position
on the grid. An additional advantage of treating each pixel the same is that we can
use every pixel of the grid as an independent training example during supervised
learning (Eq. (5.11)). In order to accomplish this position independence, we shift the
reconstructed object such that the pixel that it currently reconstructs, (x i , y j), is at the
origin. In other words, as input for the neural network, we use projection data of the
shifted object f ′, which can be obtained by shifting f by −x i horizontally and −y j
vertically. For the projection data of the shifted object, we have (Eq. (5.14)):

P ′θ (τd) = Pθ (τd + x i cosθ + y j sinθ ) (5.16)

Now, we combine the shifted data of all projection angles by summing them element-
wise:

P ′(τp) =
∑

θd∈Θ

P ′θd
(τp) (5.17)

Finally, we reflect the shifted and summed data about the detector center:

z(τp) = P ′(−τp) =
∑

θd∈Θ

Pθd
(x i cosθd + y j sinθd −τp) (5.18)

The values of z(τp) are used as input for the neural network, as an input vector z with
Nd elements. Note that in Eq. (5.18), only the original projection data Pθd

is used.
Therefore, we do not have to explicitly shift f to f ′ for every pixel we reconstruct, but
only have to shift the original projection data by x i cosθd+ y j sinθd . The transformation
from projection data to network input is shown in Fig. 5.5.
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Figure 5.5: The method of transforming projection data to neural network input for pixel (x i , y j). For each
angle θd , (x i , y j) projects onto a different point td = x i cosθd + y j sinθd on the detector. We shift each
projection Pθd

such that the corresponding td is in the middle. Finally, we sum the shifted projections point
by point and reflect about the center to get the network input.

Filtered back projection view
To see what the effect of the choice of network model is, we take the equation of a
single hidden node gw,b (Eq. (5.10)), and insert our network model (Eq. (5.18)):

gw,b(z) = σh (w · z− b) (5.19)

= σh

 

∑

k

wk

∑

θd∈Θ

Pθd
(t −τk)− b

!

(5.20)

where t = x i cosθd + yi sinθd . Rearranging the sums and comparing with Eq. (5.7)
we get:

gw,b(z) = σh

 

∑

θd∈Θ

∑

i

wi Pθd
(t −τi)− b

!

(5.21)

= σh

�

FBPw(x i , y j)− b
�

(5.22)

The entire neural network equation will now become:

nQ,W,b,bo
(z) = σo

�Nh−1
∑

k=0

qkσh

�

FBPwk
(x i , y j)− bk

�

− bo

�

(5.23)
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Figure 5.6: The FBP view of NN-FBP. Here, we take the projections Pθ and apply several FBP algorithms: to
obtain the hidden node hi , we apply the FBP algorithm with custom filter wi and a bias. A linear combination
of all hidden node images and a bias, with a sigmoid function applied to all pixels of each image, leads to a
single image o. After we apply a final sigmoid function, we get an approximation of f . Note that in this
case, we reconstruct the entire image f , where in the neural network view of Fig. 5.4 only a single pixel
(x i , y j) is reconstructed.

This shows that we can view a trained network as a weighted sum of Nh FBPs with
custom filters wi and added biases b. A sigmoid function is applied to the output of
each FBP, and also to the final sum. The advantage of this view is that in this case, we
do not have to run the network for every pixel to get the reconstruction image: we can
simply apply the FBPs to obtain the entire reconstruction image in one operation.

To summarize, our new method works as follows:

Algorithm 5.1 NN-FBP reconstruction method

1. Perform Nh FBP algorithms, each with a different filter.

2. Subtract a bias from each resulting image, and apply a nonlinear activation
function σh to each pixel of the result.

3. Multiply each resulting image with a certain weight, and add them together pixel
by pixel to obtain a single image.

4. Subtract a bias from the resulting image, and apply a nonlinear activation function
σo to each pixel to get the final reconstruction.

Note that the results of this method are identical to the results of directly applying
the standard multilayer perceptron output equation (Eq. (5.9)) with Eq. (5.18) as
network input. The equivalence of both methods is shown in Figs. 5.4 and 5.6.

The computational complexity of Algorithm 5.1, however, is significantly lower
than direct application of Eq. (5.9). In Eq. (5.9), we need to shift, sum and reflect the
input data, costing O (Nd Nθ ) time, for each of the N2 pixels. Additionally, applying
Eq. (5.9) takes O (NhN) for every pixel, since there are NhN connections between the
input layer and hidden layer. Direct application will therefore take O ((Nθ + Nh)N3)
time to reconstruct the entire N × N image if N ≈ Nd .

For Algorithm 5.1, we need to perform Nh FBPs, and the computation time of step 1)
is O (NhNθN2). The remaining operations (adding biases, applying the activation
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functions and weight multiplication) each take O (N2) time. Therefore, step 2) and
step 3) take O (NhN2) time in total, and step 4) is O (N2). We see that by exploiting the
FBP view, we have reduced the reconstruction time from O ((Nθ+Nh)N3) to O (NhNθN2).
Results from Section 5.6 will show that the method can produce accurate reconstruction
even when Nh� N . Furthermore, for limited-data problems Nθ � N , so the reduction
in computation time is significant.

Training
The filters, biases and weights are trained using standard training methods from neural
network theory [Hay09]. The training phase is separate from subsequent reconstruction
steps: we first train the network to obtain Ql , Wl , bl and bo l , using a set of training
images. Afterwards, the trained network can be used to quickly reconstruct other
images by using the method described in Algorithm 5.1, without additional training.

To perform training by supervised learning, we need a set of inputs Z with corre-
sponding correct outputs O, where Zi ∈ RNd is shifted and summed projection data
for a single pixel and Oi ∈ R is the correct value of that pixel. This means that we
need a set of projection data with corresponding correct images f (x , y). This presents
a problem: usually, the correct image f (x , y) is unknown, since that is exactly the
problem we are trying to solve. However, we can take the projection data, reconstruct it
using any other method, and use the reconstruction as the correct output for learning.

This training approach can be useful in two cases:
1) Nθ -REDUCTION use-case: Suppose that we have a scanner that can acquire

projection data along a variable number of angles. Scanning with a small number of
angles is preferred, because of practical considerations. To use NN-FBP in this case, we
first acquire projection data along a large number of angles for a set of representative
objects. We reconstruct the images using an existing reconstruction method like FBP.
Then, we train NN-FBP using these reconstructions as correct output. As input during
training, we only use the projection data along a small subset of angles. After training,
we can scan new objects using this small set of angles, and use NN-FBP to obtain
accurate reconstructions in short time. This can be useful in many practical cases, for
example to increase the time resolution of tomography of dynamic systems.

2) LIMITED-DATA use-case: If practical considerations limit the number of angles for
which projection data can be acquired, NN-FBP can be used to lower reconstruction
times. In this case, we use an advanced but slow prior-knowledge based method like
TV-minimization to obtain reconstructions from the limited projection data. We then
train NN-FBP using these reconstructions as correct images. In other words, we train
NN-FBP to mimic a slower reconstruction method. Afterwards, we can use NN-FBP to
quickly reconstruct images from similar limited-data problems.

5.4 Implementation
We will now discuss our implementation of NN-FBP that was used in the computa-
tional experiments of Section 5.5. The NN-FBP method consists of two distinct parts:



5.4. IMPLEMENTATION 77

the training phase, and subsequent reconstruction. In this section, we will focus on
implementation of the training, since implementing the reconstruction part is fairly
straightforward: it consists of several FBPs and basic image operations. More informa-
tion on implementing the FBP algorithm can be found in [BB00].

Minimization method
An important part of neural network training is the minimization of the network error
(Eq. (5.12)). Several minimization algorithms are well-suited for neural network
training. We used the Levenberg-Marquardt algorithm (LMA) [Mar63]. LMA is a
combination of the gradient descent and Gauss-Newton algorithm, improving the
stability of Gauss-Newton while retaining its fast convergence. Given a function fw(x)
with n parameters w and a set of m correct input-output pairs (xi ,yi), the method
iteratively minimizes the error e(w) =

∑

i(yi− fw(xi))2, with the parameters at iteration
j + 1 given by w( j+1) = w( j) + dw( j). The update vector dw( j) is obtained by solving
the LMA equation:

(J T J +λI)dw( j) = J T (y− fw( j)(x)) (5.24)

where λ > 0 and J is the m× n Jacobian matrix:

J =







∂ fw(x0)
∂ w0

∂ fw(x0)
∂ w1

· · · ∂ fw(x0)
∂ wn−1

...
...

. . .
...

∂ fw(xm−1)
∂ w0

∂ fw(xm−1)
∂ w1

· · · ∂ fw(xm−1)
∂ wn−1






(5.25)

Since J T J + λI is symmetric and positive definite if λ > 0, we can use Cholesky
decomposition to solve Eq. (5.24).

The parameter λ is adjusted at each iteration to ensure convergence: if e(w( j+1))>
e(w( j)), we increase λ to aλ and solve Eq. (5.24) again until e(w( j+1))< e(w( j)). If no
such λ can be found, w( j) is a local minimum of the error function, and LMA terminates.
After an accepted update, we decrease λ to λ/a for the next iteration. In this chapter,
we take a = 10, and start with λ= 104.

In the case of neural network training, the function we are minimizing is Eq. (5.11).
As parameters in the LMA method we use the collection of network parameters W,
Q, b and bo. The initial values for the parameters are calculated randomly using the
Nguyen-Widrow initialization method [NW90]. In order to apply LMA, we need to
calculate the Jacobian matrix J at each iteration. For neural networks, these partial
derivatives can be calculated accurately and efficiently by applying the chain rule.
More information on the use and implementation of LMA for neural network training
can be found in [HM94].

Overfitting
A common problem that can occur when training neural networks is overfitting. Over-
fitting occurs when the neural network learns too much information about the training
set. An overfitted network will be very good at solving problem instances from the
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training set, but relatively bad at solving instances outside the training set. In the
case of NN-FBP, the method will only be able to accurately reconstruct images used in
the training set, and not other, unknown, images. Of course, this is undesirable: we
already know solutions to the training set problems, and we would like to be able to
solve different reconstruction problems by applying NN-FBP.

The problem of overfitting is well-known in neural network theory, and several
ways of preventing the problem are available. Here, we use a relatively simple, but
effective method. In addition to a training set, we also use an independent validation
set of input-output pairs during training. We then calculate the error of the validation
set using Eq. (5.11) after each iteration of LMA. When this error stops improving for
Nstop iterations, we stop the training method and return the solution with the lowest
validation error. In this chapter, we use Nstop = 25. Because the training and validation
set are generated independently, this prevents the network from learning too much
specific information about the training set. To summarize, the training method works
as follows:

Algorithm 5.2 Training method

1. Initialize W, Q, b, and bo randomly (using [NW90])

2. Iterate:

(a) Perform LMA iteration using training set

(b) Calculate error of validation set

(c) If validation error has not improved for Nstop iterations, stop iterating

3. Return W, Q, b and bo which had the lowest validation error

Exponential binning
Neural network training is often very effective at minimizing the error of Eq. (5.11), but
training can take a long time. In the case of NN-FBP, we can greatly reduce the training
time by using exponential binning. Exponential binning was also used effectively
in [BK06] to reduce the reconstruction time of the neural network.

Looking at the Ram-Lak filter of Fig. 5.2, we note that the magnitude of h(τ) is
relatively large around τ = 0 and drops to zero quickly for |τ|→∞. Therefore, during
reconstruction of pixel (x i , y j), projection data values close to t = x i cosθ + y j sinθ
are much more important than far away values. This suggests that we can reduce the
number of input values by rebinning the data with a high resolution around t and a
lower resolution further away. Here, we used exponential binning, where the bin width
grows exponentially away from t. Formally we can define any binning by specifying
the boundary points si and si+1 of every bin: βi = (si , si+1). The width of a bin is given
by di = si+1 − si . In exponential binning, we take d0 = 1 and di = 2|i|−1 for i 6= 0.
A further reduction can be achieved by making the rebinning symmetric as well, by
creating new bins B0 = β0 and Bi = (βi ∪ β−i) for i 6= 0.
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Figure 5.7: Exponential binning of the projection data, during reconstruction of a pixel (x i , y j), which
projects onto point t = x i cosθ + y j sinθ of the detector. Values within a bin Bi are summed to produce a
single input value for the neural network. Note that the bin size increases exponentially away from t, and
that the binning is symmetric, since Bi appears both to the left and to the right of t for i 6= 0.

To use this binning during neural network training, we apply it after the shift, sum
and reflect procedure of Eq. (5.18). We sum all input values within a bin Bi to obtain
the neural network input value z i:

z i =
s−i+1−1
∑

j=s−i

z(τ j) +
si+1−1
∑

j=si

z(τ j) ∀ i 6= 0 (5.26)

and z0 = z(τ0). This binning procedure is shown in Fig. 5.7.
If we have Nd detectors, the output of the shift, sum and reflect procedure will have

at most 2Nd values. We define all values outside this range to be of value 0. During
binning, we only use bins that have one or both boundary points within this 2Nd range.
Therefore, we reduce the number of input variables from O (Nd) to O (log Nd) by using
exponential binning, greatly reducing training time as well.

5.5 Experiments
In order to test the performance of the NN-FBP method, we implemented both the
training and reconstruction parts using Python 2.7.3 and Numpy 1.6.3 [Oli07] built
with ATLAS 3.10.0 [WP05]. We applied NN-FBP to four different problems, two for
each of the two use-cases from Section 5.3. For each use-case we perform experiments
on both simulation data, where the original images are known, and experimental data.

In every experiment, we are given a set of Nim ’correct’ images, with corresponding
projection data. How the correct images are obtained will be explained below for each
use-case. We divide the Nim images into three separate groups: the training set, the
validation set and the test set. Out of the training set, we choose Nt rain pixels to use for
training, using Eqs. (5.18) and (5.26) to obtain input values for the neural network.
Similarly, we take Nval pixels out of the validation set to use for validation, as described
in Section 5.4. In this chapter, we use Nt rain = Nval = 106 for every experiment, unless
specified otherwise.

We report results for the test set, where we use the FBP view of NN-FBP to recon-
struct all test images, and report the mean absolute pixel error. The mean absolute



80 CHAPTER 5. NEURAL NETWORK FILTERED BACKPROJECTION

pixel error is defined as:

ep(R, O) =
〈|R−O|〉

max O−min O
(5.27)

where R ∈ RN×N is the reconstructed image, O ∈ RN×N the correct image, and the aver-
age is taken over all pixels that lie within the disc of radius N/2, centered in the image.
The errors given in this chapter are the mean absolute pixel errors, averaged over all
images in the test set. The results for NN-FBP are compared to results for standard FBP,
with the Ram-Lak filter, and SIRT, an algebraic reconstruction method [KS01]. For both
methods, we used an optimized GPU implementation from the ASTRA-toolbox [PBS11].

Nθ -reduction use-case
For the first use-case, we investigate if NN-FBP can be used to reduce the number
of angles for which projection data has to be acquired. First, we reconstruct images
from projection data along many angles using FBP. We then train the neural network
to reconstruct these images using only a small subset of the angles. We compare the
results of NN-FBP with standard FBP using the Ram-Lak filter, and with SIRT, a slower
algebraic reconstruction method.

Simulation data

The simulation images used to test the performance of NN-FBP for Nθ -reduction are
sampled from the threeshape family of images. Each image from the threeshape family
consists of a combination of Gaussian blobs, rectangles and star-shaped objects. These
components were specifically chosen to create a difficult image to reconstruct: images
from the threeshape family contain both discrete and continuous areas, and both
sharp edges and smooth gradients. The images are constructed as follows: starting
with an image f (x , y) = 0, we add three Gaussian blobs, three rectangles and three
star-shaped objects, each having a random shape, position, rotation and intensity. The
images are then scaled, such that the darkest pixel has value 0, and the brightest has
value 1. An example image of the threeshape family is shown in Fig. 5.8a.

For the training set and validation set, we generated two sets of 1000 threeshape
images of 4096×4096 pixels, and calculated projection data for 4096 detector elements
along 1024 equidistant angles ∈ [0,π). Afterwards, we resampled the projection data
to 1024 detector elements, and reconstructed on a 1024× 1024 pixel grid. The test set
consists of 100 images from the threeshape family. We test the network by training it
to use only Nθ = 8, 16,32, 64 equidistant angles.

Experimental data

The dataset we used for experimental data stems from a small fatigue test sample made
from Ti alloy VST 55531. The sample has been scanned in a parallel, monochromatic
(52 keV) synchrotron X-ray beam at beamline ID11 of the European Synchrotron
Radiation Facility (ESRF). The sample to detector distance was set to 40 mm and 1500
projections were acquired on a high resolution detector system. 2× 2 binning resulted
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in projections with 10242 pixels and an effective pixel size of 0.56 microns. For training,
validation, and testing, data from three different time steps were used, with 438 slices
each.

Limited-data use-case
For the second use-case, where only a small number of projections can be acquired,
we performed experiments to investigate if NN-FBP can be used to mimic advanced
reconstruction algorithms that require a long computation time. We first reconstruct
images using FISTA [BT09a], a TV-minimization algorithm. We train NN-FBP to
approximate the result of FISTA. Afterwards, we reconstruct the test set using FISTA
and NN-FBP, and report the mean absolute pixel error between the FISTA and NN-FBP
reconstructions. To see the improvement of NN-FBP over standard FBP, we also report
the mean absolute pixel error between FISTA and FBP.

Simulation data

For the simulation data, we sampled images from a specific family of images. Since
we are investigating whether NN-FBP can mimic a TV-minimization method, images
from this family should be well-suited for TV-minimization, and have a sparse gradient.
Note that the threeshape family of Section 5.5 is not suitable, as the Gaussian blobs do
not have a sparse gradient. Instead, we chose the 7ellipses family of images, where
each image consists of 7 overlapping ellipses of random shape, position, rotation and
intensity. We use 1024× 1024 pixel images, randomly sampled from the 7ellipses
family. The training, validation, and test sets consist of 100 images each. We calculate
projection data for 1024 detector elements along Nθ = 8, 16, 24, 32 equidistant angles.
For reconstruction, we resampled the projection data to 256 detector elements, and
obtained reconstructions using FISTA on a 256× 256 pixel grid. These reconstructions
were used to train the NN-FBP method, and to report errors on. An example image of
the 7ellipses family is shown in Fig. 5.8c

Experimental data

Here, we use a set of experimental µCT data. These datasets were acquired by scanning
raw diamonds in a Scanco 40 µCT scanner. The acquired cone-beam projection data
was rebinned to a parallel beam geometry. The resulting projection data consists of
1024 detector elements along 500 projection angles, acquired for a number of two-
dimensional slices through the diamonds. In total, three datasets of different diamonds
were used: one for training, one for validation and one for testing. The number of
slices for each dataset are 629, 358, and 375, respectively. An example of a single slice
is shown in Fig. 5.8d. To test the limited-data case, we took 8, 16, 32, and 64 angles
out of the available angles, resampled the projection data to 256 detector elements,
and created reconstructions using FISTA on a 256× 256 pixel grid. All calculations
were performed using these reconstructions, thereby training NN-FBP to approximate
the FISTA reconstructions.



82 CHAPTER 5. NEURAL NETWORK FILTERED BACKPROJECTION

(a) (b) (c) (d)

Figure 5.8: Example images of the four experiments that we performed in this chapter. The left two images
were used for the Nθ -reduction use-case, and the other two for the limited-data use-case, as explained in
Section 5.5. The images of (a) and (c) are computer-generated simulation images, and the images of (b)
and (c) are reconstructions of experimental CT data. The area indicated in (b) is the area of which results
are shown in Figs. 5.10e to 5.10h.

5.6 Results and discussion
The mean absolute error for each use-case, averaged over the entire test set, is given
in Fig. 5.9. The figure shows that for all experiments and number of hidden nodes,
NN-FBP produces images with lower mean absolute error than those produced by FBP
and SIRT. An important observation is that the improvement of NN-FBP over standard
FBP is significant. Furthermore, NN-FBP with one hidden node is able to produce
images with significantly lower mean absolute error compared to FBP, even though
their computation complexities are identical. Although FBP with the Shepp-Logan or
Hann filter performed better than FBP with the Ram-Lak filter, the NN-FBP method
produced significantly more accurate reconstructions than both.

The dependence of the accuracy of NN-FBP on the number of hidden nodes Nh can
be explained as follows: if not enough hidden nodes are used, the network is not able
to capture all useful information during training, and the reconstruction quality suffers.
If too many hidden nodes are used, the network is still able to capture all information,
and reconstruction quality is still good. Since there are more weights to train, however,
networks with too many hidden nodes are more difficult and time-consuming to train.
With more weights, the risk of ending up in local minima of the objective function is
higher, which explains why the mean absolute error sometimes increases slightly when
more hidden nodes are used.

In the remainder of this section, we give detailed results for each of the use-cases,
and give results of other experiments investigating the properties of NN-FBP.

Nθ -reduction use-case
Simulations

The results for the Nθ -reduction case with simulation data is shown in Table 5.1.
The results show that, for all numbers of angles, NN-FBP produces more accurate
reconstructions than both FBP and SIRT. The reconstruction time of NN-FBP is close
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(a) Nθ -REDUCTION, simulation data
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(b) Nθ -REDUCTION, experimental data
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(c) LIMITED-DATA, simulation data
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Figure 5.9: The mean absolute error, averaged over the entire test set, for each use-case. Given are results
for FBP with the Ram-Lak filter (FBP), FBP with the Shepp-Logan filter (FBP-SL), FBP with the Hann filter
(FBP-HN), SIRT, and NN-FBP, where the number of hidden nodes is given between parentheses.
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ep

�

Tr(s) Tt(s)

FBP 0.149 0.02 0.103 0.02 0.067 0.02 0.041 0.03
SIRT 0.043 29.64 0.036 35.42 0.028 48.37 0.018 70.72
NN-FBP 1 0.039 0.04 2330 0.033 0.04 2362 0.026 0.04 2428 0.018 0.04 2559
NN-FBP 2 0.036 0.06 2499 0.027 0.06 2557 0.026 0.07 2550 0.012 0.08 2815
NN-FBP 4 0.034 0.12 2532 0.025 0.12 2669 0.018 0.13 2630 0.011 0.15 2905
NN-FBP 8 0.032 0.23 2928 0.024 0.23 2873 0.016 0.25 3147 0.011 0.29 2912
NN-FBP 16 0.032 0.44 3092 0.023 0.45 3552 0.016 0.49 3940 0.010 0.56 3681
NN-FBP 32 0.032 0.88 4094 0.024 0.96 4527 0.016 1.04 5160 0.010 1.21 5801
NN-FBP 64 0.032 1.92 7101 0.024 1.79 9027 0.016 2.01 12273 0.010 2.28 11883

Table 5.1: Results for the Nθ -reduction use-case, simulation data.



ep
�

, Tr , and Tt denote mean absolute
error, reconstruction time, and training time, respectively.
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Tr(s) Tt(s)

FBP 1.311 0.03 0.865 0.03 0.586 0.03 0.402 0.04
SIRT 0.107 42.97 0.111 52.59 0.111 73.15 0.108 108.17
NN-FBP 1 0.091 0.05 750 0.090 0.05 801 0.089 0.05 777 0.086 0.06 881
NN-FBP 2 0.089 0.09 818 0.089 0.09 770 0.087 0.10 795 0.085 0.11 927
NN-FBP 4 0.088 0.16 845 0.086 0.17 855 0.085 0.18 932 0.084 0.21 1076
NN-FBP 8 0.088 0.32 912 0.086 0.33 979 0.085 0.35 1003 0.084 0.40 1148
NN-FBP 16 0.088 0.62 1181 0.086 0.64 1392 0.085 0.69 1457 0.084 0.79 1923
NN-FBP 32 0.088 1.25 2343 0.086 1.27 2551 0.085 1.39 3221 0.084 1.56 3339
NN-FBP 64 0.088 2.60 4538 0.086 2.71 6229 0.085 2.98 8265 0.084 3.11 5788

Table 5.2: Results for the Nθ -reduction use-case, experimental data. See Table 5.1 for more information.

to the reconstruction time of FBP multiplied with a factor of Nh. For example, using
NN-FBP with 8 hidden nodes, the mean absolute error is, on average, roughly 75%
lower than FBP and 35% lower than SIRT. The reconstruction time for that case is 11.5
times larger than that of FBP, but only 0.6% of that of SIRT. An example image with
reconstructions for Nθ = 32 and Nh = 8 is shown in Figs. 5.10a to 5.10d, where we
see that the NN-FBP reconstruction is sharper than that of SIRT, and has less streak
artifacts than the FBP reconstruction.

Experimental data

For the Nθ -reduction case and experimental data, results are given in Table 5.2. Again,
NN-FBP produces more accurate results than both FBP and SIRT, although the differ-
ences are smaller than for the simulation data. Images of the reconstructions close to
the forming crack, given in Figs. 5.10e to 5.10h, show, however, that the reconstruction
of NN-FBP is visually much clearer than the FBP and SIRT reconstructions. The FBP
reconstruction suffers from the combined effect of limited data and noise, resulting in
a very noisy reconstruction.

Limited-data use-case

Simulations

Results for the limited-data use-case and simulation data are given in Table 5.3.
Here, the reported mean absolute errors are calculated with respect to the FISTA
reconstructions. Note that the images are smaller than the ones used in Section 5.6.
The reconstruction time of NN-FBP is only a fraction of the reconstruction time of FISTA,
while reconstructions created by NN-FBP have a relatively low mean absolute error
compared to the FISTA reconstructions. Example reconstruction are given in Figs. 5.10i
to 5.10l. Compared to FBP and SIRT, the NN-FBP method is able to approximate FISTA
reconstruction more accurately, although NN-FBP is not able to mimic FISTA exactly.
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FISTA 0.000 23.5 0.000 38.0 0.000 51.2 0.000 58.7
FBP 0.180 0.00 0.111 0.00 0.066 0.00 0.039 0.00
SIRT 0.068 1.60 0.048 1.66 0.034 1.85 0.024 2.19
NN-FBP 1 0.048 0.00 46 0.040 0.00 40 0.030 0.00 44 0.021 0.00 46
NN-FBP 2 0.040 0.02 108 0.031 0.01 122 0.023 0.01 192 0.016 0.01 240
NN-FBP 4 0.038 0.01 246 0.028 0.01 295 0.021 0.01 258 0.015 0.02 165
NN-FBP 8 0.038 0.02 343 0.027 0.02 500 0.019 0.03 436 0.014 0.04 436
NN-FBP 16 0.037 0.04 829 0.027 0.04 643 0.019 0.05 847 0.014 0.07 673
NN-FBP 32 0.037 0.08 1560 0.027 0.08 1557 0.019 0.11 1579 0.015 0.14 1627
NN-FBP 64 0.036 0.16 4710 0.027 0.17 4113 0.019 0.22 3904 0.015 0.29 4375

Table 5.3: Results for the limited-data use-case, simulation data. See Table 5.1 for more information.
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FISTA 0.000 24.1 0.000 30.6 0.000 41.1 0.000 54.6
FBP 0.134 0.00 0.073 0.00 0.051 0.00 0.039 0.00
SIRT 0.048 1.60 0.029 1.66 0.024 1.85 0.023 2.19
NN-FBP 1 0.046 0.00 156 0.031 0.00 146 0.022 0.00 161 0.019 0.01 183
NN-FBP 2 0.040 0.01 187 0.028 0.01 211 0.021 0.01 199 0.019 0.01 208
NN-FBP 4 0.041 0.01 377 0.025 0.01 371 0.020 0.01 261 0.017 0.02 373
NN-FBP 8 0.041 0.02 585 0.023 0.02 327 0.020 0.03 779 0.019 0.04 583
NN-FBP 16 0.045 0.04 1247 0.022 0.04 1166 0.020 0.05 1058 0.019 0.07 896
NN-FBP 32 0.041 0.08 2835 0.023 0.08 3586 0.021 0.11 2605 0.019 0.14 3058
NN-FBP 64 0.041 0.16 13190 0.023 0.17 3901 0.021 0.22 5226 0.019 0.29 4831

Table 5.4: Results for the limited-data use-case, experimental data. See Table 5.1 for more information.

Experimental data

Results for the limited-data use-case and experimental data, given in Table 5.4, show
similar results, where the NN-FBP reconstructions approximate the FISTA reconstruc-
tions more accurately than both FBP and SIRT. Again, it takes significantly more
time to reconstruct the images using FISTA than to reconstruct them using NN-FBP.
Reconstructions of a single slice of the data are given in Figs. 5.10m to 5.10p.

Other experiments
We will now discuss other experiments we performed to determine the properties of
the NN-FBP reconstruction method.

Size of the training and validation set

To investigate the training and reconstruction properties of the NN-FBP method, we
took the Nθ -reduction use-case with simulation data over 16 angles, and the NN-FBP
method with 8 hidden nodes. We trained the method 10 times, starting each time with
random weights, for different sizes of the training and validation set, and calculated
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(a) Original (b) FBP (c) SIRT (d) NN-FBP

(e) Original (f) FBP (g) SIRT (h) NN-FBP

(i) Original (j) FBP (k) SIRT (l) NN-FBP

(m) Original (n) FBP (o) SIRT (p) NN-FBP

Figure 5.10: Reconstructions of the objects in the left column, obtained from projection data over 32 angles
by FBP, SIRT, and NN-FBP with 8 hidden nodes. In the bottom two rows, the original object was obtained by
applying the FISTA algorithm on the full set of 32 available projections.
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Figure 5.11: The average mean absolute error and training time for 10 runs of the Nθ -reduction use-case,
simulation data, with Nθ = 16 and Nh = 8. The error bars indicate standard deviation.

the resulting mean absolute error with the test set, and measured the training time.
Results are given in Fig. 5.11.

The results show that the mean absolute error of the resulting trained network
decreases with increasing training set and validation set size. After a certain size,
however, increasing the size further does not seem to lower the error significantly. The
time it takes to train NN-FBP becomes larger with increasing set size. Figure 5.11 also
shows that for sufficient set sizes, the standard deviation of the mean absolute error is
low. This is important for practical applications, since it shows that one has to train
NN-FBP only once, without risk of obtaining a badly trained network.

Noise in the projection data

To investigate the effect of noise in the projection data on NN-FBP, we added different
levels of Poisson noise to the simulation data of the Nθ -reduction use-case. FBP
reconstructions of the noisy projection data with 1024 projection angles were used as
training examples for training the NN-FBP method. After training NN-FBP to reconstruct
using only 32 projection angles of the noisy data, we reconstructed a single image of
the test set, and calculated the mean absolute error of the reconstruction, compared
to the noiseless phantom image (Fig. 5.10a). Results are given in Fig. 5.12. The
reconstructions obtained by NN-FBP are more accurate than both FBP and SIRT for all
noise levels, with the mean absolute error being much lower than FBP. The artifacts in
the FBP reconstructions would make further analysis of the object difficult, especially
at high noise levels.

To investigate the effect of noise on the training phase of NN-FBP, we trained
the NN-FBP method 10 times on a single data set, each time with independently
generated noise applied. In every run, the network was trained on 106 pixels from a
training and validation set of 100 images of the threeshape family, generated on a
1024× 1024 pixel grid, with projection data of 32 angles, rebinned to 256 detectors.
FBP reconstructions of the noisy projection data with 1024 projection angles were
used as training examples. For a test set of 100 images similar to the training set, we
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(a) FBP (0.085) (b) SIRT (0.039) (c) NN-FBP (0.034)

(d) FBP (0.189) (e) SIRT (0.042) (f) NN-FBP (0.035)

(g) FBP (0.558) (h) SIRT (0.058) (i) NN-FBP (0.043)

Figure 5.12: Reconstructions of the object from Fig. 5.10a, obtained from projection data over 32 angles
with Poisson noise by FBP, SIRT, and NN-FBP with 8 hidden nodes. Each row has an increasing amount of
added noise. The mean absolute error of the reconstructions, compared to Fig. 5.10a, is given between
parentheses. The errors of FBP with the Shepp-Logan filter are 0.078, 0.157, and 0.452, for increasing
amount of added noise. For FBP with the Hann filter, errors are 0.062, 0.090, and 0.216, respectively.
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Figure 5.13: The average mean absolute error for 10 runs of the Nθ -reduction use-case, simulation data
(256× 256 pixels), with Nθ = 32, Nh = 8, and Poisson noise. The Poisson noise is generated independently
for each of the 10 runs. Lower values of I0 correspond to larger amounts of noise. Error bars indicate
standard deviation.

report the average mean absolute error of the noiseless phantom with the NN-FBP
reconstructions, which calculated using noisy projections.

Results are given in Fig. 5.13. These results show that the mean absolute error
decreases smoothly with decreasing noise levels. Furthermore, the standard deviation
of the mean absolute error is relatively small compared to the error itself, for all noise
levels. This indicates that noise in the projection data does not have a large impact on
the ability of NN-FBP to find filters that minimize the training error. One reason for
this robustness could be that we are able to use a large number of training examples,
thereby reducing the influence of the noise by averaging its effect on each example.

Hidden node output

To gain a better insight in how NN-FBP is able to produce accurate reconstructions, we
can look at the output of the hidden nodes of the network. Since the neural network
of NN-FBP reconstructs a single pixel, we can view the output value of a single hidden
node as a pixel of an image. In other words, we can look at the FBP reconstructions of
each hidden node of Eq. (5.23). To obtain the final output of NN-FBP, these individual
reconstructions are added together with an additional constant offset, and the sigmoid
function is applied to each pixel value.

Figure 5.14 shows four of the eight hidden node output images, resulting from
a reconstruction of Fig. 5.10i with data for 32 projection angles and NN-FBP with 8
hidden nodes. The results show that each hidden node reconstructs a different feature
of the final reconstruction: some focus on the broad shape of the object, while others
focus on the edges. Furthermore, the relative contrast of the different ellipses in the
reconstructed object differs for each hidden node output image. These results, in
addition to the other results in this section, show that there is something to gain by
using multiple nonlinear FBPs to reconstruct an object, compared to using a single
standard FBP.
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Figure 5.14: Hidden node output images of a reconstruction of the object from Fig. 5.10i, obtained from
projection data over 32 angles, with 8 hidden nodes. Blue, green, and red indicate negative, zero, and
positive values, respectively.

Exponential binning

To test the influence of exponential binning on both the reconstruction quality and
training time of the NN-FBP method, we trained NN-FBP both with and without
exponential binning. Both times, the network was trained on 106 pixels from a training
and validation set of 100 images of the threeshape family, generated on a 1024×1024
pixel grid, with projection data of 32 angles, rebinned to 256 detectors. After training,
both networks were used to reconstruct a test set of 100 images similar to the training
and validation images.

With exponential binning, training the network took 673 seconds, and the resulting
mean absolute error with the test set was equal to 0.0246. Without exponential binning,
the mean absolute error with the test set was 0.0239, which is 3% lower. The time to
train the network, however, increased to 55178 seconds, 82 times longer than with
exponential binning. These results show that, although exponential binning can slightly
impact the reconstruction quality of NN-FBP, it greatly reduces the time it takes to train
the method.

5.7 Conclusion
In this chapter, we presented a new reconstruction method, the neural network fil-
tered backprojection method (NN-FBP), for limited-data 2D parallel-beam tomography
problems. The method is based on artificial neural networks, which allows it to learn
problem specific knowledge to improve its reconstruction quality. Furthermore, we
showed that NN-FBP can be viewed as a combination of several standard FBP opera-
tions, each with a custom filter. This property ensures that the computation complexity
of NN-FBP is low compared to algebraic reconstruction methods.

In order to train the NN-FBP method, a set of reconstructions with corresponding
projection data is needed. Although this requirement presents a problem, it can be
satisfied in several practical applications. Here, we focused on two such applications.
In one, we first acquire projection data over a large number of angles, and use recon-
structions obtained by standard FBP to train NN-FBP on, while using limited data of
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only a small subset of angles. Afterwards, NN-FBP can reconstruct limited data of
similar objects accurately. In the second use-case, we assume that we are not able
to acquire data over a large number of angles, but are given limited-data of only a
small number of angles. In this case, we can use NN-FBP to imitate a much slower
prior-knowledge based reconstruction method, such as TV-minimization methods.

Results for simulation data and experimental data of both use-cases show that
NN-FBP is able to produce significantly more accurate reconstructions than standard
FBP. The reconstruction time of NN-FBP is slightly higher than the reconstruction time
of FBP multiplied by the number of hidden nodes. The results show that even for a low
number of hidden nodes, NN-FBP is able to outperform FBP. Interestingly, NN-FBP is
also able to produce more accurate reconstructions than SIRT, a much slower iterative
algebraic method. Additional experiments show that the method is more robust than
FBP when faced with noisy projection data.

The current study focused on two-dimensional parallel-beam tomographic problems,
but a similar method can in theory be applied to other tomographic problems. In
these cases, the method will be related to other filter-based analytical reconstruction
methods. For example, in three-dimensional cone-beam tomography problems, we can
design a neural network that can be viewed as a combination of Feldkamp-David-Kress
(FDK) operations [FDK84] with custom filters. Similarly, the current method can also
be applied to fan-beam problems, with the fan-beam variant of FBP [KS01]. The
reconstruction quality of these new methods remains subject of further research.

NN-FBP can also be used to combine the reconstruction of an object with subsequent
analysis of the reconstruction. This can be achieved by training NN-FBP using analyzed
images of the correct reconstructions as training images. For example, we can train
NN-FBP on segmented images of the training data, thereby training it to perform
both the reconstruction and segmentation in a single step. Other analyses, such as
highlighting areas of interest, are also possible. Which type of object analyses can be
accurately performed by NN-FBP remains subject of further research.

Since NN-FBP consists only of FBP operations and image addition and multiplica-
tion, implementation of the method in current applications is straightforward. Many
hardware CT-scanners currently use FBP as their main reconstruction method, which
would make replacement with NN-FBP easy, provided that the user is able to specify
custom filters. If a heavily optimized version of FBP is available, NN-FBP will be able
to use the same optimizations to reduce execution time. The results from this chapter
show that NN-FBP can be a significant improvement over FBP for practical applications.




