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4
Local approximation of
advanced regularized

iterative methods

4.1 Introduction
The goal of tomography is to reconstruct an object given its projections for different
angles. Using tomography, it is possible to nondestructively examine the interior of
objects, which makes it useful for many applications. Examples of tomography in prac-
tice include computed tomography in medicine and electron tomography in materials
science. Because of its practical usefulness, many algorithms have been developed to
perform tomographic reconstruction. An overview of past research on tomography
can be found in [KS01; Nat01; Buz08]. Two types of reconstruction methods are
commonly used: analytical methods, which discretize a continuous inversion formula
of the problem, and algebraic methods, in which a linear system that represents the
problem is solved.

In many applications of tomography, it is impossible to acquire a large number of
noise-free projections. For example, when scanning live animals, there is a limit on
the total dose deposited on the animal during the experiment [Lov+13]. In electron

This chapter is based on:
D. M. Pelt and K. J. Batenburg. “A method for locally approximating advanced regularized
iterative tomographic reconstruction methods”. IEEE Transactions on Image Processing (Submitted
for publication).

41



42 CHAPTER 4. LOCAL APPROXIMATION OF ADV. REG. ITERATIVE METHODS

tomography, the scanned sample is damaged by the electron beam, which leads to
a limit on the number of projections that can be acquired [MDG95]. In these cases,
standard reconstruction methods often fail to produce reconstructions with adequate
quality for further analysis [Lov+13]. For analytical methods, the reason for this is
that the continuous inversion formulas on which they are based assume that noise-free
projections are available for all angles. In algebraic methods, the linear system that
is solved is typically both underdetermined and ill-conditioned, which can make it
difficult to find accurate reconstructions when the available projection data is limited
and/or noisy.

Recently developed advanced reconstruction methods aim to improve reconstruc-
tion quality by exploiting prior knowledge about the scanned object or scanning system.
Often, these methods add additional terms to the objective function that is minimized
in standard algebraic methods. Methods of this type will be called regularized iterative
methods in this chapter. For example, if it is known beforehand that the physical
quantity that is reconstructed cannot be negative, a nonnegativity constraint can be
added to the objective function to improve the reconstruction quality. If it is known that
the scanned object has a sparse boundary, total variation minimization can be applied
by adding a term that minimizes the gradient of the reconstructed image [SP08]. If
the added prior knowledge is appropriate for the acquired data, regularized iterative
methods can be extremely successful in reconstructing objects from (highly) limited
data [BS11; Kos+13].

One of the main disadvantages of regularized iterative methods is their computa-
tional cost, which is typically very high. A high computational cost of a reconstruction
method can be prohibitive for its application in practice. For example, in ultrafast
tomographic experiments at synchrotrons, the computation time of the reconstruction
method has to match the high speed of the acquisition of projection data [Mok+13]. An
additional problem is that regularized iterative methods often have a number of tunable
parameters that influence the reconstruction quality greatly. In many cases, values for
these parameters are chosen by trial-and-error, which can be very time-consuming for
methods with a high computational cost. These problems are especially important in
cases where a large object is scanned, but the features of interest are only located in
a small region of the object. Since regularized iterative methods, and the algebraic
methods they are based on, minimize a global objective function, they typically need to
compute the entire volume during reconstruction, which may not fit into the available
memory of the graphic processing units used to perform the reconstruction [XM05].

Analytical methods, on the other hand, can be evaluated locally: if one is only
interested in a small subvolume of the reconstruction, only that subvolume has to
be reconstructed. When reconstructing large volumes, analytical methods can divide
the reconstruction volume into subvolumes that do fit into the available memory, and
reconstruct each subvolume separately, resulting in an efficient method to compute the
full reconstruction volume. This property is one of the reasons that in many applications
of tomography, standard analytical methods are still the most popular reconstruction
methods instead of regularized iterative methods [PSV09].

In this chapter, we present a novel method for approximating a computationally
expensive regularized iterative method in a (small) subvolume of the full reconstruction
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volume. The proposed method only performs computations in the chosen subvolume,
ensuring low computational and memory requirements. If one is only interested in
part of the scanned object, the new method can significantly reduce the time needed to
reconstruct that part compared to existing regularized iterative methods. If one wants to
reconstruct the entire object, the proposed method also allows for significant reduction
of computation time by enabling parallel computation of different subvolumes, and it
enables regularized iterative reconstruction of large datasets that do not fit completely
into the available memory. In addition, the method can be used to quickly estimate
parameters of a slow regularized iterative method by estimating them in a small
subvolume.

The proposed method is based on approximating standard algebraic methods by
a modified analytical method. In recent years, several methods have been proposed
that achieve this by modifying the filter that is typically used in analytical methods.
In one study, an angle-independent filter is calculated based on analytic analysis of
the algebraic SIRT method [Zen12]. An extension of the method for noisy projection
data is given in [ZZ13]. In Chapter 2 of this thesis, a method of calculating a data-
dependent filter is given. Finally, an angle-dependent and geometry-dependent filter is
calculated by repeated application of the SIRT method in [BP12]. A faster method of
calculating similar filters for the algebraic SIRT method is proposed in Chapter 3 of this
thesis. None of these methods, however, allow for inclusion of popular advanced prior
knowledge terms, such as total variation minimization, which can limit their usefulness
in practice. In this chapter, we first show the application of the filter of Chapter 3
to locally approximate the algebraic SIRT method. Then, we extend the method to
allow for local approximation of a regularized iterative method as well. Finally, we
demonstrate that the proposed method is able to produce local reconstructions that
are very similar to reconstructions of global regularized iterative methods for various
types of exploited prior knowledge.

This chapter is structured as follows. In Section 4.2, we introduce the notations
we use throughout the chapter, and formally define the tomographic reconstruction
problem and the standard analytical and algebraic approaches. The main contribution
of this chapter is given in Section 4.3, where we first apply the method proposed in
Chapter 3 to approximate SIRT locally. We then extend this approximation by including
prior knowledge in the reconstruction of a subvolume, and give some details on how to
implement the resulting method in practice. The experiments we performed to study
the new method are explained in Section 4.4, and the results of those experiments are
shown in Section 4.5. We conclude in Section 4.6 with a brief summary of the chapter
and some final remarks.

4.2 Notation and concepts
In this section, the mathematical notation that we use throughout the chapter is
introduced, and a formal definition of the tomographic reconstruction problem is given.
The standard analytical and algebraic approaches to the problem are explained, and
their mathematical definitions are given. Finally, we explain how prior knowledge can
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Figure 4.1: The two-dimensional parallel-beam geometry used in this chapter. Parallel lines, rotated by
angle θ , pass through the object f . A line lθ ,t has the characteristic equation t = x cosθ + y sinθ , and a
projection Pθ (t) of f is given by the line integral of f over the line lθ ,t .

be exploited in algebraic methods by extending their objective functions, resulting in
regularized iterative methods.

Notation and problem definition
We focus on two-dimensional parallel-beam tomographic reconstruction problems
with a single rotation axis. Note that in many cases it is possible to convert other
tomographic geometries, such as cone-beam or spiral tomography, to a parallel-beam
geometry by rebinning [GKP00; KSK00]. Parallel-beam projection data are acquired by
rotating an array of detectors around the object (or, equivalently, rotating the object),
with the detectors of the array located on a straight line. This acquisition scheme is
shown graphically in Fig. 4.1. If the number of detectors in the array is denoted by
Nd , and the number of rotation angles for which data are acquired is denoted by Nθ ,
we can write the measured line integrals as a vector p with Nd Nθ elements, one for
each combination of detector element and rotation angle. The reconstructed image
is represented as a vector x with N2 elements, one for each pixel of the N × N pixel
grid on which the reconstruction is calculated. The main problem in tomographic
reconstruction is to find the unknown image x , given the acquired projection data p.

The forward projection operator W : RN2
→ RNd Nθ is the operator that, for a

given projection geometry, corresponds to the discretized line integrals of an object
represented on a N ×N pixel grid. Using the above notation, we can write this operator
as a Nd Nθ × N2 matrix W , with element wi j giving the contribution of pixel j to
detector i. The transpose of this operator, W T , is called the backprojection operator.
Typically, a forward projection of an image x is calculated on-the-fly by calculating
its line integrals directly [PBS11]. Similarly, multiplying p by W T is done implicitly
by backprojecting p on-the-fly. The advantage of this approach is that the matrix W ,
which can be very large, never has to be stored in memory. Furthermore, forward
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projections and backprojections can be computed very efficiently on graphic processor
units (GPUs) [XM05; MXN07].

Our novel approach aims to reconstruct only a local partL of the entire reconstruc-
tion grid. Here, L is a subset of all N2 pixels of the entire reconstruction grid, usually
ordered in a NL ×NL grid as well. Let ML be a diagonal matrix with a value 1 on the
diagonal of row i if pixel i is inside L , and 0 everywhere else. In other words, ML
keeps all pixels of an image that are inside L , and zeros all other pixels. Similarly, we
define a matrix MF that zeros all pixels inside L , and keeps all other pixels. Using
these, we can define local operators WL and W T

L , and outer operators WF and W T
F :

WL = W ML

W T
L = MLW T

WF = W MF

W T
F = MFW T

(4.1)

Since ML +MF = I by construction, we have that the sum of WL and WF is equal
to W :

W = WL +WF (4.2)

Note that local forward projections and backprojections can be computed significantly
faster than full forward projections and backprojections, since many rows and columns
of WL and W T

L are zero.

Common reconstruction methods
Using the above definitions, we can write one of the most popular reconstruction
methods, the analytical filtered backprojection (FBP) method, as:

FBP(p, h) = W T C hp (4.3)

Here, C h is a convolution operator that convolves each 1D array of detector values,
taken at a single rotation angle, with the 1D filter h [KS01]. Note that this 1D filter
can be different for each rotation angle. Several fixed angle-independent filters are
commonly used in practice, such as the Ram-Lak (ramp), Shepp-Logan, and Hann
filters [Far+97]. One reason for the popularity of FBP is its computational efficiency:
the filtering step can be performed very efficiently in Fourier space, and only one
backprojection has to be computed during reconstruction. Another advantage of the
filtered backprojection method compared to other methods is that we can calculate its
values inside the local part L by simply exchanging W T by W T

L in Eq. (4.3):

FBPL (p, h) = W T
LC hp (4.4)

A different approach to solving the reconstruction problem is the algebraic approach.
Here, we form a linear system W x = p, and solve for x . Most algebraic methods find a
solution x alg by minimizing the difference, in some vector norm, between the forward
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projection of the solution and the measured projection data. This difference is called
the projection error. In the case of the `2-norm, we can write this as:

x alg = argmin
x
‖p −W x‖2

2 (4.5)

Since the matrix W is often very large, Eq. (4.5) is usually not solved directly. Instead,
an iterative optimization method is typically used to iteratively decrease the projection
error. Implicit regularization of the solution can be included by stopping the iteration
process early, which is needed because W is usually ill-conditioned and noise is often
present in p.

Different iterative optimization methods can be used to minimize the projection
error, leading to different algebraic methods. The CGLS method, for example, is based
on a conjugate gradient method [Bjö96]. Another popular algebraic method is the
simultaneous iterative reconstruction technique (SIRT) [KS01]. The SIRT method
belongs to the class of Landweber iteration methods [Lan51], and uses a specific Krylov
subspace method to minimize the projection error iteratively. A single iteration of the
SIRT method can be viewed as a gradient-descent step on the projection error, and can
be written as:

x k+1
s = S(x k

s ) = x k
s +αW T

�

p −W x k
s

�

(4.6)

Note that in algebraic methods, we are not able to simply exchange W by WL to
find the reconstruction inside L , since then we would be solving the linear system
WL x = p, which will have a completely different solution than W x = p if the scanned
object is nonzero outside L .

Regularized iterative methods
A common way of including prior knowledge in algebraic methods is to add additional
constraints to the objective function of Eq. (4.5). In this chapter, we distinguish
two types of constraints that are commonly used: domain constraints, which restrict
the domain of possible solutions, and penalty constraints, which penalize undesired
solutions in the objective function. The resulting regularized iterative methods can be
written as:

x reg = argmin
x∈D

�

‖p −W x‖2
2 +λg(x )

�

(4.7)

Here, D is a restricted domain for the possible solutions x , and g : RN2
→ R is a

penalty function that penalizes solutions that do not fit with the assumed prior knowl-
edge. The λ term controls how strongly the penalty function is weighted compared
to the projection error term. The domain D is used to specify domain constraints,
for example when adding a nonnegativity constraint on the values of x by using
D = {x ∈ RN2

; x i ≥ 0, i = 1, . . . , N2}. The cost function g(x ) is used to specify
penalty constraints. For example, if we assume that the scanned object is sparse in
some wavelet basis, we can set g(x ) = ‖Bx‖1, where B is the wavelet decomposition
operator. Similarly, if we assume that the gradient of the scanned object is sparse,
we set g(x ) = ‖∇x‖1 to perform total variation minimization, where ∇ is a discrete
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(a) (b) (c) (d)

Figure 4.2: Zoomed-in reconstructions of the Shepp-Logan head phantom (a), showing the resulting images
of three different reconstruction methods: (b) FBP, (c) SIRT, and (d) total variation minimization. The
images were reconstructed on a 1024× 1024 pixel grid, using projection data acquired with Nd = 1024
detectors and Nθ = 256 projection angles, equally distributed in the interval [0,π], and additional Poisson
noise applied.

gradient operator. Several algorithms exist that are able to find solutions to Eq. (4.7),
such as the popular fast iterative shrinkage-thresholding algorithm (FISTA) [BT09a],
Chambolle-Pock algorithms [CP11], and adaptive steepest descent projection onto
convex sets algorithm (ASD-POCS) [SP08]. A comparison of reconstructions obtained
using FBP, SIRT, and total variation minimization from noisy projection data is shown
in Fig. 4.2.

Many regularized iterative methods use a scheme that alternates between gradient-
descent steps on the projection error ‖p − W x‖2

2, steps that minimize the penalty
function g(x ), and steps that enforce the domain constraints D. Since a single iteration
of the SIRT method is identical to a single gradient-descent step on the projection error,
these regularized iterative methods can be viewed as a combination of SIRT iterations
and some additional steps incorporating the prior knowledge. As an example, one can
include box constraints on the values of the reconstruction pixels of the form l ≤ x i ≤ r,
which is a domain constraint with D = {x ∈ RN2

; l ≤ x i ≤ r, i = 1, . . . , N2} by using
the following iterations for pixel i of the reconstruction:

x k+1
i =







l : if S(x k)i < l
r : if S(x k)i > r
S(x k)i : otherwise

(4.8)

An example of using a penalty constraint is the ISTA method [DDD04] for `1-norm
minimization of a representation of the reconstructed image in a wavelet basis. In this
case, a single iteration of the method can be written as:

x k+1 = B−1Pλ(BS(x k)) (4.9)

where B is the wavelet decomposition operator, and Pλ the soft thresholding operator
with threshold λ:

Pλ(y)i =
§

sgn(y i)(|y i | −λ) : if y i > λ
0 : otherwise (4.10)
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In this chapter, we propose a method to locally approximate regularized iterative
reconstruction methods that are a combination of SIRT iterations and additional steps
that incorporate the prior knowledge.

4.3 Method
In this section, we introduce the major contribution of this chapter: a local approxi-
mation method for regularized iterative reconstruction methods. We first explain the
method introduced in Chapter 3 to approximate the algebraic SIRT method by FBP
with a specific geometry-dependent filter, and show how this approach can be used to
approximate SIRT locally as well. Afterwards, we extend the approximation to include
prior knowledge, improving the reconstruction quality. Finally, we give details on how
we implemented the resulting method for the experiments of Section 4.4.

Local approximation of SIRT
Recall that a single iteration of the SIRT method can be written as:

x k+1
s = S(x k

s ) = x k
s +αW T

�

p −W x k
s

�

(4.6)

Here, α ∈ R is a parameter that influences the stability and rate of convergence of the
method. In the rest of this chapter, we use α= (NθNd)

−1.
To find an approximation method for the SIRT method, we start by rewriting the

equation of a single SIRT iteration (Eq. (4.6)) in a matrix format:

x k+1
s = (I −αW T W)x k

s +αW T p (4.11)

This is a recursion equation of the form x k+1 = Ax k + b, which has the following
solution for iteration n:

x n
s = Anx 0

s +α

�

n−1
∑

k=0

Ak

�

W T p (4.12)

where A= I −αW T W . Often, the initial image of the SIRT method is set to the zero
image (x 0

s = 0), in which case we end up with:

x n
s = α

�

n−1
∑

k=0

Ak

�

W T p (4.13)

Now, we want to find a method that can approximate Eq. (4.13). In order to
find such a method, we look at the FBP method, and note that, in parallel-beam
tomography, convolving a sinogram with a filter and backprojecting the result is
identical to backprojecting the sinogram and convolving the resulting image with the
backprojected filter:

FBP(p, h) = Hh′W
T p (4.14)
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Algorithm 4.1 Compute an FBP filter that approximates n iterations of SIRT

Require: W ∈ RNd Nθ×N2
, n ∈ Z+, α ∈ R

q0← 0
c← [0, . . . , 0, 1, 0, . . . , 0]T

for k = 1 to n do
q k ← q k−1 + c
c← c −αW T Wc

end for
un← αWq n
return un

Here, Hq is a 2D convolution with filter q , and h = Wh′.
Note the similarities between the rewritten SIRT equation (Eq. (4.13)) and the

rewritten FBP equation (Eq. (4.14)), which suggest that we can approximate the SIRT
equation by approximating

∑n−1
k=0 Ak by a 2D convolution operation with filter q n:

x n
s ≈ αHqn

W T p (4.15)

A good approximating filter q n can be found by taking the impulse response of
∑n−1

k=0 Ak:

q n =
n−1
∑

k=0

Ak[0, . . . , 0, 1, 0, . . . , 0]T (4.16)

In other words, we apply A to an image n− 1 times, starting with an image with only
the central pixel set to 1, and sum the resulting images to obtain the 2D filter q n.

Since backprojecting a sinogram and convolving the resulting image is the same
as convolving the sinogram with the forward projected filter and backprojecting the
result, we can write this as:

x n
s ≈ W T C un

p

un = αWq n
(4.17)

Here, C h is the same convolution operator as in Eq. (4.3), and un is the corresponding
angle-dependent filter. Comparing Eq. (4.3) and Eq. (4.17), we conclude that the SIRT
method with n iterations can be approximated by the FBP method with a special filter
un:

x n
s ≈ FBP(p, un) (4.18)

To summarize, the algorithm to compute an approximating filter is given in Algo-
rithm 4.1. For more information on implementing this method, and results for non-local
tomographic reconstruction, we refer to Chapter 3.

One advantage of this approximation is that, after calculating the filter, the final
reconstruction method is identical to standard FBP. Therefore, we can use the same
approach as for FBP to evaluate it locally: simply exchanging W T with W T

L :

x n
s ≈ FBPL (p, un) (4.19)

Results for locally approximating SIRT with this approach are given in Section 4.5.
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Including regularization
As explained in Section 4.2, many regularized iterative methods include a SIRT step in
their iterative equations. In Section 4.3, we showed that we can approximate these
SIRT steps locally by using the proposed filter method. However, to locally approximate
the complete regularized iterative methods, we need to perform some extra steps. We
start by explicitly splitting the reconstruction image at iteration k into two parts: a
standard SIRT image x k

s and a prior-based correction term y k:

x k = x k
s + y k (4.20)

Furthermore, we rewrite the equation for a single iteration of these methods, such that
it consists of a single SIRT step on the previous iteration, and an additional correction
term d that incorporates the prior knowledge:

x k+1 = S(x k) + dk+1 (4.21)

Note that it is usually straightforward to rewrite a regularized iterative method that
uses SIRT to this form, although one would typically not use such a formulation in
practice. For example, SIRT with box constraints (Eq. (4.8)) can be written in this form
by taking:

dk+1
i =







l − S(x k)i : if S(x k)i < l
r − S(x k)i : if S(x k)i > r
0 : otherwise

(4.22)

As another example, iterations of the ISTA method with a wavelet basis (Eq. (4.9)) can
be written in the form of Eq. (4.21) by taking:

dk+1 = B−1Pλ(BS(x k))− S(x k) (4.23)

Now, we aim to find a local approximation to Eq. (4.21). If we apply a single SIRT
iteration to x k, we get:

S(x k) = A
�

x k
s + y k

�

+αW T p

= Ax k
s +αW T p + Ay k

= S(x k
s ) + Ay k

(4.24)

By combining Eq. (4.21) and Eq. (4.24), we see that:

x k+1 = S(x k
s ) + Ay k + dk+1 (4.25)

Using the definition of Eq. (4.20), we can take:

x k+1
s = S(x k

s )

y k+1 = Ay k + dk+1
(4.26)

In order to locally approximate Eq. (4.21), we need to find local approximations for
x k+1

s and y k+1.
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The iterations of x k+1
s are identical to SIRT iterations, for which we already derived

a local approximation in Section 4.3:

x k+1
s ≈ FBPL (p, uk+1) (4.27)

Furthermore, we can choose to only apply the prior knowledge inside the local part L .
In this case, the prior-based correction term dk+1 is only nonzero for pixels inside L .
To find a local approximation to Ay k, we expand A, and use the definition of the local
and outer projection operations Eq. (4.2):

Ay k =
�

I −αW T W
�

y k

= y k −α
�

W T
L +W T

F

�

W y k

= y k −αW T
LW y k −αW T

FW y k

(4.28)

We approximate Eq. (4.28) locally by simply ignoring the term αW T
FW y k which affects

the pixels outsideL . By ignoring this term, we ignore the effect that the local prior has
on the pixels outside L , which can affect the pixels inside L in later iterations. Since
we are, in the end, only interested in the reconstruction inside L , this approximation
is usually sufficiently accurate in practice. Another result of this approximation is that
y k will be zero outside L for any iteration k, and therefore we can substitute WL for
W in the forward projection as well:

Ay k ≈ y k −αW T
LWL y k (4.29)

To summarize, we have derived a method to approximate a regularized iterative
method inside L . Starting with y0 = 0, we use the following iterations:

x k+1
s = FBPL (p, uk+1) = W T

LC uk+1
p

y k+1 = y k −αW T
LWL y k + dk+1

x k+1 = x k+1
s + y k+1

(4.30)

Note that every projection operation in Eq. (4.30) is local, and can therefore be
computed efficiently. The needed filters uk for all iterations can be precomputed for a
certain projection geometry with a single run of Algorithm 4.1 by returning a filter for
each iteration. The method is based on three approximations to a standard regularized
iterative method:

1. Iterations of SIRT are approximated by FBP with specific filters.

2. The prior knowledge is only applied inside L .

3. The effect of the local prior on pixels outside L is ignored.

Results from Section 4.5 will show that despite these approximations, reconstructions
computed by our method are of significantly higher quality than either local FBP
or global SIRT reconstructions, and visually similar to global regularized iterative
reconstructions. The method is summarized in Algorithm 4.2.
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Algorithm 4.2 Compute a local approximation to a regularized iterative method

Require: p ∈ RNd Nθ , W ∈ RNd Nθ×N2
, n ∈ Z+, α ∈ R

y0← 0
for k = 1 to n do

x k
s ← FBPL (p, uk)

y k ← y k−1 −αW T
LWL y k−1 + dk

end for
return x n

s + yn

Algorithm 4.3 Compute a local approximation to FISTA minimizing ‖∇x‖1

Require: p ∈ RNd Nθ , W ∈ RNd Nθ×N2
, n ∈ Z+, nFGP ∈ Z+, α ∈ R

t0← 1
x 0
L ← 0

x 0← 0
for k = 1 to n do

x s ← FBPL (p, uk)
q ← x k−1

L −αW T
LWL x k−1

L
x k ← FGP(x s + q , nFGP)
tk ← (1+

p

1+ 4tk−1)/2
r ← x + (tk−1 − 1)x k/(tkx k−1)
x k
L ← r − x k

s

end for
return x n

The term d in Algorithm 4.2 is the term in which the prior knowledge is exploited,
and depends on which regularized iterative method is used. Often, in actual imple-
mentations, a different formulation can be used that is more natural to that specific
regularized iterative method than the one shown in Algorithm 4.2. As an example,
Algorithm 4.3 shows an implementation of the method when using FISTA to minimize
the `1 norm of the gradient of the reconstructed image. Here, we use similar notation
to [BT09b], and FGP(x , nFGP) refers to the FGP method of [BT09b] with nFGP iterations,
applied to the image x .

Implementation details
In this section, we will discuss a few details on implementing the proposed method.
Specifically, we will discuss how to prevent certain reconstruction artifacts from appear-
ing and how to improve the computation time of the method in repeated applications.

Using some forms of prior knowledge, artifacts can appear in the reconstructed
image near the edges of the reconstruction grid. For example, the gradient in a total
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variation constraint is often defined differently for pixels on the edge of the reconstruc-
tion grid compared to pixels in the interior, which can affect the reconstruction near
the edges. For global regularized iterative methods, the interesting features of the
reconstructed object are usually situated relatively far from the edge, in which case the
artifacts near edges can simply be ignored. In the proposed local method, however,
interesting features may be located near or on the edge of the chosen local part. A
simple but effective way of reducing the effect of edge artifacts in these cases is to
increase the size of the local part slightly, and crop the resulting reconstruction to the
chosen local part. In the rest of this chapter, we increase the size of the local part by
padding it with 1

8 of the height/width of the local part on each side.

The reconstruction quality of the filter-based approximation of the SIRT method
given in Section 4.3 depends on the discrete implementations of the projection opera-
tors, as explained in Chapter 3. Specifically, the method is based on approximating
the combined W T W operator by a shift-invariant convolution operation. The discrete
projection operations can be implemented in different ways [XM06], and the accuracy
of the approximation depends on the chosen implementation. In practice, most artifacts
resulting from the errors in the approximation are found in the low frequencies of
the reconstructed image, similar to the artifacts that can occur when discretizing the
Ram-Lak filter of the FBP method [KS01, Fig. 3.13]. By using implementations of
the projection operators that minimize the approximation error that is made, recon-
struction artifacts can be limited, and are typically invisible to a human observer. In
this chapter, we use an additional preprocessing step to further reduce these artifacts.
Before each reconstruction with the local approximation method, we subtract from the
projection data the forward projection of a disc, centered on the rotation axis, with a
diameter N and a constant gray value. The gray value is chosen such that the `2-norm
of the zero-frequency components of all projections are minimized after subtraction.
By reducing the low-frequency components of the projection data with this procedure,
the artifacts resulting from the approximation error are reduced as well. After recon-
struction, the same disc is added back to the reconstructed image. In practice, this
procedure ensures that artifacts resulting from errors made in approximating SIRT by
filtered backprojection are minimal.

As explained in Section 4.3, all projection operations of the proposed method can
be computed locally, and are therefore efficient to compute. When the local part is
much smaller than the number of detector pixels (NL � Nd), however, the convolution
operation in FBPL , which scales with Nd instead of NL , can become a significant part
of the total computation time. In many cases, however, one will perform repeated
applications of the local method, for example when finding optimal parameters for the
applied prior knowledge term, or when reconstructing multiple local parts at different
locations. In these cases, the convolution of the projection data with the different
filters uk for each iteration can be precomputed once and reused for the different local
reconstructions, improving reconstruction time significantly.
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4.4 Experiments

To investigate the properties of the proposed method, we implemented it in Python,
version 3.4.3, using the ASTRA toolbox [Aar+15] to perform all tomographic projection
operations, which enables the use of optimized GPU-based computations [PBS11]. All
experiments were performed on a machine running Fedora Linux 21, with an Intel
Xeon E5-2623 processor, 13 GB of memory, and a NVIDIA GeForce GTX TITAN Z GPU
using CUDA version 7.0.

We present results for three different forms of prior knowledge about the recon-
structed object: one domain constraint and two penalty constraints. For the domain
constraint we use box constraints on the pixel values by specifying D = {x ∈ RN2

; l ≤
x i ≤ r, i = 1, . . . , N2} in the objective function of Eq. (4.7). For the penalty constraints,
we use `1 minimization of the reconstruction in a Haar wavelet basis, i.e. specifying
g(x ) = ‖Bx‖1, and `1 minimization of the gradient of the reconstructed image (TV
minimization), i.e. specifying g(x ) = ‖∇x‖1. We use Eq. (4.8) to find solutions in the
case of box constraints on the pixel values, and the FISTA method in the case of both `1
penalty functions. In all cases, we compare the locally approximated reconstructions
with global reconstructions of the full object exploiting the same prior knowledge
on the full volume, and with the popular analytical FBP method and algebraic SIRT
method, which do not explicitly exploit any prior knowledge.

The phantom that is used in most experiments in this chapter is shown in Fig. 4.3.
This phantom was chosen because it is suitable for all three forms of prior knowledge
that we exploit. It consists of two materials: a background with a value of zero and a
foreground with a value of one. Therefore, box constraints can be effectively exploited
by setting l = 0 and r = 1. Since the phantom has a sparse boundary, TV minimization
and a Haar wavelet basis can also be used to improve reconstruction quality. In addition
to the phantom shown in Fig. 4.3, we also present some results for the Shepp-Logan
head phantom, shown in Fig. 4.9a, which has a relatively sparse boundary as well.

For each reconstruction, we report the mean squared error (MSE) of the recon-
structions inside the region of interest, compared to a known ground truth image. We
also report the structural similarity index (SSIM) [Wan+04] of the reconstructions
inside the region of interest compared to the ground truth, which is a metric that is
designed to be closer to the human visual system than the mean squared error. For
methods where a parameter needs to be chosen, i.e. λ in Eq. (4.7), we perform two
reconstructions each time: one with the value that minimizes the MSE and one with
the value that maximizes the SSIM. In each case, we find the optimal parameter value
using the Nelder-Mead method [NM65]. Note that the optimal parameter value can
depend on the dimensions of the reconstruction grid, and therefore, the optimal values
can be different for the global regularized iterative reconstructions compared to the
locally approximated reconstructions. For all iterative methods, we use 200 iterations
to compute each reconstruction, and we use 100 FGP iterations in the FISTA method
for TV minimization [BT09b].

In most experiments, we use a 4096 × 4096 pixel image of the phantom, and
generate projection data for 4096 detector pixels. Afterwards, the projection data is
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(a) (b) (c)

Figure 4.3: The phantom used for most experiments in this chapter. In (a), the entire phantom is shown
with a red square indicating the local part (b) that is used in most experiments. In (c), the sinogram of the
phantom is shown for 1024 detector pixels and 1024 projections equally distributed in [0,π].

resampled to 1024 detector pixels, and reconstructions are computed on a 1024×1024
pixel grid, or a local part of that grid. These reconstructions are compared to the
original 4096× 4096 pixel phantom, resampled to a 1024× 1024 pixel grid. In most
cases, additional Poisson noise is applied to the projection data to simulate experimental
conditions. The amount of applied Poisson noise is indicated by a variable I0, with
lower values corresponding to higher amounts of applied noise. Specifically, the noise
is applied by first transforming the simulated projections to virtual photon counts, in
which the largest photon count out of all detector pixels is set to I0. For each detector
pixel, a new photon count is sampled from a Poisson distribution with the original
photon count as the expected value. Finally, the resulting noisy photon counts are
transformed back to noisy line integrals of the phantom.

4.5 Results

In this section, we present the results of the experiments that we performed to inves-
tigate the properties of the proposed local approximation method, and discuss these
results.

Local SIRT approximation

In Fig. 4.4, reconstructions are shown for the local part of the phantom, computed
by standard FBP, standard SIRT, and the local approximation of SIRT (Eq. (4.19)).
Note that the global SIRT reconstruction and its local approximation are visually very
similar. The difference between the computation times is significant, however: the
local reconstructions take 28 milliseconds to compute each, while the global SIRT
reconstruction takes 2.6 seconds. The MSE of the FBP, SIRT, and local approximation
are 0.245, 0.016, and 0.016, respectively, and the SSIM values are 0.07, 0.25, and
0.27.
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(a) (b) (c)

Figure 4.4: Reconstructions of a 256×256 pixel local part of the motor phantom (Fig. 4.3a), using projection
data of 1024 detector pixels with Nθ = 512 projection angles, equally distributed in the interval [0,π], and
with Poisson noise applied. In (a) the local FBP reconstruction is shown, in (b) the global SIRT reconstruction
cropped to the local part, and in (c) the locally approximated SIRT reconstruction.

Local regularized iterative approximation
In Fig. 4.5, the mean squared error and structural similarity index are shown as a
function of the amount of applied Poisson noise I0, for standard FBP, standard SIRT, and
global and locally approximated reconstructions using various types of prior knowledge.
The results show that by exploiting prior knowledge, reconstruction quality can be
significantly improved compared to standard FBP and SIRT reconstructions. For this
phantom, exploiting total variation minimization yields reconstructions with the lowest
MSE and highest SSIM values. The results also show that for all tested types of prior
knowledge, the quality metrics of the locally approximated reconstructions are very
close to those of the global regularized iterative reconstructions. For unknown reasons,
the quality metrics of the local approximations are slightly better than the global
regularized iterative reconstructions. Similar results can be seen in Fig. 4.6, where the
quality metrics are shown as a function of the number of projections angles.

The mean squared error and structural similarity index are shown as a function
of the size of the local part L in Fig. 4.7. For all three prior knowledge types, the
reconstruction quality of the local approximations is only significantly lower compared
to the global regularized iterative methods when the local size is NL = 32 or smaller,
at which point the number of pixels of the local part is less than 0.1% of the number
of pixels in the global reconstruction grid. For larger local sizes, the reconstruction
quality is almost independent of the local size. These results suggest that, even for
reasonably small local parts, the approximations that are made by the proposed local
method do not influence the reconstruction quality significantly.

Reconstructed images of a local part with 256× 256 pixels are shown in Fig. 4.8,
for projection data of 1024 detector pixels and 512 equiangular projections with
Poisson noise applied. The images show that the local approximations are visually
almost identical to the global regularized iterative reconstructions for all three prior
knowledge types. The results also show how the different prior knowledge types
can help improve certain image characteristics compared to standard FBP and SIRT
reconstructions. In Fig. 4.9, reconstructed images are shown for a smaller local part
(128× 128 pixels) of the Shepp-Logan head phantom. Similar to the previous results,
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Figure 4.5: Mean squared error (MSE, solid lines) and structural similarity index (SSIM, dashed lines) of
reconstructions of a region (256× 256 pixels) of the motor phantom (Fig. 4.3a) for various amounts of
applied Poisson noise I0 and types of prior knowledge. The reconstructions are computed using projection
data of 1024 detector pixels and 512 projections equally distributed in the interval [0,π].
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Figure 4.6: Mean squared error (MSE, solid lines) and structural similarity index (SSIM, dashed lines)
of reconstructions of a region (256× 256 pixels) of the motor phantom (Fig. 4.3a) for various numbers
of projection angles Nθ (equally distributed in the interval [0,π]) and types of prior knowledge. The
reconstructions are computed using projection data of 1024 detector pixels, with applied Poisson noise.
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Figure 4.7: Mean squared error (MSE, solid lines) and structural similarity index (SSIM, dashed lines) of
reconstructions of a region (256× 256 pixels) of the motor phantom (Fig. 4.3a) for various sizes of the local
part NL and types of prior knowledge. The reconstructions are computed using projection data of 1024
detector pixels and 512 projections equally distributed in the interval [0,π], with applied Poisson noise. For
NL < 256, multiple local reconstructions are tiled to create a reconstruction of 256× 256 pixels, to enable
comparison between different local sizes. The partial horizontal lines on each axis indicate the MSE and
SSIM of global SIRT and global regularized iterative reconstructions, cropped to the same 256× 256 pixels.

the local approximations are visually almost identical to the global regularized iterative
reconstructions.

Computation time

The computation time of the proposed local reconstruction method is shown in Fig. 4.10
as a function of the size of the local part L . Also shown is the computation time of
the standard global regularized iterative method. For the local method, computation
times are shown both for the first application, as well as for subsequent applications,
in which the convolution results of the first application can be reused to decrease the
needed computation time (see Section 4.3). For all of types prior knowledge, the
local method requires significantly less computation time than the global regularized
iterative methods.

If one is only interested in a local part of the object, the local method can be
used to compute advanced regularized reconstructions in a few seconds instead of the
several minutes it costs to compute the global reconstruction. In cases where the same
regularized iterative method is computed multiple times for the same projection data,
for example when estimating the λ parameter, the proposed local method requires
even less computation time, leading to a significant reduction of processing time in
practice. Finally, since each local reconstruction is independent of the other local
reconstructions, different local parts can be reconstructed in parallel and combined
afterwards to compute a larger part of the scanned object in short time. An example of
such a reconstruction is shown in Section 4.5.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.8: Reconstructions of a local part (256× 256 pixels) of the motor phantom (a) from projection
data of 1024 detector pixels and 512 projections equally distributed in the interval [0,π], with Poisson
noise applied, using various reconstruction methods: (b) local FBP, (c) global SIRT cropped to local part,
(d)-(f) global regularized iterative method cropped to local part, with (d) box constraint, (e) Haar wavelet
constraint, and (f) TV constraint, and (g)-(i) the proposed local method, with (g) box constraint, (h) Haar
wavelet constraint, and (i) TV constraint. The local reconstructions are shown with a gray-level window in
which black corresponds to the minimum value and white to the maximum value of the phantom inside the
local part.
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(a) (b) (c)

(d) (e) (f)

Figure 4.9: Reconstructions of a local part (128× 128 pixels) of the Shepp-Logan head phantom, indicated
by the red square in (a). The reconstructions are computed from projection data of 1024 detector pixels
and 512 projections equally distributed in the interval [0,π], with Poisson noise applied, using various
reconstruction methods: (b)-(c) global regularized iterative method cropped to local part, with (b) Haar
wavelet constraint and (c) TV constraint, (d) local FBP, and (e)-(f) the proposed local method, with (e) Haar
wavelet constraint and (f) TV constraint. The local reconstructions are shown with a gray-level window in
which black corresponds to the minimum value and white to the maximum value of the phantom inside the
local part.
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Figure 4.10: Reconstruction time of the global regularized iterative methods (dotted) and the proposed local
method for various sizes of the local part NL and constraint types, using data of 2048 detector pixels and
512 projections. Solid lines show the reconstruction time for a single application of the local method, and
dashed lines show the reconstruction time for subsequent applications, where the convolution results of an
earlier reconstruction can be reused (see Section 4.3).
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(a) (b) (c) (d)

Figure 4.11: Reconstructions of a local part (128× 128 pixels) of experimental data of a small fatigue test
sample made from Ti alloy VST 55531, acquired with 1200 detector pixels and 1500 projections equally
distributed over the interval [0,π]. In (a) and (b), FBP reconstructions are shown using all 1500 projections,
with the local part indicated by a red square in (a). The local FBP reconstruction using only 75 equiangular
projections is shown in (c). In (d), a reconstruction is shown for the same 75 projections, using the local
reconstruction method presented in this chapter with TV-minimization regularization by the FISTA method.
Underneath each local reconstruction, the line profile of the column indicated by the dashed line is shown.

Experimental data

In Fig. 4.11, reconstructed images are shown for a local part of an experimental dataset.
The experimental data was acquired for a small fatigue test sample made from Ti alloy
VST 55531. The sample was scanned at beamline ID11 of the European Synchrotron
Radiation Facility (ESRF), with a parallel, monochromatic (52 keV) synchrotron X-ray
beam. The distance between the sample and detector was 40 mm, and 1500 projections
were acquired, equally distributed in the interval [0,π]. The projections were acquired
on a high resolution detector system, resulting in projections, after 2× 2 binning, with
1200× 1200 pixels and an effective pixel size of 0.56 microns.

Results are shown in Fig. 4.11 for a single slice of the reconstructed dataset, com-
puted using FBP and the proposed local method with a TV minimization constraint.
For FBP, we show results both when using all 1500 projections that were acquired,
and when using only 75 projections, selected by taking every 20th projection of the
full dataset. For the local method, we show results for the same limited dataset of 75
projections. The results show that the local method can be successfully applied to an
experimental dataset to exploit prior knowledge in the reconstruction. Compared to
the FBP reconstruction using 75 projections, the local method is able to more clearly
separate the formed crack from the sample itself, which is especially visible in the line
profiles. Note that in this type of sample, a user would typically only be interested
in the highly localized crack that is forming in the sample, which would make global
regularized iterative methods waste significant amounts of computation time on parts
of the sample that are not interesting. With the proposed local method, on the other
hand, a user would be able to select and reconstruct only those parts of the sample
that are interesting.
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(a) (b) (c)

Figure 4.12: Reconstructions of the motor phantom using projection data of 1024 detectors and Nθ = 512
projection angles, equally distributed in the interval [0,π], with Poisson noise applied. The reconstructions
are computed with (a) FBP, (b) global TV minimization by the FISTA method, and (c) local 128× 128 pixel
reconstructions tiled to the complete 1024× 1024 pixel grid. The local reconstructions in (c) are computed
using the local reconstruction method presented in this chapter with TV-minimization regularization by the
FISTA method. Underneath each reconstruction, the line profile of the row indicated by the dashed line
is shown. A small region, indicated by the blue square, is shown enlarged in the top-left corner of each
reconstruction as well.

Tiling reconstructions

As explained before, one possibility of the proposed local method is to reconstruct
different local parts of the image and combine them afterwards into a single recon-
struction. One application of this approach would be to compute the different local
parts in parallel, which can be parallelized efficiently since each local reconstruction is
independent of the others. Another application would be to estimate reconstruction
parameters such as the λ term of Eq. (4.7) only in a local part of the reconstruction,
which would significantly reduce the time needed to estimate them. Afterwards, the
complete image can be reconstructed by combining several local reconstructions using
these parameters, which can be computed in parallel as well.

An example of a reconstruction that is computed by tiling several local reconstruc-
tions is shown in Fig. 4.12. In this case, we combined 64 local reconstructions of
128× 128 pixels each to compute a single 1024× 1024 pixel reconstruction, using
TV-minimization as the prior knowledge term. The local reconstructions are tiled by
simply placing them next to each other on the large reconstruction grid, without any
overlapping regions. The results show that there are no visible artifacts from this
tiling procedure. Furthermore, the tiled reconstruction is visually almost identical to a
reconstruction computed by the global regularized iterative method. This shows that it
is possible to significantly reduce the computation time of a global regularized itera-
tive reconstruction method by approximating it with a tiling of local reconstructions
computed in parallel.
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(a) (b) (c)

Figure 4.13: Reconstructions of the motor phantom (a), using projection data of 1024 detectors truncated
to the central 256 detector pixels, using Nθ = 512 projection angles, equally distributed in the interval
[0,π], and with Poisson noise applied. The reconstructions of FBP (b) and the proposed method with
TV-minimization by the FISTA method (c) are shown for the central disc with a width of 256 pixels. Constant
padding is used in both reconstructions to reduce truncation artifacts.

Truncated projection data
In some applications of tomography, it is impossible to acquire projections that include
the entire scanned object. In these cases, the acquired projection data are truncated
at the edge of the detector. The resulting reconstruction problem is similar to local
reconstruction: again, one is only interested in a subvolume of the entire scanned object.
In this case, however, data for the object outside the subvolume is missing. Filtered
backprojection is often used to reconstruct truncated data by simply padding the
acquired data in order to reduce the artifacts caused by the truncation. Since the local
method proposed in this chapter uses FBP to approximate the SIRT method, the same
padding approach can be used to apply the method to truncated data. Reconstructions
of truncated phantom data are shown in Fig. 4.13, for FBP and the proposed local
method. The results show that the local method can be used to exploit prior knowledge
in the case of truncated data to improve reconstruction quality.

4.6 Conclusions
In this chapter, we introduced a method to approximate regularized iterative tomo-
graphic reconstruction methods inside a region of interest. This method can be used
to reduce computation time when one is only interested in the reconstruction inside
the region of interest. The method is based on approximating the SIRT steps that are
part of many regularized iterative methods by filtered backprojection with specific
pre-calculated filters. The result is a reconstruction method in which all projection
operations involve only the pixels that are inside the region of interest. The method
can also be applied to truncated projection data by similar padding techniques as used
for filtered backprojection.

To investigate the properties of the proposed method, we computed reconstructions
using various types of prior knowledge about the reconstructed object: box constraints
on the pixel values, `1 minimization of the reconstruction in a wavelet basis, and `1
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minimization of the gradient of the reconstructed image. The results show that the
proposed method is able to accurately approximate the reconstructions that would be
the result of computing the regularized iterative methods on the full object. Compared
to standard reconstruction methods such as FBP and SIRT, the proposed method is able
to significantly improve reconstruction quality by exploiting prior knowledge.

One interesting application of the method is to use it to tile reconstructions of
small subvolumes to obtain a reconstruction of the complete object. Using the pro-
posed method, the reconstruction of each subvolume is completely independent of the
other subvolumes. This enables parallel computation of the complete reconstruction,
resulting in a significant reduction of computation time. The results of this chapter
show that the reconstruction quality of such a tiling is comparable to the standard
global regularized iterative reconstruction. The reduction of computation time might
enable the use of more advanced types of prior knowledge that are too computationally
expensive to apply globally. Another application is to quickly estimate the parameters
of a slow regularized iterative method by estimating them in only a small subvolume.

The filter-based method of Chapter 3 on which the proposed method is based relies
on the shift-invariance of the projection operations. Therefore, it is only applicable
to parallel-beam tomography in its current form. How to apply a similar method to
other acquisition geometries is subject to further research. It may be necessary to use
additional approximations to derive filter-based methods in other geometries, in which
case exploiting prior knowledge may actually help to reduce artifacts caused by the
additional approximations.


