
The rebound effect through industrial ecology’s eyes : the case of
transport eco-innovation
Font Vivanco, D.

Citation
Font Vivanco, D. (2016, March 3). The rebound effect through industrial ecology’s eyes : the
case of transport eco-innovation. Retrieved from https://hdl.handle.net/1887/38352
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/38352
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/38352


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/38352 holds various files of this Leiden University 
dissertation. 
 
Author: Font Vivanco, David 
Title: The rebound effect through industrial ecology’s eyes : the case of transport eco-
innovation 
Issue Date: 2016-03-03 
 
 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/38352
https://openaccess.leidenuniv.nl/handle/1887/1�


30 31

The multi-dimensional contribution of 
technological innovation to 

environmental pressures

Image: derivative of “ Wallpaper - Driving Fast” by Chris-Håvard Berge, licensed under CC BY-NC 2.0 (https://www.flickr.com/photos/
chberge/3803475294).



32 33

Chapter 2 The multi-dimensional contribution of technological innovation to environmental pressures

2

The multi-dimensional contribution of technological innovation to environmental 
pressures

Based on:

Font Vivanco, D., Kemp, R., van der Voet, E., Heijungs, R., 2014. Using LCA-based Decomposition 
Analysis to Study the Multidimensional Contribution of Technological Innovation to Environmental 
Pressures. Journal of Industrial Ecology 18(3): 380-392.

Abstract

This article presents a general framework for macroenvironmental assessment, combining life 
cycle assessment (LCA) with the IPAT equation, and explores its combination with decomposition 
analysis to assess the multidimensional contribution of technological innovation to environmental 
pressures. This approach is illustrated with a case study in which carbon dioxide (CO2) and nitrogen 
oxides (NOx) air emissions from diesel passenger cars in Europe during the period 1990–2005 are 
first decomposed using index decomposition analysis into technology, consumption activity, and 
population growth effects. By a second decomposition, the contribution of a specific innovation 
(diesel engine) is calculated on the basis of the technology and consumption activity effects, through 
a technological comparison with a relevant alternative and the calculation of the rebound effect, 
respectively. The empirical analysis for diesel passenger cars highlights the discrepancies between 
the micro (LCA) and macro (IPAT-LCA) analytical approaches. Thus, whereas diesel engines 
present a relatively less-pollutant environmental product profile than their gasoline counterparts, 
total CO2 and NOx emissions would have increased partly as a consequence of their introduction, 
mainly driven by the increase in travel demand caused by the induced direct price rebound effect 
from fuel savings and fuel price differences. The counterintuitive result shows the need for such 
an analysis.

Keywords: Life cycle assessment, IPAT equation, transport innovation, sustainable mobility, 
rebound effects.

1. Introduction

It seems to be the general belief that technological innovation is going to be the key to many of 
the environmental challenges we currently face (Grübler 2003; Kemp 1994). However, though 
products are generally becoming lighter and more energy efficient, overall environmental impacts 
are increasing in almost all parts of the world. For instance, in Europe, total final energy consumption 
and domestic material consumption have increased by more than 7% and 8%, respectively, during 
the period 1990–2008 (Eurostat 2015a; 2015b). Life cycle assessment (LCA) has been broadly used 
to systematically study the environmental consequences of products and technologies through a 
process-based accounting of material and energy throughputs. However, functional unit-based LCA 
models are generally focused on the technology dimension, that is, on specifying the environmental 
impact per unit of consumption (Heijungs et al. 2009). By using LCA data alone, one thus ignores 
the level of consumption of the studied product systems. Such disregard has two main implications. 
First, overall environmental impacts caused by consumption of products by society as a whole are 
not accounted for, and therefore the magnitude of these impacts is ignored. Second, differences 
between levels of consumption of different product systems in comparative LCAs are disregarded 
because of the commonly accepted “constant demand assumption,” that is, the assumption that a 
change from a product system A to a product system B delivering the same functional unit will not 
entail a change on level of consumption (Girod et al. 2011). These considerations have implications 
for sustainable consumption policies, given the use of LCA as one of the tools for decision and 
policy making (Guinée et al. 2010).

The appraisal of efficient sustainable consumption policies thus requires the assessment of (1) the 
environmental consequences of products and technologies at higher levels of analysis as well as (2) 
the relationship between demand and technological characteristics. Regarding the former, several 
approaches have been developed to scale up LCA data. For instance, by combining input-output 
analysis (IOA) and macroeconomic models (e.g., partial and general equilibrium models) with 
LCA data in the form of input-output (IO)-LCA, environmentally extended IOA (EIOA) or hybrid 
LCA (Suh 2009; Finnveden et al. 2009; Suh and Nakamura 2007), among others. Also, by means of 
scenario-based LCA (Fukushima and Hirao 2002) and consequential LCA (Zamagni et al. 2012), as 
well as other possible approaches (Jeswani et al. 2010). While offering a wide range of analytical 
possibilities for meso- and macromodeling, some of these approaches present different setbacks. 
For instance, they require data that may not be readily available or in an adequate format (e.g., 
IO tables [IOTs] or social accounting matrices) or rely on complex, multilayer modelling (e.g. 
computable general equilibrium models). Moreover, some of these approaches, for example, those 
based on IOA, are constrained by the resolution of the tables they feed from and therefore cannot 
match the relatively higher technological explicitness that micro-level models, such as LCA, can 
offer (Jaccard et al. 2003). With respect to the relationship between demand and the technological 
characteristics of products, these can induce changes in demand as a result of the so-called rebound 
effects (Berkhout et al. 2000; Dimitropoulos and Sorrell 2006; Greening et al. 2000; Khazzoom 
1980; Sorrell 2007), which can be briefly defined as the behavioural or other systemic responses to 
changes in the production or consumption factors (Sorrell 2007; Weidema 2008). Rebound effects 
are seldom appraised in LCA studies, even though many have argued for the potential advantages 
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of shifting from the “constant demand” paradigm (Ekvall 2000; Goedkoop et al. 1999; Zamagni et 
al. 2008; Heijungs et al. 2009; Hertwich 2005) and their relevance in the final results (Girod et al. 
2011; Weidema 2008).

The overall level of consumption of products can be determined in terms of consumption activity 
and population growth, similarly to the concepts from the IPAT equation introduced by Ehrlich 
and Holdren (1971; 1972). In this sense, a number of attempts have been made to develop a 
methodological framework that integrates these two dimensions into LCA (Heijungs et al. 2009; 
Machida 2011; Hertwich, 2005), which we label as the IPAT-LCA model. Such a method could offer 
a simple, low data-intensive way to scale up LCA data to higher levels of analysis while keeping a 
high level of technology detail. However, the potentials and limitations of this approach are currently 
not fully explored. The structure of such a framework would also allow for meaningful analyses on 
the contribution of each dimension (technology, consumption activity, and population growth) to 
environmental impacts, for instance, by means of decomposition analysis. Assessments, including 
structural changes in the technosphere, can be carried out using structural decomposition analysis 
(SDA), whereas simpler analysis at the sector level can be performed using index decomposition 
analysis (IDA) (Hoekstra and van den Bergh 2003). Moreover, because technological changes can 
induce changes in consumption activity resulting from rebound effects, it is theoretically possible 
to study the contribution of such changes both in terms of technology and consumption activity. 
This article has two main aims:

• To develop a general analytical framework for the IPAT-LCA model

• To combine this framework with decomposition analysis to empirically estimate 
the contribution of the different factors of the IPAT-LCA model behind changes in 
environmental indicators for the case of diesel passenger cars, focusing on the specific 
contribution of diesel engines

2. Methods and data

2.1 The IPAT-LCA model

One of the first attempts to decompose changes in environmental loads in terms of contributing 
factors is the IPAT equation, introduced by Ehrlich and Holdren (1971; 1972). Ehrlich and Holdren 
first introduced the IPAT equation as such by reformulating and mathematically developing an 
equation that appeared on Barry Commoner’s book, “The Closing Circle” (Commoner 1971). In 
its basic form, the mathematical formulation of the IPAT equation is the following, as shown in 
equation (1):

where i is the level of pollution, p the size of the population, a the affluence, measured as the 
gross domestic product (GDP) per capita, and t the technology, measured as the pollution per unit 
of GDP. The equation takes on the characteristics of an accounting identity, because population 
and GDP on the right side of the equation always cancel out and therefore the fact that pollution 
equals pollution always holds true (Chertow 2000). Moreover, the identity assumes linearity of 
the explanatory variables, although more sophisticated forms have been devised using the IPAT 
concept as a starting point (Chertow 2000). As a consequence, as Kapur and Graedel (2004: 11) 
suggest, it “should be viewed as conceptual rather than mathematically rigorous,” adding also that 
“it can be used to suggest goals for technology and society.”

Other authors have criticized the fact that the IPAT equation has been traditionally used to calculate 
the technology factor by treating it as the residual of the accounting identity, because the other 
factors are more accessible to researchers (Chertow 2000). For example, Dietz and Rosa (1994: 287) 
argue that, if technology is treated as a residual, then it “captures not just technology in the narrow 
sense, but everything else not included in the model,” for example, “attitudes, values, institutional 
arrangements etc. of the population.” From another angle, Heijungs and colleagues (2009) argue 
that the pollution and technology variables used in the IPAT equation are not simple numbers, but 
multidimensional concepts, and propose the following formulation shown in equation (2):

where i is a vector of n types of environmental loads, T (technology) is a matrix of n rows of 
environmental impact types and m columns of economic product types, A (consumption activity) 
is a matrix of m rows of economic product types and l columns of consumer types, and p is a 
vector of l types of consumers.4 A computational example of this formulation can be found in 
Heijungs and colleagues (2009). It should be noted that, in this formulation, the term consumption 
activity has replaced the term affluence from the IPAT equation. This is because consumption 
activity, understood as the consumption of products by consumers, represents more explicitly the 
demand for products, whereas affluence is but a driver of demand. This formulation presents a 
high resemblance with the mathematical formulation of life cycle inventory (LCI), which is one of 
the stages of LCA, and which aim is to account for the input and output flows from and to nature 

 4. A similar matrix-based approach, not directly related to the IPAT equation and slightly more complex, can be found on Hertwich (2005).
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for a product system during all its life cycle (ISO 2006). The mathematical formulation of LCI has 
been described as follows in equation (3) (Heijungs and Suh 2002):

with equation (4):

where i is a vector of n types of environmental interventions, T is the intensity matrix, consisting of 
n rows of environmental interventions and m columns of product types, f is the final demand vector 
of m types of products, T_env is the intervention matrix, consisting of n rows of environmental 
interventions and m columns of unit processes, and T_tech−1 is the inverse of the technology matrix, 
consisting of m rows of unit processes and m columns of product types. However, functional unit-
based LCA is usually “geared along the target of specifying the environmental impact per unit 
of consumption,” being the latter a given “commodity basket that is specified by the functional 
unit” thus ignoring demand (Heijungs et al. 2009: 30). Therefore, by incorporating the population 
and consumption activity directions from the IPAT equation, the external demand of the product 
system is defined by the output consumption of the socioeconomic system, rather than by an a priori 
specified demand. Conveniently, the final demand vector in LCI can be described as a product of 
population and consumption activity (Heijungs et al. 2009) and thus equation (3) can be expressed 
identically to equation (2). With this formulation, the similarities between the IPAT equation and 
the LCI become more evident, the main differences being the multidimensionality characteristic in 
LCI, resulting from the matrix and vector treatment of the explanatory variables (see Table 1) as 
well as the splitting of T into T_env and T_tech.

By using this approach, some shortcomings from both the IPAT and LCA methodologies can 
be overcome. On one hand, by using LCA, the technology factor need no longer to be treated 
as the residual of the accounting identity, but an exogenous variable calculated with physically 
measured data (Machida 2011), covering also impacts through the entire life cycle of products 
and product systems. Also, by exogenously computing the technology factor, non-technology-
related effects, such as structural changes in the economy not related to technological changes 
(e.g., new market equilibriums resulting from material scarcity), can be differentiated from the 
purely technological effect. Moreover, by considering technology and consumption activity as 
multidimensional concepts, multiple environmental pressures, economic activities, and consumer 
types can be considered, offering a more comprehensive approach into the contributing factors 
leading to environmental loads. Further, with the help of the consumption activity and population 
growth variables from the IPAT equation, the environmental profile of a product or product system 
can be scaled up to the socioeconomic system level. Because data on consumption activity are 
based on historical interactions, it is behaviourally realistic (Cheuk Wai Mau 2005) and is thus able 
to capture different phenomena taking place at the macro level related to consumer and market 
behaviour, such as rebound effects.

Table 1. Analogies between the formulation of the IPAT equation and the life cycle inventory (LCI). Based on 
Machida (2011)

IPAT equation Magnitude LCI Magnitude

Formulation

Impact Scalar

in = type of environmental intervention n

Vector

Technology Scalar

𝑇_𝑒𝑛𝑣n,m = type of environmental intervention n for type of 
unit process m
𝑇_𝑡𝑒𝑐ℎm,m = type of product m for type of unit process m
Tn,m = type of environmental intervention n for type of 
product m

Matrix

Affluence 
(IPAT)/

Consumption 
activity (LCI)

Scalar

Am,l = type of product m for type of consumer l

Matrix

Population Scalar

Pl = population of type of consumer l

Vector

2.2 The IPAT-LCA approach for the case study

Following the structure and nomenclature described in Table 1, the different categories and types of 
variables considered are presented in Table 2. The justification for choosing the latter is discussed 
in Section 2.4.

As described in Table 2, only one type of product and consumer are considered, and because of 
this, both the consumption activity (referred to as travel demand in the case study) and population 
factors will adopt a scalar magnitude. In contrast, the technology factor takes the form of a 2 × 2 
coordinates matrix and the environmental intervention factor the form of a 2 coordinates vector.
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Table 2. Categories and types of variables considered for the case study

Category Number (in brackets) and types of variables considered

Environmental intervention (i) (2) CO2 and NOx air emissions

Set of unit processes (2) Process tree related to the use of average diesel and gasoline 
passenger cars from the European fleet for the year 2005*

Product type (1) vkm

Consumer type (1) Passenger car users

Note: CO2 = carbon dioxide; NOx = nitrogen oxides; vkm = vehicle kilometers driven.

* These process trees contain all the upstream and downstream single unit processes involved in the life cycle of the use of passenger cars.

2.3 Decomposition analysis

The contribution of the driving mechanisms behind a certain environmental load can be studied 
in a more comprehensive way if approached in terms of change. By doing so, one studies how 
the changes in the driving mechanisms contribute to the change in an environmental load during 
a time period. This can be particularly relevant when studying the environmental repercussions 
of innovation, because this pivots around the concept of change. To fulfil this need, various 
decomposition methods have been designed, from which the SDA and the IDA stand out as the most 
commonly used by researchers. The main difference between these two techniques is that SDA is 
based on input-output (IO) data, whereas IDA uses aggregate data at the sector level (Hoekstra and 
van den Bergh 2003). The proposed IPAT-LCA model is suitable for both SDA and IDA approaches 
because of its matrix formulation. Thus, structural changes on a certain dimension can be studied if 
the matrix form is maintained, whereas simpler analyses can be carried out by means of IDA if the 
rows and/or columns are collapsed into single values (e.g., total carbon dioxide [CO2] emissions 
from all processes and economic sectors studied). We have chosen IDA mainly because of two 
reasons. First, sectorial data from the diesel passenger cars sector alone have been used for the case 
study, and thus it is not possible to capture structural changes among multiple economic sectors. 
Second, it is not possible to assess structural changes among the unit processes comprising the 
technology dimension because, as argued later on in the next section, complete and consistent LCI 
data for at least two time points are currently not available. Because of this, a second set of LCI 
data have been obtained by modelling a single (yet the most contributing) process, which entails 
that the values of the rest of the processes would remain the same and therefore that no structural 
changes would be observed. As a result of using IDA, the matrices and vectors characterizing the 
dimensions described in Table 1 have been collapsed by simple aggregation into the single values 
described in Table 2.

Within IDA, Ang (2004, pp. 1137–1138) concluded the analysis of different methods by 
recommending the multiplicative and additive logarithmic mean divisia index (LMDI) methods 
“due to their theoretical foundation, adaptability, ease of use and result interpretation, and some 

other desirable properties in the context of decomposition analysis” for example, the inexistence 
of residuals (Ang et al. 1998). LMDI methods have been used to analyse the contributing factors 
of changes in environmental indicators in several studies, mostly focused on CO2 emissions (e.g., 
Hatzigeorgiou et al. 2008; Liu et al. 2007; Löfgren and Muller 2008; Timilsina and Shrestha 2009; 
Wang et al. 2011).

The mathematical structure of the IPAT-LCA model (see equation [5]), in the form of an accounting 
identity, permits one to analyse the results by means of decomposition techniques without further 
calculations. It is then possible to analyse the contribution of changes in the different explanatory 
variables (technology, consumption activity, and population) in which an aggregated variable 
(environmental load) can be decomposed. Therefore, the total change in the environmental load 
between a base year 0 and a target year t can be decomposed by additive decomposition5 in three 
different effects as follows:

This general formula can be used both to analyse changes during a multiyear time period or on a 
yearly basis. Additionally, it must be noted that, as explained in the previous section, for the case 
study, both population and consumption activity factors adopt a scalar magnitude, whereas the 
technology factor adopts a matrix magnitude and the environmental intervention factor adopts a 
vector magnitude. However, as stated before, IDA methods are based on aggregated indexes, that 
is, scalar values. For this reason, analysis should be performed using single values for both the 
technology and environmental intervention factors. This has been carried out by choosing a single 
value regarding the environmental intervention (e.g. CO2 emissions) and a single value with respect 
to the specified environmental intervention for a set of unit processes regarding the technology 
factor (e.g., CO2 emissions per vehicle kilometre [vkm] from average diesel passenger cars) for 
each desired analysis.

According to the LMDI approach described by Ang and Liu (2007), the effect of the explanatory 
variables can be then calculated as follows with equation (6):

 
Each of the explanatory variables of the IPAT-LCA model can be further decomposed in additional 
contributing effects. For example, it is possible to decompose the consumption activity factor in 
various effects, such as different types of rebound effects. Among these, the direct price rebound 
effect has been the most studied because of the systemic methodological frameworks available 
as well as the relatively high availability of econometric tools and the ease of obtaining data on 
money-related social behavior. Direct price rebound effects can be described as the changes in the 
demand of a product as a consequence of the allocation of the liberated or bound money from a 

5.  Multiplicative decomposition is possible as well. However, additive decomposition has been chosen in this study since we consider the results 
easier to interpret.
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change in the effective price induced by an improvement option that has been introduced on the 
same product (Dimitropoulos and Sorrell 2006; Weidema 2008). Both the methodology to further 
decompose the described explanatory variables and calculate the direct price rebound effect are 
described in S1 in the supporting information available on the Journal’s website.

2.4 System definition and sources of data

This section illustrates the proposed approach with a case study on diesel engines in passenger cars 
in Europe in order to study the effect of the explanatory variables (technology, travel demand, and 
population) on different environmental impact indicators during a certain time period. Moreover, 
the case study will try to calculate the aggregate effect of innovation on both the technology and 
travel demand factors. For this purpose, the innovation (diesel engines in passenger cars) will be 
compared to a relevant alternative (gasoline engines in passenger cars) in order to calculate its 
relative performance. Also, the direct price rebound effect associated with the fuel savings from 
diesel engines will be calculated.

As explained before in the IPAT-LCA model section, there is no need to specify a functional unit for 
the system (e.g., kilometres driven during the lifetime of a car), because, in the IPAT-LCA model, 
the external demand of the product system is exogenously given by the output consumption of 
the socioeconomic system, namely, consumption activity (travel demand per capita for passenger 
cars) and population size. Environmental loads per economic output (technology factor) will be 
analysed through LCA on a cradle-to-grave basis (ISO 2006). The system will also be defined by 
spatial and temporal boundaries, which will correspond to the European Union (EU)-27 states’ 
territory and the period 1990–2005, respectively. In order to account for the different explanatory 
variables, different kinds of data are needed. For the technology factor, life cycle data on European 
average diesel and gasoline passenger cars fleet have been obtained from the Swiss LCA database 
Ecoinvent 2.2 (Ecoinvent Center 2010; Frischknecht et al. 2005). The set of unit processes data 
for diesel and gasoline passenger cars contains a total amount of 1,296 environmental extensions 
(emissions, natural resources extraction, and land use), from which CO2 and nitrogen oxides (NOx) 
air emissions have been selected because of their widely acknowledged relevance in transport (EEA 
2009). Apart from their relevance, these substances have been chosen because of the differing 
trends regarding the relative emissions according to most of the studies found in the literature (CO2 
emissions from diesel engines would be relatively lower, compared to gasoline engines, and NOx 
emissions present the opposite case), which offers an opportunity to assess the influence of different 
technological pathways on both the other explanatory variables and the total emissions. However, 
two major challenges arise when studying time series by means of LCA data: First, systematic 
compilation of information for most processes for LCA databases started in the early 2000s, and 
therefore data constraints are significant for the years before. In the case of passenger cars in the 
Ecoinvent database, which is one of the inceptive, most complete LCA databases available, the 
first year for which information on average fleet passenger cars in Europe is available corresponds 
to 2005 (which is the last year of the studied time period). Second, data sets for every process are 

not produced on a yearly basis. Therefore, because one of the primary objectives of the present 
study is to analyse technological change over time, information from this database has been 
modelled to reflect yearly evolution, thus building a temporally dynamic LCA model (for similar 
exercises, see Fukushima and Hirao [2002] or Pehnt [2006]). However, only the emissions from the 
operation stage have been modelled as a result of data availability, and thus other emissions from 
up- and downstream processes have been assumed to remain constant over time. 6 Concretely, CO2 
emissions have been modelled through time according to data on the car fleet fuel consumption 
from monitoring reports published by the European Commission and NOx emissions according to 
emission factors used in the model COPERT 4. A detailed explanation of the methodology followed 
can be found in S2 in the supporting information on the Web.

The travel demand factor will be determined by both the stock of diesel and gasoline passenger cars 
in use and the travel demand for passenger cars. The former will be calculated using the FLEETS 
database (Ntziachristos et al. 2008). For the calculation of the travel demand, the ALTER-MOTIVE 
database has been used (Ajanovic 2011). In order to account for the relative travel demand for 
diesel and gasoline engines, data from the FLEETS database have been used, according to which 
diesel passenger cars are driven 66.89% vkm more in the EU-27. However, this information is only 
available for the year 2005, the reason for which this value has been used for the entire time series. 
In so doing, our analysis overlooks yearly differences in usage patterns between diesel and gasoline 
cars during the studied time period.

In order to account for the direct price rebound effect from fuel efficiency improvements, a long-
term fuel price elasticity of vkm of –0.26 has been used, which corresponds to an average value 
derived from a survey on various studies conducted for the EU (de Jong and Gunn 2001), as well 
as historic data on diesel and gasoline retail prices obtained from the European Federation for 
Transport and Environment (2011). 7

In addition, the population size for all the European member states during the studied time series 
has been accounted for according to the Eurostat statistical database (Eurostat 2015c). Last, all the 
information needed for the calculations is summarized in S4 in the supporting information on the 
Web.

3. Results and discussion

Figures 1 and 2 present the results of the decomposition analysis of the life cycle emissions of 
CO2 and NOx from diesel passenger cars in Europe. The results describe a general trend for both 
emissions during the studied time period in which travel demand and population size effects present 
a positive contribution, therefore driving emissions up, and technology has an opposite effect. 
However, travel demand is the effect that has contributed the most during the period 1990–2005 both 
for CO2 and NOx emissions, with a relative change of 112% and 178%, respectively, and has thus 
provoked a constant overall increase in both emissions. The relative change in the contribution of 
population growth would be of 4% and 6%, respectively, and of –16% and –84%, respectively, from 

6. The operation stage of cars is the stage that contributes the most to emissions. According to MacLean and Lave (1998), these emissions could 
amount to 76 to 84% from total life cycle emissions.
7. Because of the significant impact that this value has on the final results, a sensitivity analysis using both long and short run elasticities from 
different sources can be found in Supporting information S3. In any case, from the results of the sensitivity analysis, it can be determined that the 
price elasticity value does not alter substantially the main conclusions drawn from the results.
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technology. This tendency is consistent with similar studies, such as those performed by the IEA 
(2007) or the EEA (2011), which point out the increased consumption activity as the most important 
factor underlying the evolution of emissions and energy use in transport. It is also noteworthy to 
point out the fact that, whereas the general trend may offer valuable general insights, yearly changes 
are more prone to be influenced by quality of the data. For instance, data on travel demand for the 
year 2005 might be underestimated as a result of reporting issues, because the break in the trend is 
not entirely supported by empirical evidence. According to the methodology previously exposed, 
these data have an effect on both the marginal changes in travel demand and the technology factor, 
which thus describe a discontinuity in the trend followed in the previous years.

                                                                            

Figure 1. Total annual change and contribution of the explanatory variables (in percentage) to total annual 
change in life cycle CO2 emissions from the diesel passenger car fleet in the EU-27. CO2 = carbon dioxide; EU 
= European Union.

Figure 2. Total annual change and contribution of the explanatory variables (in percentage) to total annual 
change in life cycle NOx emissions from the diesel passenger car fleet in the EU-27. NOx = nitrogen oxides; EU 
= European Union.
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By analysing each effect in detail, the following qualified conclusions can be drawn from the 
obtained results. First, the increasing diffusion of diesel engines is the main cause underlying the 
constant increase for travel demand for diesel cars, because relative vkm from diesel cars with 
respect to their gasoline counterparts has been assumed to remain constant and travel demand 
for passenger cars shows a certain stagnation during the studied time period (see supporting 
information S4). Second, in the case of CO2 emissions, the decreased emissions as a consequence 
of technology are the outcome of constant improvements in fuel economy alone, because relative 
emissions (emissions per unit of fuel) have been assumed to remain constant as a result of data 
availability. Regarding NOx emissions, the improvement in technology is mainly the outcome of 
the progressive diffusion of cars with higher emission standards on the European car fleet, which 
fostered the introduction of more-efficient technologies in the automotive catalysts (Kaspar et al. 
2003). Thus, the relative higher contribution of technology in driving emissions down in the case of 
NOx implies that technological changes regarding efficiency of catalysts have had a bigger impact 
than those on fuel economy for CO2 emissions. Last, population is not an important effect for the 
EU-27 as a whole; it is more important for some countries than for others, given that population 
growth has been uneven in Europe.

Table 3 presents the results of the decomposition analysis for CO2 and NOx emissions in absolute 
terms. Also, the explanatory variables, technology and travel demand, have been further decomposed 
to calculate the direct contribution of diesel engines (see S1 in the supporting information on the 
Web). According to our approach, the calculated effect of diesel engines on technology corresponds 
to the emissions that can be attributed to the innovation, that is, the relative emissions, compared 
to the relevant alternative (gasoline engines) on a life cycle basis (see Section 2.4). This approach 
assumes that the technological characteristics of engines alone are responsible for the relative 
differences in CO2 and NOx emissions from diesel and gasoline passenger cars. The remaining 
contribution (residual) can be related to transversal improvements in internal combustion engines 
and other features of the cars (e.g., aerodynamics). The calculated effect of diesel engines on travel 
demand has been assumed to correspond to the direct price rebound effect previously introduced 
(see S1 in the supporting information on the Web). We therefore assume that the change in travel 
demand that stems from the technological characteristics of diesel engines corresponds to the direct 
price rebound effect alone, leaving other self-selection effects8 (Schipper and Fulton 2009) out. 
Such an assumption also leaves out other effects that can be linked as well to the technological 
characteristics of the innovation, such as additional spending on extra features (Girod and de Haan 
2010; Zamagni et al. 2008; Schipper and Fulton 2009), indirect and structural effects (Greening 
et al. 2000), or non-price rebound effects (Santarius 2012; Weidema 2008), which have not been 
accounted for because it falls outside the scope of this research. Such effects, as well as the rest 
of the factors contributing to determine the level of consumption, have been captured in the form 
of a residual. Last, both contributions have been aggregated to determine the total effect of diesel 
engines on life cycle emissions. Moreover, Figures 3 and 4 present the contribution (in percentage) 
of the calculated effects on both travel demand and technology, as well as the contribution of the 
combined effects on the total change in emissions.

8. For instance, drivers who travel more can be predetermined to use engine technologies with a better fuel efficiency, such as diesel engines. This is, 
however, irrespective of the fact that they drive diesel cars, since they may have the same driving behaviour with an alternative engine technology. 
According to Schipper and Fulton (2009), self-selection effects would actually be the main contributors to the difference in vkm driven between 
diesel and gasoline cars, describing a range from 95% to 88% for Europe, depending on the country. The rest could be ascribed to the rebound effect.
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Figure 3. Calculated contribution of the diesel effect on travel demand and technology (in percentage) to total 
annual change in life cycle CO2 emissions from the diesel passenger car fleet in the EU-27. CO2 = carbon 
dioxide; EU = European Union.

 

Figure 4. Calculated contribution of the diesel effect on travel demand and technology (in percentage) to total 
annual change in life cycle NOx emissions from the diesel passenger car fleet in the EU-27. NOx = nitrogen 
oxides; EU = European Union.

The results describe a large contribution of diesel engines to the increase of both total life cycle CO2 
and NOx emissions from diesel passenger cars, contributing to almost 9% and 50%, respectively, to 
total emissions during the studied time period. The contribution of technology and travel demand is, 
however, asymmetrical between CO2 and NOx emissions. In the case of CO2 emissions, the results 
indicate that the direct price rebound effect induced by diesel engines on travel demand would have 
offset emission reductions from the effect of diesel engines on technology by almost a factor of ten. 
Thus, emission reductions on the technology side would have been not only compensated by the 
rebound effect, but also largely increased. Regarding NOx emissions, both the effect of diesel on 
technology and travel demand have been overall positive, with the calculated effect on technology 
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being higher by a factor of two. These disparities are mainly explained by the differences between 
the emissions from diesel and gasoline cars, which affect the magnitude and trend of the effect on 
technology.

With regard to the percentage of the calculated diesel effect from the total change in emissions, it 
presents a more or less steady evolution in the case of CO2 emissions, except for the year 2005, 
in which a notable increase in the price of diesel fuel (EFTE 2011) reduced the magnitude of 
the rebound effect and therefore the calculated effect on travel demand, which became negative 
for this year. Regarding NOx emissions, an inverse V-shaped evolution can be observed, with the 
maximum on the year 1999. This evolution was mainly driven by changes in the calculated effect 
on technology, which means that technological improvements on diesel cars, mainly three-way 
catalysts, diffused relatively less rapidly during the period 1990–1999.

4. Conclusions

In this article, the IPAT-LCA model has been used as a tool for scaling up detailed environmental 
profiles of products by considering aspects of demand at the macro level. Several positive outcomes 
can be derived by following this approach, from which we highlight the following three. First, the 
magnitude of the impacts of products at the macro level can be accounted for while maintaining 
a high technological explicitness. Second, the changes in production and consumption induced 
by technological characteristics, that is, rebound effects, can be captured and assessed. Third, by 
using aspects of demand at the macro level, ex-post analyses are considered to be behaviourally 
realistic by incorporating both consumer behaviour and market mechanisms. Because of this, we 
consider this approach to be more comprehensive than using functional unit-based LCA data alone 
for macro-level assessments, for instance, with respect to strategic sustainability choices regarding 
the large-scale implementation of innovative products and technologies.

The strengths of the IPAT-LCA model present, at the same time, certain downsides that limit the 
soundness of the approach. For instance, the fact that demand data at the macro level are combined 
with technology information from process data at the micro level can lead to inconsistencies. This is 
because process data are usually limited to a number of processes for which information is available 
and/or are considered to be representative, whereas, ideally, it should encompass all processes 
involved in consumption at the macro level. The presented case study illustrates this point: As the 
meta-data shows, some local processes (e.g., related to the road infrastructure or vehicle disposal) 
have been used to represent European conditions for the operation of passenger cars, whereas travel 
demand takes place at the European level. This is undoubtedly a relevant source of uncertainty, as 
is the case of other macro assessment methods that follow similar approaches (e.g., IO-LCA or 
EIOA methods) (Suh and Huppes 2002). However, compared with other macro assessment LCA-
based tools, the IPAT-LCA model offers a low data intensive, simple way of scaling up micro-level 
LCA data to higher levels of analysis, especially those within the sector level (e.g., a particular 
segment of passenger cars). For multi-sectorial or macroeconomic assessments, IO-based tools 
would be more suitable, because the required information on the structure of the economy is readily 

available in the form of IOTs. Additionally, it must be stressed that the data input for the IPAT-
LCA is generally more specific and thus may not be always readily available (as the case study has 
brought to attention). The fact that demand (functional unit) can be calculated in units representing 
the real functional output of products (e.g., vkm driven by diesel passenger cars) presents also an 
advantage, because no conversions are needed to calculate the LCA results (as it can be the case, 
e.g., when monetary IOTs are used).

Also, by introducing a temporal resolution to the IPAT-LCA by means of modelling, its structure 
permits one to carry out a deeper analysis into the contributing factors by means of decomposition 
techniques, offering a broader insight into the sources of change. The matrix-based mathematical 
structure of the IPAT-LCA model allows for assessment of structural changes using SDA as well as 
simpler analyses using aggregate data by means of IDA. Whereas the present study has illustrated 
this combination with the use of IDA because of the scope of the analysis and data constraints, 
the application of SDA can be a potentially suitable approach in those cases in which structural 
changes are both relevant and possible to study. For instance, it is possible to study structural 
changes within an economy, among the unit processes of a product or among types of consumers. 
Those potential studies are, however, left for further research. The results of the IDA carried 
out in the case study would point out the increased consumption activity as the most important 
factor underlying the increase in both CO2 and NOx life cycle emissions from the European diesel 
passenger car fleet during the period 1990–2005, offsetting technological improvements by a factor 
of almost ten and two, respectively. Moreover, we have accounted for the specific contribution 
of this innovation on total CO2 and NOx emissions, both in terms of changes in technology and 
consumption activity, concluding that this has been overall positive (thus driving emissions up)— 
concretely by approximately 9% and 50%, respectively—with increases in consumption activity as 
the main driver. According to these results, it can be argued that the introduction of the relatively 
more energy-efficient diesel engines in passenger cars in Europe entailed an increase in emissions, 
mainly resulting from the increase in demand caused by the direct price rebound effect.

For reducing vehicle emissions, these results highlight the need to shift sustainable mobility policies 
from the current technology-oriented mindset to a mix of policies aimed at minimizing demand as 
well (e.g., through economic instruments [e.g., fuel taxes], urban planning, the promotion of public 
transport and car sharing, and so on). For instance, the notable increase in fuel prices in the year 
2005 would have contributed to considerably reduce the impact of the direct price rebound effect. 
In order to be effective, this new framework of harmonized policies should consider and understand 
the dynamics of the drivers of demand, especially aspects related to consumer behaviour and market 
mechanisms, which can lead to undesired rebound effects.

In this sense, LCA-based methods present an appropriate starting point for developing integral 
frameworks to better inform sustainable mobility policies because of their completeness and 
systemic approach. Within this perspective, the relative and dynamic nature of innovations can 
be captured, and innovation policies can be designed accordingly. However, there is still a need 
for further research to fully understand the entire range of aspects that contribute to changes in 
technology and demand and which have remained implicit in the form of residuals in our study. 
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To this end, further decomposition of the technology and consumption activity factors is possible. 
The study of consumer behaviour aspects (e.g., the consequences of framing perceptions of new 
technologies), other price-related rebound effects (e.g., indirect or structural effects), or time, 
space, or technology availability-related rebound effects are of particular interest. In any case, the 
exclusion of such aspects is not a defining feature of the IPAT-LCA model as such. LCA-based 
methods, such as the presented IPAT-LCA model, present great opportunities to further analyse the 
whole spectrum of social and economic conditions as well as the complete order of consequences 
that determine the environmental impacts of innovations.
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Supporting information which is not included here may be found in the online version of this article 
(http://onlinelibrary.wiley.com/doi/10.1111/jiec.12118/suppinfo) and is available upon request.

Supporting information S1

This supporting information S1 provides an explanation of the methodology for the decomposition 
of the main explanatory variables and the calculation of the direct price rebound effect.

S1.1 Methodology for the decomposition of the main explanatory variables

The contributing effects to the main explanatory variables (technology, consumption activity or 
population growth) can be accounted for by multiplication or addition. Regarding the first, full 
accounting of an explanatory variable by multiplication takes the form of an accounting identity, 
in which case the formulation presented in equation 6 remains valid for decomposition. On the 
other hand, if the multiple effects are accounted for by addition (e.g. different factors contributing 
both positively and negatively to the amount of kilometres driven per capita [as an indicator of 
consumption activity in transport], such as behaviour, fuel fiscal policies, urban planning, etc.), 
then the contribution of each to the previously calculated effect of an aggregated variable (e.g. 
the effect of consumption activity [(Δi)A], expressed in environmental intervention units) can be 
calculated by a simple cross-multiplication in order to normalise the units (from the units of the 
explanatory variables [kilometres driven per capita] to the units of the effect of the aggregated 
variable [environmental intervention units]), as follows:
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Where x is an explanatory variable of V, V an aggregate variable and ΔV the previously calculated 
effect of V to another aggregated variable.

Nevertheless, it can be extremely difficult to account for all the effects contributing to an 
aggregate variable. For example, with regard to consumption activity, there can be found 
multiple behavioural, institutional, organisational, etc. aspects to factor in. For this reason, it 
can be useful to empirically calculate the desired variables and treat the remaining as a residual. 
Therefore, this residual will serve as a hotchpotch, accounting for all those effects which had 
not been possible to account for. Mathematically, this approach can be formulated as follows:   

Where x1, x2, etc. are the explanatory variables that can be empirically calculated and xr the 
explanatory variable acting as a residual.                                                                                                   

 
S1.2 Methodology for the calculation of the direct price rebound effect

According to the formulations proposed by Sorrell and Dimitropoulos (2008), direct price rebound 
effects can be calculated on the basis of the own price elasticity of demand under certain data 
limitations. This methodology is based on two hypotheses. The first, symmetry, assumes that 
consumers will respond equally to increases (decreases) on energy efficiency than to decreases 
(increases) on transport prices. The second, exogeneity, implies that efficiency is not affected by 
changes in transport prices. Additionally to these two hypotheses, the four axioms of neo-classical 
economics in which rebound effects are usually framed must be also considered (Berkhout et al. 
2000): 

• Rationality: consumers are deemed to have rational preferences which are assumed to be 
transitive and insatiable.

• Utility maximisation: consumers always try to maximise their utility.

• Certainty and complete information: consumers are in possession of all relevant 
information, with no uncertainty.

• Adjustment costs: the transit from one optimum to another has no costs.

 
For instance, if we take an own travel cost elasticity of demand for travel value of -0.30, this will 
mean that a 1% decrease in the travel cost (CT) will entail an increase in travel demand by 0.30%. 
The own price elasticity of demand provides thus a way of estimating the change in travel demand 
as a consequence of an improvement option that liberates money, and thus the sign and magnitude 
of the rebound effect can be calculated.

On the other hand, the difference in CT between a transport mode m and an alternative, relatively 
more efficient transport mode mE can be calculated, as an approximation and disregarding capital 
costs, using fuel efficiency (EF) and fuel price (PF):

 

The reasoning for applying such approximation is the fact that there is a lack of information 
regarding the full life cycle costs of the average diesel and gasoline passenger car in Europe for the 
studied time period. In any case, relative cost differences related to non-fuel operating costs (e.g 
insurance, taxes, etc.) would be of minor importance according to empirical evidence (Pock 2010).
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Supporting information S2

This supporting information S2 provides an explanation of methodology for modeling CO2 and 
NOx operation stage emissions.

S2.1 Methodology for modelling CO2 and NOx operation stage emissions

This supplement presents the different methods used to model the operation stage emissions from 
both CO2 and NOx emissions during the period 1990-2005. With respect to CO2 emissions, fuel 
consumption can be linearly linked to CO2 emissions according to the methodology proposed by 
the EEA (2009), and thus information on fuel consumption of new diesel and gasoline cars has been 
obtained for the period 1995-2004 from monitoring reports published by the European Commission 
(2002, 2005). In order to cover the studied time period, this information has been extrapolated for 
the years 1990 to 1994 and 2005 by means of linear regression (see Figure S2-1). This extrapolation 
seems consistent if considered the relatively linear negative trend on fuel consumption in passenger 
cars in Europe during this time period described in other studies (see, for instance, Zachariadis 
[2006]).
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Figure S2-1. Reported data and extrapolation on average fuel consumption (in litres/vkm) of new diesel and 
gasoline passenger cars in the EU-27.

Furthermore, since data on fuel consumption refers to new vehicles, it has been extrapolated to the 
total operating fleet using the fleet renovation rate (the years in which the entire operating fleet is 
renewed), which has been calculated in 8 and 14 years for diesel and gasoline cars respectively (it 
thus has been assumed a constant percentage of new cars added to the fleet every year) according to 
data on cars’ age (European Commission 2015), and modelled ex post facto using linear regression 
(see Figure S2-2).

Figure S2-2. Calculated average fuel consumption (in litres/vkm) of new cars and the operating fleet for diesel 
and gasoline passenger cars in the EU-27.

Regarding NOx emissions, emission factors according to emission standards (Pre-Euro, Euro 1, 
Euro 2, Euro 3, Euro 4, Euro 5 and Euro 6) have been used from the model COPERT 4 (version 8.1), 
a model developed and coordinated by the European Commission’s Joint Research Centre and the 

European Environment Agency and which is designed for compiling national emission inventories 
(Ntziachristos et al. 2009). The COPERT emissions factors are in the form of speed emission 
equations, and thus disregard the effect of other variables such as the age of the vehicles or the 
driving behaviour. For the calculation of the total emissions, an average speed of 50 km/h has been 
used (Mellios et al. 2011) and the car population data from the FLEETS database (Ntziachristos et 
al. 2008), which contains historic data on road vehicle stocks by technological characteristics (fuels 
used and emission standards) for all European member states.9 In order to calculate the emissions 
per vkm, total NOx emissions have been divided by the total vkm from passenger cars, which 
have been obtained from the database on transport indicators from the European research project 
“Deriving effective least-cost policy strategies for alternative automotive concepts and alternative 
fuels-ALTER-MOTIVE” (Ajanovic 2011; Ajanovic et al. 2011). This database contains detailed 
time series data on vkm by passenger cars for many European member states10. The evolution of the 
NOx emissions is presented in Figure S2-3.

Once both the fuel consumption and the NOx emissions time series have been calculated, the 
respective scaling factors have been calculated in order to model emissions from the operation 
stage from the original inventory.

It must also be noted that, because decomposition analysis requires of temporal resolution, cradle-
to-grave emissions have been allocated according to the functional output (in this case, vkm 
driven). That is, emissions from upstream and downstream processes taking place before and after 
the operation stage have been allocated to the year in which this takes place. This approach thus 
considers that the function drives the entire supply chain, and therefore that all emissions should be 
temporally allocated accordingly to this causal relationship. In reality this does not hold completely 
true because of the many feedbacks between supply and demand (Kemp and Rotmans 2005), but it 
is still a valid approximation if considered the demand of the function as the main driver.

Figure S2-3. Nitrogen oxides (NOx) emissions (in gr/vkm) of the operating passenger car fleet in the EU-27, 
1990-2005.
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estimated using average data from the rest of the states from which data are available.
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Lithuania (1990-1994), Luxembourg (1990-2005), Malta (1990-1999), Poland (1990-2005), Romania (1990-2005), Slovak Republic (1990-1992) 
and Slovenia (1990-1996) are completely or partially missing, and have been estimated using average data from the rest of the states from which 
data are available.
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