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Chapter 7

General discussion and conclusions

7.1 Significant trends and environmental hot-spots in Asian aquaculture 
production chains

By using the LCA approach presented in the current research, several significant trends could 
be identified among the environmental impacts caused by different Asian aquaculture production 
systems. Most trends also persisted using both allocation methods, suggesting that many 
conclusions could be made with great confidence.

Among the conclusions reached, noteworthy was the importance of feed,  with large GHG 
emissions from capture fishing boats, livestock farming and agriculture. Excess feed was also 
the major driver for eutrophication, and agricultural pesticides an environmental hot-spot for 
freshwater ecotoxicity. Together with the significantly lower environmental impacts of the large 
commercial pangasius farms, this indicates that farm management is strongly linked with the 
environmental performance of aquaculture production. While this might not be surprising, it 
highlights the importance of training small-scale farmers, where some of the recommendations in 
the present thesis should be considered.

In China, the non-integrated tilapia farms in Guangdong had significantly lower environmental 
impacts than the other systems, with the exception of reservoirs for global warming and 
ecotoxicity. This trend was again mainly a reflection the eFCRs at the farms, given that feed was 
the main driver behind most impacts. Promoting and distributing high quality pelleted feeds 
will therefore be essential, alongside better farm management and feeding practices, to reduce 
environmental impacts. This also holds true for whiteleg shrimp, where the Vietnamese production 
systems (eFCR=1.3) resulted in significantly lower emissions than either of the Thai shrimp 
farming systems (eFCR=1.5). There was, however, no clear correlation between intensity and 
environmental impacts. Future developments of the aquaculture sector therefore need to consider 
the consequences of land-use and land-use change, stressing that sustainble intensification is the 
way forward, but that these practices need to be evaluated, identified and promoted for all types 
of farmers. 
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Common environmental hot-spots apart from overfeeding in the different production chains 
included extensive use of fishmeal (especially from mixed fisheries), dumping of sediments into 
nearby environments, , landfilling of processing byproducts, high reliance on coal power, the use 
of certain therapeutants and inefficiently processed byproduct meals. Most of these can, however, 
be addressed by implementing better policies and farming practices, as well as educating all actors 
in the aquaculture value chain about the environmental impacts related to aquatic food products.

7.2 Irregularities in current aquaculture LCAs

Several LCA studies of aquaculture systems were already available when the present research 
commenced (2010). Since, the twelve studies originally reviewed in Henriksson et al. (2011) have 
been accompanied by several additional studies, many that focus on Asian farming systems (Cao 
et al. 2011; Hall et al. 2011; Bosma et al. 2011; Mungkung et al. 2013; Huysveld et al. 2013). A 
commonly observed malpractice among the reviewed studies was the mixing of processes from 
different background databases, since each database relies upon its unique set of methodological 
choices. The resulting impacts from different databases are therefore completely incomparable. For 
example, many studies consulted the processes for the production of fishmeal and other animal 
derived products in the LCAfood (lcafood.dk) alongside ecoinvent, and/or other LCI databases. 
The LCAfood database, however, constitutes a consequential LCI database that tries to account 
for market reactions to changes in demand. Some environmental emissions can therefore come out 
as negative (e.g. if a product substitutes an environmentally poor product), resulting in emissions 
completely incompatible to those of the attributional ecoinvent LCI database. This malpractice 
is partially to blame on software developers that often use the number of available processes as 
a marketing tool and therefore allow for databases to be mixed without providing inexperienced 
users with any sort of disclaimer. A simple remedy for this problem is therefore to disable the 
option of mixing different databases in software, or at least provide warnings to users who do so.

There was also a general lack of transparency into the inventory data used, making critical 
reviews difficult and reproducing results impossible. This goes against the core of the scientific 
theory and undermines the academic integrity of most LCA results. As Ioannidis (2012) phrases 
it: “Efficient and unbiased replication mechanisms are essential for maintaining high levels of 
scientific credibility”. These concerns were amplified by the fact that most studies only present 
aggregated LCIA results, leaving no insight for reviewers or readers to critically evaluate the 
decisions made. Poor reporting on primary data also hampers the collective efforts of producing a 
more extensive LCI data library and obstructs any secondary use of that data (including citations). 
Since most LCI data have much effort invested into its collection, failing to sufficiently record this 
data is a waste of resources. More strict requirements by journals and reviewers could therefore 
transcend case studies beyond their current questionable usefulness (Klöpffer and Curran 2013). 
This reporting could easily be provided, without compromising the word limit of journals, as 
supporting information to articles. In the present research a spreadsheet was also developed for this 
purpose (available at cml.leiden.edu/software/software-quanlci.html), providing an easy way to 
record and report upon different data references and the dispersions related to them (Henriksson 
et al. 2012c).
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Additional impact categories relevant to aquaculture and food production should also be better 
established within the LCA framework, including impacts on seafloors (Hornborg et al. 2012), 
impacts on food security (Garnett 2014) and impacts on biodiversity (Ford et al. 2012). It is, 
however, important that lifecycle thinking prevails when developing these. Meaning that an impact 
assessment framework should be applicable to the whole range of different processes causing the 
environmental damage, including agriculture, livestock, industrial processes, transportation, etc. 
For those methods that are not relevant to a lifecycle perspective, a risk assessment approach might 
better be applied as it also takes into account temporal aspects, ecosystems’ carrying capacity and 
synergistic effects. Social life cycle assessments (SLCA) and life cycle costing (LCC) indicators 
also need to be developed, in order to support more holistic life cycle sustainability assessments 
(LCSA) (Guinée and Heijungs 2011). The implementation of LCSA might, for example, have 
provided a more balanced view of small-scale farming in the present research. Throughout the 
process of expanding the coverage of LCA it is also important to acknowledge that some impacts 
never will fit into a quantitative framework and therefore need to be communicated alongside 
LCA results, stressing that decisions should never be based on LCA results alone.

The main methodological topic of debate among the aquaculture LCAs reviewed was the use of 
different allocation methods. Several studies presented elaborate discussions on the topic (Pelletier 
and Tyedmers 2007; Fet et al. 2009; Avadí and Fréon 2013) and at least two articles have been 
dedicated solely to allocation in seafood LCAs (Ayer et al. 2007; Svanes et al. 2011). However, with 
the level of overall dispersions now quantified it is clear that choices regarding data sourcing often 
influence results more than the choice of an allocation factor. This becomes even more evident if 
only relative conclusions are considered (A>B), as significant trends tended to remain coherent 
across allocation methods. Thus shifting focus towards data quality.

7.3 Data quality improvement options for LCAs

LCA is a tool with inherent demarcation problems, where statistical inference is inadequate and 
confirmation bias inevitable. Results often build upon large quantities of data and outcomes from 
complex models supported by insufficient documentation, making the reproducibility of results 
next to impossible. In the meantime, results are generally presented in a way that induces high 
confidence, with comparisons of absolute results being commonplace even in scientific literature 
(Nijdam et al. 2012; Tilman and Clark 2014). Strengthening the scientific integrity of LCA 
studies and adding confidence behind conclusions were therefore identified as areas of priority in 
the present research.

Starting at the unit process level, we presented a protocol for horizontal averaging of data in 
Chapter 3, where all available datasets could be used and weighted towards a central moment, 
reducing the influence from data choices and consequently confirmation bias. In addition to this, a 
method for quantifying overall dispersions defined as the sum of inherent uncertainty, spread and 
unrepresentativeness was presented. Acknowledging resource constraints as a generic limitation of 
the data intensive LCA framework, much effort was invested into making the method accessible to 
the majority of LCA practitioners and understandable to their audiences. In the process of doing 
so, nomenclature was presented alongside a spread-sheet for calculating overall dispersions.
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The importance of defining unit process data is often underestimated, as many unit process 
parameters act as multipliers during the propagation process, meaning that one erroneous parameter 
can result in completely skewed conclusions. The generally opportunistic sourcing of unit process 
parameters is therefore to be blame for much of the discrepancies seen around LCA results today 
(de Koning et al. 2009). This was initially illustrated using the example of soybeans, where we 
showed that different sourcing of unit process data among studies describing the same system 
(soybeans from Brazil) resulted in discrepancies among results with up to an order of magnitude 
(Henriksson et al. 2012b). In the meantime, additional layers of complexity (e.g. geographically 
specific impact categories, effect oriented impact categories, etc.) are constantly being added to 
the LCA framework (Hornborg 2012; Ford et al. 2012), stressing that a general shift from point-
values towards distributions is needed.

The moments (central value, variance, etc.) describing distributions, both in unit process data 
and results, can be expressed in several ways, none of which is “correct”. The most common practice 
in the field of LCA, to my knowledge, is to use the arithmetic mean as the central value. However, 
when looking across different inventory data sources in more detail, it often becomes evident that 
mixes of different indicators for the central value are used. This in conjunction with the use of 
default uncertainties or pedigree estimates fit to a lognormal distribution often results in strange 
outcomes. For example, assume that two values of 10 are arithmetic means, with one value being 
assigned a default variance of CV=0.1 and the other value a variance of CV=0.2, both fit to a 
lognormal distribution. As these values later are propagated into results, the arithmetic means 
of the two resulting ranges will diverge, as a result of describing a lognormal distribution with 
an arithmetic mean. If the median instead was used as the indicator for the central value, this 
deviation would be reduced (but still persist). This as the median is less influenced by extreme 
values that otherwise can have strong influence on arithmetic means, especially for small sample 
sizes. The median is also the basis of comparison in non-parametric tests, the only tests that could 
be correctly consulted in the present research. It is therefore recommended to adopt the median 
consistently for all LCA parameters and results, and adjust LCA software accordingly. The ultimate 
strive, however, should be to fit all data to its own distribution and allow for the most appropriate 
moments to represent this data.

7.4 Features of horizontal averaging and propagation of LCI data

In order to explore how data best could be horizontally averaged and propagated into LCI results, 
we used the simplified example (relative to the generally complex aquaculture production chains) 
of Chinese coal power in Chapter 4. Initially, the level of horizontal averaging, which historically 
has been based upon practical classifications such as geographical regions, products produced or 
production systems, was questioned. It was also shown how these types of classifications often 
force a diverse set of practices into the same unit process. For example, the existence of flue gas 
desulphurisation units in coal power plants proved far more influential on acidifying impacts than 
the capacity or location of the power plant. This demonstrated that spread could be greatly reduced 
by reclassifying data individually for each dataset, a rationale that also was adopted in the sixth 
chapter where a unique classification of grow-out farms was defined for each species and country. 
This feature was even more prominent for other unit processes encountered throughout this thesis 
work. For example, rice farming in Bangladesh was characterised by two to three different farming 
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seasons (Amon, Aus or Boro). Each of these farming seasons were related to their own sets of 
farming practices, intensities of irrigation and yields. Consequently the environmental impacts 
related to the different harvests actually varied more among each other than compared to many 
neighbouring countries.

Once the unit process dataset had been defined, the LCI results needed to be propagated towards 
a common functional unit. Several methods for propagating results have been proposed, including 
Monte Carlo (MC) and first-order Taylor expansion (Huijbregts et al. 2001; Imbeault-Tétreault 
et al. 2013; Heijungs and Lenzen 2013). Of these, MC was decided as the most suitable for the 
pupose of the present research, as it is commonly available in software (Lloyd and Ries 2007) and 
allow for post-hoc analyses (e.g. goodness-of-fit tests and significance tests) (Heijungs and Lenzen 
2013).

7.5 Identifying significant trends using LCA

Given the many methodological limitations and sources of uncertainty identified throughout 
Chapter 2 to 4, the critical question of “which conclusions can be drawn among ranges of LCA 
results?” remained. By resolving to the concept of dependent sampling, first roughly outlined 
by Huijbregts (2001) and later explored by Heijungs and Kleijn (2001) and Hong et al. (2010), 
paired results could be generated, allowing for more powerful paired significance tests. However, 
a prerequisite for applying any significance test is the establishment of a hypothesis, a rare feature 
in LCA studies. In Chapter 5 we therefore stress the importance of defining a hypothesis in LCA 
studies, where significance tests can be used to test the LCA results and reject the null-hypothesis. 
By only considering the relative differences, one not only reduces the risk of committing a Type 
II statistical error (failing to assert what is present), but also ensures that identical methodological 
choices are maintained (with regards to functional unit, system boundaries, allocation, underlying 
database, impact assessment method, etc.).

The level of correlation of paired results is dependent upon the number of overlapping unit 
process. Comparing two different pangasius products from Vietnam therefore offers a greater 
level of correlation, and thus greater resolutions in comparisons, than comparing pangasius fillets 
from Vietnam with shrimp tails from China. This as a result of more unit processes being shared 
between the two pangasius value-chains (e.g. feed production, hatchery production, electricity 
generation, etc.) than between the pangasius value-chain and the Chinese shrimp value-chain.

7.6 Recommendations

7.6.1 Aquaculture

7.6.1.1 Improving feeding practices

Feed was the largest single driver behind most of the impact categories, either through the use of 
diesel in fishing boats, agricultural pesticides, field emissions or through nutrient effluents resulting 
from an excessive use of feed and fertilisers. Reducing the amount of feed used should therefore be 
a priority for the aquaculture sector. 
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Reducing the inclusion rates of fishmeal in feeds and sourcing fishmeal from sustainable 
sources are other priorities for lessening the environmental impact of Asian aquaculture chains. 
This as fishmeal has been associated with many negative consequences (Naylor et al. 2009), 
including overfishing (Pauly et al. 2003), physical damage on seafloors (Hornborg et al. 2012) 
and reducing protein availability for the world’s poor ( Jacquet et al. 2009). In the present research 
we also show that much of the fishmeal sourced regionally is associated with large GHG and 
eutrophying emissions. Moreover, all shrimp farming systems in the present research, except those 
in Bangladesh, required larger inputs of wild fish than shrimp produced. This indicates of a net 
loss in animal protein, pressures on wild fish stocks and competition with food availability. A 
partial solution for this problem was presented in Cao et al. (2015), where we showed that a more 
extensive use of processing byproducts in fishmeal production could satisfy between half and two-
thirds of China’s current fishmeal demand (Cao et al. 2015).

7.5.1.2 Reusing wastewater and sediments in agriculture

The grow-out site was the hot-spot for most eutrophication impacts as a result of effluents of 
wastewater and sediments. One of the most efficient ways to deal with these nutrient flows from 
aquaculture ponds is to reuse them in agricultural fields. This practice may also help to maintain 
the soil organic carbon on agricultural fields (Boyd et al. 2010; Wiloso et al. 2014) and reduce 
the addition of inorganic fertilisers. Treatment ponds and other types of effluent handling are 
also recommended, but considerations need to be made with regards to gases released from these 
instalments.

7.5.2 Aquaculture LCAs

7.5.2.1 Choosing a functional unit beyond farm-gate

Most of the aquaculture LCAs reviewed had set their system boundaries at farm-gate with a 
mass based functional unit of live fish. The consequence of these choices became that byproducts 
used in feeds (e.g. rice bran or MBM) were allocated large environmental burdens when mass or 
gross energy content was used as the basis for allocation, while the allocation towards the inevitable 
fish byproducts that ensue at fish processing remained unaccounted for. Where economic allocation 
was adopted the situation was the opposite, resulting in products having lower environmental 
impacts at farm-gate, but not necessarily as processed products (as the value of fillets or tails are 
much larger than those of the byproducts). Consequently, by choosing a functional unit beyond the 
processing stage, the discrepancies between the two allocation methods used in this study (mass 
and economic) were greatly reduced.

7.5.2.2 Land-use and land-use change related to aquaculture

Land-use and land-use change (LULUC) was not explored directly within this thesis. However, 
the research of Schoon (2013) and Jonell and Henriksson (2014) conducted in parallel to this 
work stress the importance of considering LULUC when evaluating the lifecycle of aquaculture 
products. This relates most directly to mangrove deforestation as a result of establishing new 
aquaculture ponds, but also LULUC impacts resulting from the provision of feed need to be 
considered. Middelaar et al. (2013), for example, concluded that the GHG emissions from land-
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use change (LUC) resulting from Brazilian soybean farming could be more than six times those 
resulting from operations.

7.5.3 Life Cycle Assessment

7.5.3.1 Standardising dispersions around LCA results

Producing and processing empirically quantified dispersions around LCA results is today 
practically doable for all LCA practitioners and should therefore become norm. Many improvements 
could, however, aid practitioners with this shift. Initially, the LCA community needs to agree 
upon one consistent nomenclature so that unit process data and results can be communicated 
in a correct way. Software developers also need to embrace this nomenclature and improve the 
existing options for including and analysing dispersions. This would include the options for more 
distributions or statistical moments (skewness, kurtosis, etc.), the propagation of unit process data 
alongside characterisation factors, paired sampling, multiple allocation factors, accounting for 
covariance, provide relevant statistical tests (e.g. goodness-of-fit, Wilcoxon test, Friedman test, 
etc.), R extensions, GPU support and more easily shared models/inventory data. This would also 
encourage better reporting of data and raise the standard of LCA as a science.

Improving statistical inference with the support of software is also necessary for managing big 
data in LCA (Cooper et al. 2013). The adoption of big data would reduce the incidence of flawed 
parameters in LCIs and ultimately harmonise results. It could also come to support long-term 
datasets and help to update parameters in real-time (Xu et al. 2015). The protocol developed 
presented in Chapter 3 could be used for the integration of big data into LCA, as working with 
weighted mean based upon a pedigree approach could assure more objective representation of 
different parameters (Xu et al. 2015).

7.5.3.2 Structuring LCI models to address hypotheses

When adopting dependent sampling, the structuring of the unit process dataset becomes 
increasingly important. Given that only distributions in unit processes shared by production chains 
can be dependently sampled, the LCI modelling structure will influence the level of correlation 
among results. For example, Fig. 7.1 demonstrates a hypothetical scenario where burning of 
diesel in two different fishing fleets has been separated into two country specific unit processes. 
Consequently, the distributions in the two unit processes can only be independently sampled. 
If the unit process dataset instead was modelled according to Fig. 7.2, the national label on 
emissions might be lost, but dependent sampling prevails. Similar thinking could be applied to 
all unit processes that rely upon fairly generic data, which also often is related to large spread 
(e.g. combustion of diesel in unknown engine, wastewater from processing plants, transportation 
distances, etc.). Constructing unit process datasets and LCI databases accordingly would therefore 
reduce relative uncertainties, even if absolute uncertainties might increase (by the use of more 
generic unit processes).
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7.5.3.3 Achieving mass balanced LCI models
Since the appearance of computers, mathematical modelling has become the answer for 

evaluating most of our environmental concerns. Over time, these models have become increasingly 
complex, leaving ever less room for critical evaluations of the predicted outcomes (Pilkey and 
Pilkey-Jarvis 2007). LCA is a prime example of such an environmental modelling tool where 
one flawed parameter or erroneous decimal point can skew conclusions. Striving towards mass 
balanced LCI models could therefore greatly reduce the risk of such mistakes and logically makes 
great sense (inputs=outputs). Resolving the many challenges related to this (e.g. chemical reactions 
within processes) and providing software to support mass balanced models is therefore encouraged.

Fig. 7.2: Example of a unit process dataset using only one unit process for the combustion of diesel in 
fishing boats.

Fig. 7.1: Example of a unit process dataset using separate unit processes for the combustion of diesel in 
fishing boats.
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7.5.3.4 LCA as a science – confirmatory or exploratory

Exploratory research sets out to identifying indicators, rather than being a pathfinder (Tukey 
1980). Confirmatory research, on the other hand, aims at identifying significant trends in 
stochastic environments. While the prior may provide highly valuable information, it does not 
do it with the same conviction as the latter. Throughout the present thesis, much doubt was shed 
on the confirmatory use of LCA results, but a more scientifically rigid approach to LCA was 
also presented. By adopting the suggested approach, LCA practitioners are allowed to achieve 
statistically supported conclusions, with a reduced chance of committing Type II statistical errors. 
It is, however, my personal belief that LCA should be used for both purposes, depending upon the 
goal of the study; where hot-spot analyses and system mapping may help formulate hypotheses 
for follow-up confirmatory LCAs. I also believe that methodological alternatives add confidence 
to LCA results, rather than erasing comparability. As was shown, absolute results are irrelevant, 
so fewer resources should be invested in seeking consensus on methodological choices through 
operational guidelines, PCR standards, etc. LCA results will always remain incomparable across 
studies and between LCA practitioners. Exploratory LCA case studies should therefore avoid 
comparisons with other studies apart from maybe building consensus around environmental 
hotspots. Finally, it is important to highlight that LCA is not a tool created to save individual 
species or unique locations, it is a tool crafted to steer societies (not individuals) towards more 
sustainable choices and actions.
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