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Abstract 

Purpose: Chinese coal power generation is part of the life cycle of most products and the largest 
single source for many emissions. Reducing these emissions has been a priority for the Chinese 
government over the last decade, with improvements made by replacing older power plants, 
improving thermal efficiency and installing air pollution control devices. In the present research, 
we aim to acknowledge these improvements and present updated unit process data for Chinese 
coal power. In the course of doing so, we also explore the implementation and interpretation of 
overall dispersions related to a generically averaged process, such as Chinese coal power.

Methods: In order to capture geographical and temporal dispersions, updated unit process data 
were calculated for Chinese coal power at both a national and a provincial level. The updated unit 
process dataset was also propagated into life cycle inventory (LCI) ranges using Monte Carlo 
simulations, allowing for discrepancies to be evaluated against the most commonly used inventory 
database (ecoinvent) and overall dispersions to be shown for some selected provinces.

Results and discussion: Compared to ecoinvent, the updated dataset resulted in reductions 
with between 8 and 67% for all evaluated inventory flows except for dinitrogen monoxide (N2O). 
However, interprovincial differences in emissions diverged with up to 250%. A random outcome 
in a few Monte Carlo runs was inverted operators, where positive values became negative or the 
other way around. This is a known possible outcome of matrix calculations that needs to be better 
evaluated when interpreting propagated outcomes.

Conclusions: The present manuscript provides recommendations on how to implement and 
interpret dispersions propagated into LCI results. In addition, updated and easily accessible unit 
process data for coal power plants averaged across China and for individual provinces are presented, 
with clear distinctions of inherent uncertainties, spread (variance) and unrepresentativeness. 
Recommendations are also provided for future research and software developments.
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4.1 Introduction

Chinese coal power is the world’s largest single source for anthropogenic greenhouse gases 
(GHGs) and air pollutants (Guan et al. 2012; Lin et al. 2014). China produces 47% of the world’s 
coal and is also the world’s largest importer of coal, thereby accounting for more than half of global 
coal consumption (BP 2013; Wang and Ducruet 2014). The country also holds coal reserves large 
enough to maintain current domestic consumption rates for over 60 years (BP 2013), reserves not 
yet fully utilised due to infrastructure limitations between the mines in the northwest and the 
consumption centres along the coast (Wang and Ducruet 2014). In 2010, coal provided 76% (3.2 
billion GWh) of the electricity consumed in China and 94% of the thermal power production 
(NBS 2011), of which roughly a third was used for the production of goods aimed for export (Su 
and Ang 2013). The life cycle emissions from coal power in China therefore influence many life 
cycle assessments (LCAs), both in and outside of China.

Reducing the emissions from the coal power sector has been a priority for the Chinese government 
over the last decade (Xu et al. 2013). Improvements have also been made by altering the load factor 
of the power plant (capacity of plant in use), boiler types, the use of scrubbers and the size of power 
plants. Larger thermal power plants with a capacity to produce over 300 MW have to a great extent 
replaced older smaller power plants, with their contribution to the overall thermal power capacity 
increasing from 48 to 73% between 2005 and 2010 (NBS 2011; Xu et al. 2013). The majority 
(over 90%) of the power plants today are also installed with pulverised-coal burners, instead of 
the fluidised-bed furnaces and stoker-fired boilers used in some of the remaining smaller power 
plants (Tian et al. 2012). This has resulted in a thermal efficiency amongst Chinese coal power 
plants that actually surpasses that found amongst US power plants (Xu et al. 2013), a claim that to 
a great extent can be verified by the shutting down of small inefficient power plants, reductions in 
power plants’ own use of electricity and improved technology (Xu et al. 2013). China’s Electricity 
Council (CEC 2013a) also reports that the ratio of Chinese coal power plants equipped with flue-
gas desulphurisation (FGD) units today is 90% and that 98% of all newly built power plants are 
installed with low-NOx burners (LNBs). Pollution control measures for particulate matter (PM), 
including dust collectors, wet FGD units, wet scrubbers and electrostatic precipitators (ESPs), are 
also being installed at an impressive rate (Zhao et al. 2010; Cai et al. 2013), resulting in a rapid 
overall improvement of the Chinese coal sector.

In order to quantify resource extractions and emissions resulting from the provision from coal 
power, LCA is often used. An LCA quantifies the environmental and economic flows entering 
and exiting different unit processes in a product’s lifecycle. The unit processes are then scaled to a 
functional unit and aggregated into life cycle inventory (LCI) results. The LCI results can, in turn, 
be classified and characterised into different impact categories (e.g. global warming, eutrophication 
and acidification) in the life cycle impact assessment (LCIA) phase. As LCIs often involve a 
wide range of processes (including e.g. transportation, infrastructure, water, etc.), databases are 
often consulted, the most extensive and commonly used being the ecoinvent LCI database (www.
ecoinvent.org).

The ecoinvent LCI database includes unit processes for Chinese coal power, with data deriving 
mainly from Dones et al. (2004) and Dones et al. (2007), describing coal power plants in the 
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Shandong province just south of Beijing. The structure of these unit processes in version 2.2 of the 
database is illustrated in Fig. 4.1 (process IDs referred to in hard brackets). In the latest version of 
the database (v3), the related unit processes remain largely dependent upon the same unit process 
dataset, as is also clearly stated: “This is a dataset that was already contained in ecoinvent database 
version 2 that was not extensively or individually updated during the transfer to ecoinvent version 
3”. The only two changes to the dataset were the merging of burning [11094] and electricity 
production [11089] into one unit process (Treyer and Bauer 2013) and a reduction of losses in the 
transportation of coal from 3% in ecoinvent v2.2 [11094] to 0.2% in ecoinvent v3. In the meantime, 
a loss of 0.21 kg coal per kg coal mined remained indifferent between the two versions of the 
database. This loss is related to coal seam fires, started by natural causes or human error, which 
latently consume large amounts of China’s coal reserves annually (Kuenzer et al. 2007). The coal 
then enters the coal supply mix before reaching the power plants with small losses, as mentioned 

Fig. 4.1: Simplified process tree of Chinese electricity generation from coal in ecoinvent v2.2. Boxes 
indicate processes, solid lines product/environmental flows, dashed lines additional products not addressed in 
the present study, and dotted lines/boxes suggested flows/processes.
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above. Finally, the coal is burned with an assumed thermal efficiency of 35.6%, indifferent of 
database version. The ecoinvent data for coal- based electricity generation in China thus represents 
electricity generation from coal in one province of China in 1998–1999 and assumes no use of 
FGD units. The limitations of this dataset and its generic nature are also clearly stated in the 
accompanying report (Dones et al. 2007).

A more recent LCI on Chinese electricity generation was presented by Di et al. (2007), but 
again, a lack of FGD units is reported (only 2% of capacity), as well as no control of NOx in place. 
Cui et al. (2012), in the meantime, reported that 80% of the coal-fired power plants had FGDs 
and 14% denitrisation systems, but the study only evaluates three types of coal-based electricity 
generation scenarios. Similarly, Liang et al. (2013) acknowledged the extensive use of FGDs and 
other improvements but only explored possible clean coal power technologies and not the present 
scenario. The same study, in the meantime, presents data on fuel consumed in the mining process 
and for rail transportation (Liang et al. 2013). Ou et al. (2011) present LCA results for Chinese 
coal power but refer inventory data to a reference untraceable to us. Other studies have also used 
LCA to evaluate coal-to-liquid pathways (Ou et al. 2012; Yang and Jackson 2013).

China is almost the size of Europe and is a very diverse country. The performance of coal power 
plants, consequently, differs greatly amongst different provinces (NBS 2011). Coal characteristics 
also differ depending upon which mine they originate from, with e.g. sulphur contents ranging 
from 0 to 4.6% (Su et al. 2011). Scrubbing technologies, in the mean- time, tend to be more 
advanced around metropolitan areas in attempts to limit harmful particulate emissions (Tian et al. 
2012; Cai et al. 2013). The life cycle emissions per kilowatt hour (kWh) can therefore differ greatly 
amongst provinces and individual power plants. Despite these discrepancies, most LCAs of Chinese 
coal energy to date only provide point value estimates. A study of French coal power, however, 
estimated the uncertainties around life cycle emissions, using generic uncertainty estimates, and 
highlighted extensive time demands, difficulty to quantify all types of uncertainties and the choice 
of a representative probability distribution as major challenges for many unit process parameters 
(Maurice et al. 2000). In two later LCAs of US coal, Burnham et al. (2012) and Steinmann et 
al. (2014) both present detailed lists of distributions for key parameters, but it remains unclear 
how these distributions were defined (e.g. goodness-of-fit tests or simply intuition). Meanwhile, 
Venkatesh (2012) specifies the use of the Akaike information criterion (AIC) goodness-of-fit 
test in his LCA study but also encounters data that do not fit any of the common probability 
distributions. In ecoSpold v1, the file format used in ecoinvent v2.2, distributions are defined by 
two moments (a mean and a variance) fit to one out of four distributions (normal, lognormal, 
uniform and triangular). In the second version of ecoSpold, the file format used in ecoinvent 
v3, three additional distributions were added (BetaPERT, gamma and binomial) together with 
an undefined range estimate (Weidema et al. 2012). Meanwhile, lognormal is used as a default 
distribution for many parameters in both versions of the database, in order to avoid negative values 
and better represent large variances (Henriksson et al. 2013; Henriksson et al. 2014a). Distributions 
in LCIs are consequently often chosen based upon desired characteristics, rather than goodness-
of-fit. Moreover, only a few studies acknowledge the existence of covariance (correlated variables), 
with no LCA to our knowledge accounting for it.
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The study will initially detail the different methodological choices made in the goal scope 
definition in Section 2 (ISO 14044 2006). This is followed by updated unit process data for hard 
coal at mine [11092] and hard coal burned in power plant [11094], as defined in Fig. 4.1. In 
addition to these two processes, a waste process for coal seam fires is introduced and connected 
to coal mining [11092], in order to allow for the propagation of overall dispersions for both the 
amount of coal latently burned and emissions due to the burning of that coal. Subsequently, the 
results are propagated into inventory results that are presented as overall dispersions around LCI 
results in Section 3. Finally, conclusions are drawn and future research needs are suggested in 
Section 4. 

4.2 Goal and scope 

The aim of the present study was to present updated unit process data for Chinese coal power 
including estimates for overall dispersions. In the processes of doing so, many inevitable challenges 
related to calculating and interpreting data needed to be addressed. Therefore, throughout the 
averaging process, methodological choices and assumptions will be reflected upon and discussed. 
The main focus will be on pulverised-coal power plants burning bituminous coal in China, given it 
is the dominant source of Chinese coal energy.

The study adopts an attributional LCA approach, with changes only to the unit processes 
outlined in Fig. 4.1, as these had the strongest influence on LCI results. Thus, all choices related to 
background unit process data, allocation and system boundaries are those defined in ecoinvent v2.2 
(Dones et al. 2007). The functional unit is 1 kWh of net electricity at power plant. Infrastructure 
was not updated in the present study, as it was presumed to have negligible effects on overall 
emissions (Liang et al. 2013). The scope of the study was limited to six environmental flows (CO2, 
CH4, N2O, NOx, SO2 and particulate matter) as they are common contributors to many impact 
categories (e.g. global warming, eutrophication, acidification and human health). Many of the 
updated parameters also act as scaling factors and therefore result in improvements for all life 
cycle flows. Studies adopting the present dataset should, however, consider updating emissions and 
resource extractions specific to the impact categories under evaluation. 

The protocol presented in Henriksson et al. (2013) was used to define parameters. According 
to this protocol, overall dispersions (σo) are quantified as the sum of inherent uncertainties 
(σu; inaccuracies in measurements and models), spread (σs; variability in horizontally averaged 
data) and unrepresentativeness (σr; mismatch between data sources and their application). 
Unrepresentativeness was evaluated according to the pedigree scores and uncertainty factors 
presented by Frischknecht et al. (2007b) and reported as indicator scores within brackets. The 
characteristics evaluated in this pedigree include reliability, completeness, temporal correlation, 
geographical correlation, further technical correlation and sample size (Frischknecht et al. 2007b). 
The protocol further promotes central values that correspond with those assumed by the software 
used, which is the arithmetic mean for Chain Management by Life Cycle Assessment (CMLCA), 
with weighted means based upon the inherent uncertainty and unrepresentativeness representing 
secondary data (Henriksson et al. 2013; Henriksson et al. 2014a). The presented unit process 
dataset was also propagated into LCI results using Monte Carlo simulations. This allowed for the 
accuracy of results and spread amongst Chinese provinces to be evaluated.
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Ranges are presented as coefficients of variation (CVs), as these can be easily converted to either 
Phi, the input parameter for lognormal distributions in the CMLCA v5.2 software (cmlca.eu), or 
“SD95” the uncertainty parameter used in ecoSpold (Heijungs and Frischknecht 2005). Ranges 
of more than eight data points were transposed to a distribution using Anderson-Darling tests 
in the EasyFit software v5.5 (mathwave.com). The Anderson-Darling test is a modification of 
the Kolmogorov-Smirnov test that gives more weight to the tail of the distribution and has been 
argued as more robust when evaluating independent outcomes, as e.g. Monte Carlo outcomes 
(Noceti et al. 2003). When less than eight data points were available, a lognormal distribution was 
assumed. In cases where confidence intervals (CIs) were presented around central values, as e.g. in 
the Intergovernmental Panel on Climate Change (IPCC) guidelines, the distribution was assumed 
from the upper and lower 95% CI’s relation to the central value. The CV was thus estimated 
assuming Eq. (4.1) for normal distributions and Eq. (4.2) for lognormal distributions:

CI95± = x̅a ±1.96σa 							       Eq 4.1

CI95± = x̅gσg
1.96; x̅g/σg

1.96 							      Eq. 4.2

where x̅a is the arithmetic mean, σa the arithmetic standard deviation, x̅g the geometric mean and 
σg the geometric standard deviation. Additional equations used to derive and combine CVs were 
taken from Henriksson et al. (2013). For the economic flows where inherent uncertainties were 
not available, a default CV of 0.05 was assumed. We acknowledge the crudeness of some of these 
estimates and that the presented central value sometimes had to be assumed as a geometric mean, 
but find the small discrepancies resulting from the current approach are negligible in proportion 
to the scale of the overall dispersions. Covariance was not accounted for in the current models. 
Once parameters were defined, data modelling and propagation were conducted in the CMLCA 
software by running 1000 randomly sampled Monte Carlo simulations.

4.3 Life cycle inventory 

4.3.1 Unit process data 

4.3.1.1 Hard coal, at mine [11092] 

Coal production in China has increased with 36% since the release of Dones et al. (2007) to 
almost 2700 Mt year−1 (BP 2013). Meanwhile, the current amount of coal being passively burnt in 
seam fires has been reported to amount to between 5 and 200 Mt (0.2 and 7.4% of the coal mined) 
(Rosema et al. 1993; Kuenzer et al. 2007; van Dijk et al. 2011). The weighted mean amongst 
these reported values calculated according to Henriksson et al. (2013) equalled 26 g coal per kg 
coal mined (2.6%). The overall dispersion around this value, assuming an inherent uncertainty of 
σu = 0.31 according to the estimates of van Dijk et al. (2011), added up to an overall dispersion of 
σo = 1.39. As the two dispersion parameters are consequent to each other (amount of coal burned 
and resulting emissions from burning that coal) and another methane flow from coal mining 
needed to be defined for coal mine methane (CMM, see below), the best way to include coal seam 
fires was to create a waste flow and a separate process for burning in coal seam fires.
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A flow of 0.026 kg (σo = 1.39) “hard coal, burned in coal seam fires” should therefore be 
connected per kilogram coal mined [11092], and the flows defined in Table 4.1 disconnected. In 
place of methane, a flow of CMM needs to be connected. In China, CMM emissions have been 
estimated to 13.8 Mt year−1 with a release of 4.5–7.2 kg CH4 per tonne of mined coal (estimated 
σu = 0.3) (Zhang and Chen 2010; Cheng et al. 2011). The environmental outflow of methane from 
the process “hard coal, at mine [11092]” should therefore be reduced from 1.69e−2 to 6.05e−3 kg 
CH4 per kg of hard coal mined with a CV of σo = 0.385. The environmental input of “coal, hard, 
unspecified, in ground” also needs to be adjusted to 1 kg.

Mining and the supply mix of coal also consume electricity, which need to be corrected for 
in the unit process data. One of the electricity-generating processes involved, “hard coal, at coal 
mine power plant” [11088], describes highly inefficient power generation (15% thermal efficiency) 
at the mine site, thus resulting in a large coal consumption ((3.6 MJ/0.15)/ 27.1 MJ kg−1 coal = 
886 grams of coal equivalent (gce) per 3.6 MJ−1 or kWh−1) (Dones et al. 2007). Emissions from 
this power-generating process were modelled neglecting air pollution control devices, as described 
below. Moreover, noteworthy is that only one train line in China remains serviced by coal steam 
engines; transportations by rail were therefore adjusted to 71% diesel locomotives and 29% by 
electric locomotives (Liu et al. 2013).

4.3.1.2 Hard coal, burned in coal seam fires 

Emissions of carbon dioxide (CO2), methane (CH4) and dinitrogen monoxide (N2O) from 
burning of coal were calculated according to IPCC (Gómez et al. 2006), and sulphur dioxide 
(SO2), nitrogen oxides (NOx) and particulate emissions according to (Zhao et al. 2010) and Su et 
al. (2011) (see below), assuming uncontrolled burning as a proxy for coal seam fires. Also, 1 kg of 
hard coal extracted from the ground needs to be connected (Table 4.1).

Table 4.1: Unit process data for the process “Burning in coal seam fires”, resource extraction and emissions 
resulting from coal seam fires per kg of coal mined in China

Unit process flow Unit Value, kg σr σo Distribution
Waste input

Hard coal, burned in coal seam fires kg 1 - - -
Environmental input

Coal, hard unspecified kg 1 - - -
Environmental output

Carbon dioxide, to air kg 2.55 2,1,1,2,1,3 0.047 N
Methane, fossil, to air kg 2.70e-05 2,1,1,2,1,3 0.652 LN
Dinitrogen monoxide, to air kg 4.05e-05 2,1,1,2,1,3 0.652 LN
Sulphur dioxide, to air kg 1.84e-02 3,1,2,1,1,3 0.331 LN
Nitrogen oxides, to air kg 8.37e-03 3,1,2,1,1,3 0.323 LN
PM >10, to air kg 1.16e-01 2,1,2,2,1,3 0.531 LN
PM 2.5-10, to air kg 2.40e-02 2,1,2,2,1,3 0.837 LN
PM <2.5, to air 9.33e-03 2,1,2,2,1,3 0.857 LN
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4.3.1.3 Burning at power plant [11089] 

Coal comes in many kinds and qualities, which influence both energy content and emissions 
(Zhao et al. 2008; Steinmann et al. 2014). Anthracite (black coal) is considered of highest quality, 
followed by bituminous coal, and finally lignite, which is also related to the largest GHG emissions 
(Steinmann et al. 2014). In 2008, roughly 77% of all coal consumed in China was bituminous, 16% 
anthracite and 7% lignite (CCI 2010). Apart from the type of coal burned, emissions from coal 
power plants are influenced by the sulphur and ash content of the fuel, the sulphur retention in ash, 
the emission control technologies adopted and the coal consumption per kilowatt hour produced 
(Zhao et al. 2008).

Higher heating values (1.07 times the lower heating value) for bituminous coal in China have 
been reported ranging from 23.7 to 30.5 MJ kg−1, while for anthracite, these values range from 
31.4 to 31.8 MJ kg−1 (Patzek and Croft 2010). Thermal power generation efficiency in Chinese 
coal power plants has increased from 392 gce kWh−1 or 33.9% in 2000 to 370 gce kWh−1 in 2005, 
333 gce kWh−1 in 2010 and 321 gce kWh−1 or 41.4% in Jan–Aug 2013 (CEC 2011; CEC 2013b). 
The thermal efficiency, however, differed greatly amongst provinces, from 282 gce kWh−1 in Beijing 
to 409 gce kWh−1 in Xinjiang (NBS 2011). As data on individual power plants were limited, the 
spread for thermal efficiency amongst power plants within provinces was estimated to σu = 0.035 
based upon Xu et al. (2011).

The carbon dioxide emissions presented by the IPCC from burning of bituminous coal are 
94.6 g MJ−1 (σu=0.03) (Gómez et al. 2006). The CIs around this value also suggest a symmetric 
distribution, with the normal distribution being the most logical choice given the central limit 
theorem. However, since the tails of a normal distribution exceed the amount of CO2 that 
theoretically can be emitted by burning coal, a triangular distribution was used for carbon dioxide 
emissions. IPCC also reports methane emissions from coal power plants of 1e−03 g MJ−1 (σu = 
0.65) and emissions of N2O of 1.5e−03 g MJ−1 (σu = 0.65) (Gómez et al. 2006). Meanwhile, sulphur 
contents of coal vary from low in the northeastern parts of the country to relatively high in the 
southern parts (Su et al. 2011). The national average is 1.02% (σs = 0.326), with provincial sulphur 
contents available in the Electronic supplementary material of this article (Su et al. 2011). Reports 
on sulphur retention in ash range from 5 to 15%, with an estimated average of 10% (σu = 0.255) 
(Zhao et al. 2008; Zhao et al. 2010). Wet FGD units are most common and have a potential 
sulphur removal efficiency of 95%, while dry and simple scrubbers have removal efficiencies of 80 
and 17%, respectively (Zhao et al. 2010). However, poor performance and limited operating rates 

Flow Unit Value, CV Distribution
Coal g kWh-1 333 0.062 Lognormal
Higher heating value MJ kg-1 27.1 0.064 Normal
Sulphur content % 1.02% 0.44 Lognormal
Sulphur retention in ash % 10% 0.22 Lognormal
FGD efficiency % 59% 0.174 Normal

Table 4.2: Important parameters for calculating the emissions from Chinese power plants.
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due to high running costs have resulted in practical removal efficiencies of between 66 and 75% 
(average 70.5%, σu = 0.136) (Zhao et al. 2011; CEC 2013c).

Emissions of NOx are controlled by the temperature and degree of oxygen enrichment, which in 
turn depend upon the type of coal, unit capacity, burner and air pollution control devices. Measures 
to limit NOx emissions include LNBs and selective catalytic reduction (SCR) units, with removal 
efficiencies of 27 and 43%, respectively (Zhao et al. 2008). China’s Electricity Council (CEC 
2013a) reports that generators equipped with LNB facilities generated 28% of the thermal power 
in 2012. Meanwhile, SCRs are only incipient in China at this point (Zhao et al. 2010). From these 
data, parameters for unit process data could be calculated according to the formulas provided 
by Zhao et al. (2010) (Table 4.2). A full list of province-specific parameters is provided in the 
Electronic supplementary material of this article.

PM is one of the most prominent risks to human health associated with coal power generation 
in China (Zhang et al. 2010). The amount of particles emitted depends upon the ash content of 
the fuel, the ratio of bottom ash to total ash, the particulate mass fraction by size, the particulate 
size and again the pollution control devices adopted. The removal efficiencies of installed ESPs 
are 98.1–99.5% of total PM, while when combined with wet FGD units, up to 99.8% of the 
particulates can be removed (Zhao et al. 2010). Assuming an average ash content in fuels of 22.0% 
(σs = 0.24), the emissions could be calculated adopting equations provided by Zhao et al. (2010). As 
for NOx emissions, a pollutant concentration in the flue gas of 900 mg Nm−3 (σu=0.31) was assumed 
together with a flue gas volume of 9.3 m3 kg−1 (σu = 0.065, based upon an excess air coefficient 
of 1.25, ranging from 1.1 to 1.4). In order to be consistent with other ecoinvent processes, the 
processes “NOx retained, in SCR” [882] and “SOx retained, in hard coal flue gas desulphurisation” 
[883] also need to be connected.

Electricity is also used in the power plant itself for its operation, maintenance and repairs. 
According to the International Energy Agency (IEA; iea.org accessed October 3, 2014), the energy 
industries’ own use in China across all kinds of electricity plants amounts to 12.1%. However, with 
regard to US electricity production, the IEA reports an own use of 7.8% across power sectors, 
while a more detailed account from the US Energy Information Administration (eia.gov accessed 
October 3, 2014) reports an electricity own use of 11.5±10.4% for coal power plants. The own use 
of 12.1% reported by the IEA for China was therefore used in the present study, with an assumed 
spread of σs = 0.904 based upon the US example.

Averaged updated unit process data flows for the whole of China are presented in Table 4.3, 
alongside Beijing, Xinjiang and coal mine power plants (CPP). Beijing was selected for having 
the best thermal efficiency and Xinjiang for having the worst. Naturally, features such as coal 
quality and flue gas treatment also influence emissions, resulting in each province exhibiting 
its own unique set of emissions. However, for the purpose of the present research, we will only 
explore two provinces. Emissions from coal mine power plants were included as a rough proxy 
for unregulated coal combustion, a still common practice throughout China (e.g. in small boilers 
and power generators). Data at provincial level were calculated with regard to thermal efficiency, 
sulphur content and pollutant removal technologies (NBS 2011; Su et al. 2011; Cai et al. 2013). 
For a detailed description of all provinces, see the Electronic supplementary material of this article.
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4.3.2 Life cycle inventory results 

The propagated LCI results for the production of 1 kWh net electricity at power plant using 
ecoinvent (ecoi) data and the updated unit process datasets for China (CN), Beijing (BJ), Xinjiang 
(XJ) and coal mine power plants (MPP) are presented as box-and-whisker plots in Figs. 4.2, 4.3, 
4.4, 4.5, 4.6 and 4.7. The central line represents the median, the edges of the box the 25th and 75th 
percentiles and the whiskers the first and last deciles (10th and 90th percentiles) (see Fig. 4.2), in 
line with Bowley’s seven-figure summary (excluding the min and max values in order to maintain 
better scaling). Overall, the emissions from the updated unit process dataset averaged across 
China resulted in lower emissions than the ecoinvent estimates, with the exception of dinitrogen 
monoxide. For ecoinvent, Dones et al. (2007) assumed 0.5 kg N2O TJ−1 coal burned based upon 
a number of publications from 1988 to 1996, while the current study adopted the IPCC estimate 
of 1.5 kg N2O TJ−1 (Gómez et al. 2006). Carbon dioxide emissions were only slightly lower for 
the updated processes as they are largely based upon the amount of fuel used and the carbon 
content of that fuel. Sulphur dioxide, nitrogen oxides, methane and particulate emissions, however, 
were between 49 and 67% lower in this study compared to those in ecoinvent. Coal power plant 
emissions amongst provinces also indicated a large spread, especially for nitrogen oxides (2.5 higher 
in Xinjiang compared to Beijing). Coal mine power plants (uncontrolled) unsurprisingly had the 
largest emissions, where particulate emissions stood out as especially worrying.

Fig 4.2: Box-and-whisker plot of the life cycle 
dinitrogen monoxide emissions from the genera-
tion of 1 kWh of electricity at power plant, with 
the central line indicating the median, the box 
the 25th and 75th percentiles and the whiskers the 
10th and 90th percentiles.

Fig 4.3: Box-and-whisker plot of the life cycle 
carbon dioxide emissions from the generation of 1 
kWh of electricity at power plant, with the central 
line indicating the median, the box the 25th and 
75th percentiles and the whiskers the 10th and 90th 
percentiles.
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Fig 4.4: Box-and-whisker plot of the life cycle 
methane emissions from the generation of 1 kWh 
of electricity at power plant, with the central line 
indicating the median, the box the 25th and 75th 
percentiles and the whiskers the 10th and 90th 
percentiles.

Fig 4.5: Box-and-whisker plot of the life cycle 
nitrogen oxides emissions from the generation of 1 
kWh of electricity at power plant, with the central 
line indicating the median, the box the 25th and 
75th percentiles and the whiskers the 10th and 90th 
percentiles.

Fig 4.6: Box-and-whisker plot of the life cycle 
sulphur dioxide emissions from the generation of 1 
kWh of electricity at power plant, with the central 
line indicating the median, the box the 25th and 
75th percentiles and the whiskers the 10th and 90th 
percentiles.

Fig 4.7: Box-and-whisker plot of the life cycle 
particulate emissions from the generation of 1 
kWh of electricity at power plant, with the central 
line indicating the median, the box the 25th and 
75th percentiles and the whiskers the 10th and 90th 
percentiles.
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Spread had a much stronger influence on economic flows (41–63% of the overall dispersions) 
than unrepresentative- ness (only 4–7% of the overall dispersions). Meanwhile, the default inherent 
uncertainties used by ecoinvent often exceeded the calculated overall dispersions for environmental 
emissions. This was the result of ecoinvent using large generic basic uncertainty factors to capture 
inherent uncertainty and spread, a simplified practice that resulted in some strange outcomes. For 
example, an environmental inflow of 1.21 kg of hard coal per kg hard coal produced was assumed 
by ecoinvent in the mining process [11092], with an accompanying lognormal uncertainty estimate 
of SD95 = 1.5, resulting in a 95% CI of 0.81–1.8 kg of coal extracted per kg delivered, which is an 
“impossible” range in terms of mass balance.

4.4 Discussion and conclusions 

Over the last decade, China has cleaned up its coal power sector quite effectively. As a 
consequence, the unit process data on coal-based electricity production in China available in the 
ecoinvent database have become outdated and overestimate most emissions from the Chinese 
coal sector. For example, the methane and carbon dioxide emissions from coal mining per kWh 
generated in the present study were only 32 and 17% of those estimated by Dones et al. (2007). 
This was largely due to increases in the quantity of coal mined (with the number of coal seam fires 
and amount of CMM seeming to have remained similar) and energy efficiency improvements 
within the power plants. A rapid implementation of air pollution control devices has also greatly 
reduced the sulphur dioxide, nitrogen oxides and particulate emissions from the Chinese power 
sector over the last decade. While generally disregarded in previous inventories, reductions of 
up to 99% of the emissions are documented in the present research. However, uncontrolled coal 
combustion, such as those at the coal mine power plant, remains a very dirty source of energy and 
is better replaced by grid electricity.

The scale of the overall dispersions estimated in this study was quite similar to that concluded 
by Steinmann et al. (2014) in their study of the US coal power sector. Steinmann et al. (2014) 
additionally concluded that spread (variability) is more prominent than inherent uncertainty, a 
conclusion that could not be reconfirmed in the present study. The reason for this could be that 
Chinese power generation is more uniform than American. Another more likely explanation is that 
the level of horizontal averaging and the modelling assumptions differ between the two studies.

Populations are difficult to typify and rarely distributed exactly as their mathematical ideals (Serlin 
2000). In the present research, many of the data ranges could neither be statistically argued to fit 
any of the distributions commonly available in LCA software and databases (uniform, triangular, 
normal or lognormal). Other ranges were fit to distributions that resulted in physically impossible 
MC outcomes (e.g. unrealistic physical balances). This is one of many inevitable consequences 
of fitting natural processes into quantitative models and one of many arguments often used to 
unsettle environmental model predictions (Pilkey and Pilkey-Jarvis 2007). Simply discounting 
unrealistic values as outliers is not recommended, as it will shift the central value. Instead, there are 
several steps that should be taken to limit the number of counter-intuitive outcomes. For example, 
in the present study, we disaggregated the emissions from coal seam fires from the mining process 
to make sure that the amount of coal leaving the mine would not exceed the amount extracted 
from the ground. Also, by adopting a triangular distribution for carbon dioxide emissions, the 
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upper bound could not exceed the physical limit set by the amount of carbon burned. Ultimately, 
however, we encourage practitioners to acknowledge that all distributions have their limitations 
and to communicate these alongside their quantitative dispersion estimates. We also encourage 
the option to enable practitioners to better define and evaluate data in software and databases, 
e.g. by allowing for the implementation of the third and fourth moments (skewness and kurtosis). 
Another desired improvement would be to allow for covariance correlations in LCI models, where 
e.g. low SO2 emissions could be correlated with the amounts of SOx retained in the flue gas 
desulphurisation unit.

Since propagated LCI results rarely are normally distributed, the use of the arithmetic means as 
the central values should also be questioned. This is due to the strong influence of outliers (which 
sometimes are produced in random Monte Carlo sampling) on arithmetic means. Box-and-
whisker plots were therefore deemed useful as they provide a rough indication of the distribution 
of these non-parameterised data. The computational matrix of LCIs can also result in inverted 
operators (pluses become minuses or the other way around) as a result of random sampling of 
normal distributions (which theoretically can yield both negative and positive operators) or circular 
product flows (e.g. if by chance the coal used by the coal mine power plant exceeds that produced in 
coal mining in one Monte Carlo run) (Heijungs and Suh 2002). This phenomenon was observed in 
the Monte Carlo outcomes of the present model (at roughly 3‰ of the iterations) but only noticed 
because the raw data were critically evaluated and negative inverted values removed. Identifying 
inverted operators would, however, be much more difficult in more complex models where only 
partial emissions are inverted and the final outcome ends up with the expected operator (e.g. 
positive values for emissions). As a result of the above-mentioned features, the mean and the 
“baseline” (the point values commonly calculated in LCIs) easily deviate from each other, which 
consequently puts point value results into question. As no clear definition of the baseline exists 
to our knowledge, and today most likely is a mix of means, medians and expert judgments, we 
promote a more robust nomenclature for statistical parameters in the field of LCA.

In a recent editorial commentary in the present journal, the limitations of case studies largely 
relying on modern LCA software and LCI databases were addressed (Klöpffer and Curran 2013). 
The large differences observed in the present research reconfirm these concerns, bringing us to 
some suggestions on how the situation could be improved. Firstly, databases should be updated 
regularly to reflect the contemporary state of technologies as appropriately as possible, for which 
sufficient resources should be made available. Secondly, LCA practitioners need to comply with 
the ISO 14044 (2006) requirement of checking the validity of LCI data, especially for processes 
that heavily contribute to important inventory results, using generic unit process data only to fill 
gaps which otherwise would be excluded. In response, presenting unit process data in a way similar 
to the present study allows practitioners to more easily amend and update their inventories. It is 
also encouraged to share raw data, as limited reporting on data has proven to be a major hurdle in 
the implementation of dispersions in the field of LCA (Henriksson et al. 2012c; Henriksson et al. 
2014b).

In the present study, we focused only on a limited number of provinces and emissions for practical 
reasons. While these emissions are related to some of the most commonly used impact categories, 
other emissions from the above-mentioned processes will most likely also be influenced 
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by the improvements in the Chinese coal power sector (e.g. heavy metals, carbon monoxide, 
etc.). We therefore encourage further efforts towards updating the inventory for the world’s single 
largest energy-producing sector. Another improvement would be to evaluate the spread amongst 
individual power plants, data that were unavailable for the present study. This could also help to 
critically evaluate some of the questionable data provided by the Chinese government (Guan et al. 
2012). We also encourage more research into the handling of dispersions in the field of LCA, as 
calculations, modelling choices and interpretation all influence outcomes. 
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