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Abstract 

Purpose: Quantitative uncertainties are a direct consequence of averaging, a common procedure 
when building life cycle inventories (LCIs). This averaging can be amongst locations, times, 
products, scales or production technologies. To date, however, quantified uncertainties at the unit 
process level have largely been generated using a Numerical Unit Spread Assessment Pedigree 
(NUSAP) approach and often disregard inherent uncertainties (inaccurate measurements) and 
spread (variability around means).

Methods: A decision tree for primary and secondary data at the unit process level was 
initially created. Around this decision tree, a protocol was developed with the recognition that 
dispersions can be either results of inherent uncertainty, spread amongst data points or products of 
unrepresentative data. In order to estimate the characteristics of uncertainties for secondary data, a 
method for weighting means amongst studies is proposed. As for unrepresentativeness, the origin 
and adaptation of NUSAP to the field of life cycle assessment are discussed, and recommendations 
are given.

Results and discussion: By using the proposed protocol, cross- referencing of outdated data is 
avoided, and user influence on results is reduced. In the meantime, more accurate estimates can 
be made for horizontally averaged data with accompanying spread and inherent uncertainties, as 
these deviations often contribute substantially towards the overall dispersion.

Conclusions: In this article, we highlight the importance of including inherent uncertainties and 
spread alongside the NUSAP pedigree. As uncertainty data often are missing in LCI literature, we 
here describe a method for evaluating these by taking several reported values into account. While 
this protocol presents a practical way towards estimating overall dispersion, better reporting in 
literature is promoted in order to determine real uncertainty parameters.

27



C
ha

pt
er

 3

3.1 Introduction 

Life cycle assessment (LCA) results are commonly presented as point values without even 
giving a qualitative indication of the underlying uncertainties (Björklund 2002; Ross et al. 2002). 
Results of LCAs are also strongly influenced by the LCA practitioner, and even ISO 14044 (ISO 
14044 2006) compliant studies describing identical systems may experience an order of magnitude 
difference in assessed impacts (de Koning et al. 2009; Williams et al. 2009; da Silva et al. 2010). 
This practice easily results in unstable conclusions, which subsequently attract criticism and may 
put public trust in LCA results at risk (Williams et al. 2009; Lazarevic et al. 2012). Desired 
advancements in the field of LCA are therefore to reduce practitioner influence and to produce 
uncertainty ranges around life cycle inventory (LCI) results.

Part of the divergence in LCA outcomes relates to different methodological choices made by 
practitioners. These may include different views on system boundary setting, inclusion of capital 
goods, allocation, biogenic carbon handling and storage, end of life of products, land use change 
and characterisation factors (Finkbeiner 2009; Henriksson et al. 2011). In theory, however, all 
of the above can be resolved by a common set of product category rules (de Koning et al. 2009). 
Collecting representative LCI data, on the contrary, is like hunting a moving target as processes 
constantly change or experience natural variance. Available data for individual unit process flows 
therefore often remain outdated or of otherwise limited quality. The sourcing of representative unit 
process data is, moreover, influenced by value judgements, epistemological perspectives and ethics, 
which may further influence results (Lazarevic et al. 2012). Additional dispersion around averages, 
in the form of spread, is also introduced by the process of horizontal averaging. In the field of LCA, 
horizontal averaging is commonly performed when multiple unit processes, or aggregated datasets, 
are combined to represent a more general process (UNEP 2011). This may, e.g. be the averaging of 
thermal efficiencies amongst coal power plants in a country towards a countrywide average.

Producing uncertainty estimates around results requires input parameters and a propagation 
method (Fig. 3.1). Many methods for propagating statistical uncertainties around LCI results were 
proposed already at an early stage of LCA development, including Monte Carlo analysis, analytical 
error propagation and fuzzy logic (Heijungs 1996; Huijbregts et al. 2001; Lloyd and Ries 2007). 
Meanwhile, their application has so far been sporadic due to limitations in quality and quantity of 
input parameters, time, computing, etc. Most of these hurdles can, however, today be overcome; 
uncertainty information is becoming more and more available in background data, software allow 
for the adoption of ranges and computing power has improved. Still limited, however, are clear 
definitions of how the input parameters should be de- fined and what they need to enclose.

Uncertainty is dynamic, and it is of importance to identify all of its origins. Already in 1996, 
Heijungs made a distinction between uncertainties (lack of knowledge) and variability (likely to 
change often) at the unit process data level. Huijbregts (1998a) later classified these into parameter 
uncertainty, model uncertainty, spatial variability, temporal variability and variability between 
objects or sources. Variables are, moreover, subject to covariance (e.g. the causal relationship between 
amount of fertilizer applied and total yield), directional over time (e.g. efficiency improvements) 
and influenced by their own previous predictions (e.g. climate predictions can influence climate 
negotiations, which in turn influence climate).
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Applied and interdisciplinary sciences, including the field of LCA, are goal-oriented disciplines, 
in which social values, ethics, policies, managers, funders, competition and personal beliefs become 
unavoidable forces that may influence scientific results (Funtowicz and Ravetz 1990; Ravetz 1999; 
Lazarevic et al. 2012). These underlying forces have motivated the concept of post -normal science, 
where uncertainty is endorsed to be managed, and values are made explicit (Table 3.1) (Funtowicz 
and Ravetz 1990). In the field of LCA, this can be related to, e.g. the user influence on results 
or the often more available access to inventories describing improved or alternative production 
methods (e.g. organic farmers are often more keen to share their production practices than 
non-organic farmers). In order to acknowledge these inferences, Funtowicz and Ravetz (1990) 
introduced the Numeral Unit Spread Assessment Pedigree (NUSAP) approach. The NUSAP 
approach supplements traditional quantitative uncertainty parameters (numeral, unit and spread) 
with qualitative judgements about the information used and its scientific status (assessment and 
pedigree) (van der Sluijs et al. 2005). In this article, we will refer to this as unrepresentativeness.

NUSAP’s pedigree approach was first introduced to the field of LCA by Weidema and Wesnaes 
(1996), the pedigree serving as a data quality indicator for LCIs. Later, it was also practically 
applied as a quantitative tool within the ecoinvent database, in order to produce estimates of 
uncertainty by attributing a set of uncertainty factors, based on expert judgement, to the pedigree 
quality indicators (Frischknecht et al. 2007b). Uncertainty factors were first introduced by 
Huijbregts (1998b) as minimum and maximum estimates and later reinterpreted as geometric 
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Normal science (NUS) Post-normal science (AP)
Inherent deviations and spread of data Unrepresentativeness of data

Source: Uncertainty and variability Source: Systems uncertainty and decision 
stakes

Including: Parameter uncertainty, model 
uncertainty, spatial variability, temporal 
variability, variability between objects/sources

Including: Qualitative judgements, 
reliability, completeness, temporal 
correlation, geographical correlation and 
further technological correlation

Table 3.1: Definitions and examples of uncertainties originating from normal and post-normal science 
(Funtowicz and Ravetz 1990; Weidema and Wesnaes 1996; Huijbregts 1998a; Huijbregts 1998b; Ravetz 
1999; van der Sluijs et al. 2005).

Fig. 3.1: Types of input parameters required to process point values or range outputs.
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standard deviations, as almost all data were assumed to be lognormally distributed (Frischknecht 
et al. 2007b). This quantitative use of the pedigree part of the NUSAP scheme, however, may be 
questioned with regard to its original intent and appropriateness, and it only ever estimates the 
unrepresentativeness of a dataset to its proposed use, thus excluding any inherent uncertainty or 
spread.

The work presented here is conducted as part of the on-going Sustaining Ethical Aquaculture 
Trade project (SEAT; www.seatglobal.eu), an EU FP7-funded collaboration project that aims 
to evaluate European imports of aquatic products from Asia. As an initial step of the project, an 
integrated survey was conducted to collect an extensive sample (n = 1600 farms) of primary data 
(as defined in Table 3.2) for aquaculture farms in Bangladesh, China, Thailand and Vietnam. 
Additional primary data have also been collected for related processes, including feed mills, 
hatcheries, nurseries, processing plants, fishmeal factories and reduction fisheries (n =10–40). With 
limited representation of Asian processes in available LCI databases, most supporting processes 
need to be modelled using secondary data (e.g. electricity production in Vietnam). Many secondary 
data sources, however, report inconsistent values and often lack information on inherent uncertainty 
ranges. In response to this—and in order to support SEAT’s extensive primary dataset—we here 
propose a new, more consistent method for approaching and averaging data horizontally.

The purpose of this manuscript is to propose a methodology for horizontal averaging of data 
where dispersion from inherent uncertainty, spread and unrepresentativeness is incorporated in 
the input parameters. The methodology was developed to allow for subjective unit processes to be 
produced, which can support the LCIs produced within the SEAT project. 
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Table 3.2: Glossary of terms used throughout this study.

Primary data Data collected specifically for the intended study and  
representing relevant suppliers. (UNEP 2011)

Secondary data Previously published data describing processes for the intended 
study at different levels of aggregation and representativeness. 
(UNEP 2011)

Unit process Smallest element considered in the life cycle inventory analysis 
for which input and output data are quantified (ISO 2006).

Dispersion Any form of range around a variable, resulting from inherent un-
certainty, spread or unrepresentativeness

Inherent uncertainty Uncertainties related to the inaccuracies of measurements or 
model at no level of horizontal averaging

Spread Variability around an average resulting from horizontal averaging
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3.2 Methods 

Horizontal averaging of data is driven by many motives and goals, e.g. to comply with the goal 
of a study, ensure confidentiality, increase ease of use or provide computation efficiency (UNEP 
2011). Given that each sample ideally should be handled as a unique unit process, the level of 
averaging should be kept to a minimum (UNEP 2011). However, out of practical reasons, both 
primary and secondary data almost always need to be averaged to some extent to make them 
manageable in the inventory phase. While averaging most often is discussed on a geographical 
level, as in Fig. 3.2, it also applies to technologies, seasons, scales of production, products (e.g. 
different varieties of crops), etc. As a direct result of averaging, the level of overall dispersion will 
generally increase, partially by spread and partially from unrepresentativeness. As processes often 
are presented on a global level (734 processes in ecoinvent v2.2), using average technology, or from 
different time periods, the importance of including dispersion is again highlighted.

Every sample of values can be described by a large number of moments, of which the first four 
(a central value, a variance, a coefficient of skewness and a coefficient of kurtosis) typically suffice 
to capture the main characteristics of the distribution. The estimates of these moments should 
be consistent, unbiased, efficient, sufficient, robust and practical (Morgan and Henrion 1990). 
With focus on the practical, unit process data are often described by the two first moments fit 
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Fig. 3.2: The process of horizontal averaging displaying the cumulative effect on dispersion, originating 
from inherent uncertainty, spread and unrepresentativeness, using spatial averaging as a reference. 
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to one of a limited number of distributions (e.g. normal, uniform, triangular and log-normal). 
While the central limit theorem states that the mean values of independent random variables 
are approximately normally distributed, multiplicative independent random variables tend to be 
log-normally distributed (Limpert et al. 2001). This, in addition to the desire to avoid negative 
numbers and to better represent large variances, explains the preference for lognormal distributions 
in LCI datasets. However, where sufficient data are avail- able, the best fit distribution should 
be determined using a goodness-of-fit test for each dataset, as distributions based upon value 
choices may increase the data uncertainty it aims to describe. The choice of central value is, in the 
meantime, dependent upon the choice of software. The methodology described below will adopt 
the arithmetic mean as the central value, given that it is the input value in CMLCA. Correlating 
equations for geometric means are available as electronic supplementary material to this article. 
Dispersion measures should also correlate with the type of distribution (e.g. a geometric standard 
deviation to describe log-normally distributed data) and software used.

In order to apply the most appropriate moments to different sets of primary and secondary data, 
a decision tree was initially developed (Fig. 3.3). In the decision tree, priority is given to primary 
data (P1–3), assuming that they are more up to date and relevant, and provide a better level of 
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Fig. 3.3: Decision tree for sourcing unit process data, with regards to mean, inherent uncertainty, spread, 
unrepresentativeness and distribution. 
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understand- ing than secondary data. Where only one primary dataset is relevant (P3) to the scope 
of the study, spread can be neglected. However, if only one primary dataset is available (P3), the 
option of resolving to, or supplementing with, secondary data should be considered. For secondary 
data (S1–4), a weighting procedure amongst values is proposed, in order to acknowledge varying 
degrees of representativeness amongst secondary data sources. Where processes are unrepresented 
in literature (S4), four alternative options are suggested of which the one deemed to provide 
the most accurate estimate should be selected. Th e decision tree allows for more consistent data 
handling, while still partially relying upon expert judgement (particularly for secondary data) in 
order to approach the wide array of possible situations.

In order to more accurately determine the central value, we introduce a weighting procedure 
amongst secondary data points. Th e weighting procedure assumes that several reported values 
are available candidates for an inventory fl ow at the unit process level. Th e selection criteria for 
choosing values should be stated in the scope of the study, and the sample should preferably be well 
balanced (e.g. not all values from the same region). As each of the values will represent samples 
of diff erent accuracy, we here encourage weighting based upon representativeness (σr), defi ned 
by the overall uncertainty factor, and inherent uncertainty (σu) where available for all values. 
Th is assures that more recent and extensive studies are given more emphasis, while also allowing 
for overlapping of inventories. Compiling and comparing data may also indicate if any cross-
referencing exists amongst the secondary data sources, all of which should be removed from further 
analysis. Weighted means can be calculated using Equation 1, where x represents the vector of n 
values indexed by i, w the weighting factors (Eq. 2) and x̅(wt)  the weighted arithmetic mean. For the 
input parameter (σu+r) in the weighting factor, we recommend the square of the arithmetic standard 
deviation. However, in order to avoid bias from the scale of means where relative uncertainty 
factors are adopted, and to allow for weighting of true zero values (e.g. no fi sh in pond x when the 
question is “how many fi sh are there in the pond?”), 1/(ln(σg

u+r))2 couzld be considered if relative 
geometric standard deviations are given or the square of the coeffi  cient of variation 1/(CVu+r)2 for 
relative arithmetic standard deviations.

Th e estimate for representativeness can be derived from a NUSAP pedigree with accompanying 
uncertainty factors. Th e pedigree matrix should evaluate all of the most relevant variables, and 
its complexity may diff er depending upon the ambition and complexity of the parameter/model 
assessed (van der Sluijs et al. 2005). Pedigree criteria should, moreover, be explicitly defi ned, to 
avoid interpretation bias and ac- knowledge that information on data sometimes is lacking for 
certain pedigree criteria. Uncertainty factors should mean- while preferably be verifi ed by real data. 
As an indicator for unrepresentativeness of weighted means, we recommend the use of the lowest 
uncertainty factor within a sample to characterise the unrepresentativeness of the weighted mean, 
given that this already has been accounted for in the weighting process.

33

     

    Eq. 3.1    Eq. 3.2    



C
ha

pt
er

 3

As for inherent uncertainty, we naturally encourage the adoption of calculated arithmetic, or 
geometric (Eq. 3.3), standard deviations for primary site samples. Where standard deviations 
are reported around secondary data points, we recommend the adoption of the lowest reported 
inherent un- certainty, given the assumption that the increased sample results in more accurate 
values. Where inherent standard deviations remain unreported, estimates from related processes or 
basic uncertainties should be adopted. As for spread, the standard deviation amongst primary data 
values, or the values supporting each weighted mean, should be used.

         Eq. 3.3

In order to aggregate the uncertainty factors, the standard deviations all need to be on the 
same scale. Th e translation of standard deviations between the normal (σa) and the lognormal 
scale is therefore presented by Eqs. 3.4 and 3.5. Both of these equations, however, only provide 
approximate parameters.

   Eq. 3.4      Eq. 3.5

Assuming that inherent uncertainty (σu), spread (σs) and unrepresentativeness (σr) are independent 
and moreover described on the same scale, the overall dispersion (σo) can be calculated using 
either Eq. (6) for arithmetic standard deviations or Eq. (7) for geometric standard deviations in 
accordance with the combination rules by Frischknecht et al. (2007b). While Eq. (7) fulfi lls all 
the desired functions of combining geometric standard deviations, it is not universally recognised.

         Eq. 3.6

         Eq. 3.7

Caution is needed with regard to zeroes on the lognormal scale, as negative or zero values for 
x are not accommodated. While missing values can be excluded from the equations, for true zero 
values, we recommend that they be substituted by a value of 10 % of the lowest non-zero value 
reported elsewhere for the variable. Th is ensures that the true zeroes remain the lowest value without 
introducing the complexity of, e.g. Box–Cox transformations (Ortiz and Arocha 2004). In cases 
where two alternative fl ows fi ll an identical function (e.g. generators and grid electricity), these may 
have to be treated individually with regard to their contribution. Templates for the recom- mended 
equations and unit process collection sheets are avail- able as electronic supplementary material to 
this article.
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 33.3 A simple hypothetical example
In order to exemplify the proposed methodology, a hypothetical case will be used. Four values 

from secondary data sources (a–d) were assumed to represent a common unit process flow, each 
scaled towards a common reference flow, as is crucial before merging unit process data (Table 3.3). 
The pedigree and uncertainty factors proposed by Frischknecht et al. (2007b) and Weidema et al. 
(2012) were adopted in order to evaluate unrepresentativeness. Both of these documents evaluate 
the categories of reliability, completeness, temporal correlation, geographical correlation, and 
further technical correlation, as originally proposed by Weidema et al. (2012), with the addition of 
sample size in Frischknecht et al. (2007b). Sample size was again removed in Weidema et al. (2012), 
as default basic uncertainty factors were introduced. While the characteristics of the uncertainty 
factors in Frischknecht et al. (2007b) are not always clear, we here assume these uncertainty factors 
to be equivalent with geometric standard deviations (σg). The representativeness of each value 
is reported within brackets as pedigree scores together with the corresponding summed relative 
uncertainty factors.

In accordance to Fig. 3, the decision tree, a lognormal distribution was assumed. Using the 
method described above (Eqs. 1, 2 and 4), the weighted arithmetic mean was derived at 1.479, 
adopting the uncertainty factors of Frischknecht et al. (2007b), and 1.654 when consulting 
Weidema et al. (2012) (excluding inherent uncertainties due to incomplete reporting). Alternative 
weighting factors resulted in weighted means of 1.585 according to Frischknecht et al. (2007b) 
(wi =1/ln(σg

u +r)2), and 1.671 according to Weidema et al. (2012) (wi = 1/CV2). All of these are 
higher than the basic arithmetic mean of 1.30, as a result of the two larger values (A and B) being 
more representative. To calculate the overall deviation, we adopt the proportionally lowest reported 
inherent uncertainty (σa

u = 0.16 or σg
u ≈ 1.106 using Eq. 5) and dimensioned pedigree estimate 

(σa
r = 0.068 (from σg

r = 1.041) or 0.0017 (1.7 × 0.001)) amongst the values, depending upon the 
methodology used. The spread can be derived amongst the values to σa

s = 0.408 or, alternatively, 
σg

s = 1.381 (using Eq. 3). Finally, the overall dispersion can be estimated at σa
o=0.443 using Eq. (6) 

(assuming σa
u =0.16, σa

s =0.408 and σa
r =0.068) or σg

o =1.406 using Eq. (7) (and 5) (assuming 
σg

i =1.106, σg
s =1.381 and σg

r =1.041). 
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Table 3.3: A hypothetical list of values identified to represent a unit process flow.

Source a b c d
Value 1.6 1.7 1.0 0.9
Reported inherent standard 
deviation 0.16 n.a. 0.12 n.a.

NUSAP score (3,2,1,2,1;2) (2,2,2,3,1;3) (1,3,1,3,3;2) (2,2,4,2,4;1)
Sum of squared uncertainty 
factors, σg (Frischknecht et 
al. 2007b) 

1.051 1.041 1.100 1.251

Sum of variances, σCV 
(Weidema et al. 2012) 0.002 0.001 0.008 0.041
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3.4 Discussion 

Our proposed protocol presents a practical way to approach and organise primary and secondary 
data. While the procedure of critically evaluating data sources is time consuming, and resources often 
are limited, efforts can be restricted to the most influential parameters by initial scoping efforts and 
sensitivity analyses. By critically analysing the secondary inventory sources and weighting them 
towards a common mean, cross- referencing of outdated or estimated inventory flows is avoided. 
Horizontal averaging of data sources also allows for merging of inventories, thereby generating 
more complete unit process datasets. The proposed approach is especially useful for building more 
general processes, as primary data sources rarely represent national-level surveys, and production 
methods often differentiate geographically. 

Defining and enclosing dispersion originating from inherent uncertainty, spread and 
unrepresentativeness is more fundamental than the choice of analytical method for propagating 
uncertainties (e.g. Monte Carlo analysis or Latin hypercube). To date, inherent uncertainties 
and spread have often been neglected or replaced by pedigree-generated uncertainty factors or 
default uncertainties. Even with the extension by Frischknecht et al. (2007b), NUSAP’s pedigree 
approach, however, only estimates unrepresentativeness of data and complements, rather than 
replaces, inherent uncertainty or spread. The above proposed methodology enables for dispersions 
to be estimated for both primary and secondary data. This provides one step towards producing 
more accurate ranges in LCI results, while clearer definitions of which uncertainty parameters 
should be embedded at the unit process level are encouraged.

While we here assume the arithmetic mean for the central value, this choice needs to be made 
in accordance with the specified data manager. In the meantime, the produced LCI outputs may 
better be represented by the geometric mean. More extensive statistical testing of LCI conclusions 
is also recommended, using, e.g. analysis of variance. To improve the level of detail of dispersions 
and results, we encourage underlying datasets of primary data to be made available, or at least 
to include sample size, standard deviations, and a distribution around presented means or other 
central values. Actual inherent uncertainties could then be calculated. Moreover, the application 
of NUSAP’s pedigree should also be extended beyond the averaging of data and also apply to the 
point of use of that data. This becomes relevant (see Fig. 3.2) when using ecoinvent processes for 
purposes they are not intended to represent (e.g. using the ecoinvent product “rice, at farm [US, 
2001–2006]” instead of Chinese rice in 2013). 

The quantitative adaptation of the pedigree goes beyond its original intent, but is also the only 
way to evaluate the quality of the often more than 4000+ processes commonly used in LCAs. 
We, however, encourage further advancements of the NUSAP approach within the field of LCA, 
especially the development of statistically supported uncertainty factors for individual sectors and/
or regions, as categories of processes often experience inconsistent sensitivity towards the different 
types of correlation. For example, the rate of technological advancements in rapidly developing 
countries like China, or in high-tech industries (e.g. computer components), is often faster than 
in baseline cases (Williams et al. 2009). Its original function to evaluate uncertainties related to 
post-normal science should, however, not be forgotten. Moreover, the removal of sample size as 
an indicator based upon the introduction of default uncertainties may downplay its importance, 
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especially for small samples. Sample size is a pivotal factor for any statistical model, but has so far 
played a relatively limited role in supporting LCA conclusions.

An expected advancement of ecoinvent v3 is parameterisation (Weidema et al. 2012), where raw 
data are made available for manipulation at the unit process level. The methodological advancements 
proposed here could be integrated in such parameterised LCI datasets to increase flexibility and 
transparency of data. Likewise, this protocol is useful when producing or adopting the surrogate 
global processes required in ecoinvent v3. However, more support behind the background and 
characteristics of the scale independent normal distributions, adopted in the data quality guideline, 
is encouraged.

The current simplified approach for selecting inherent un- certainties and unrepresentativeness 
around weighted means was the result of limitations in reporting on data in literature, where 
advancements are welcomed. Moreover, the weighting factor proposed for arithmetic means 
(standard deviations) become biased (favouring smaller values) by the relative uncertainties often 
proposed in available quantitative adoptions of NUSAP’s pedigree. Better justified mathematical 
approaches in the field of LCA as a whole are therefore recommended. Future efforts are also 
encouraged towards more frequent application of goodness-of-fit tests to extensive datasets, in 
order to identify which of the available distributions best characterise data categories. Moreover, 
the under- standing and handling of covariance, where variables are correlated with each other, also 
remain limited. To date, as in this manuscript, covariance is often neglected which easily results 
in incorrect estimates of uncertainties when random sampling methods such as Monte Carlo are 
applied. Additional inaccuracy relates to the current benchmarking of temporal correlation to the 
time of data evaluation, where assessments of unrepresentativeness, in, e.g. databases, easily become 
outdated over time. Additional advances include the implementation of the Bayesian theorem 
where data are imputed (Björklund 2002) and meta-analysis of input data, rather than results 
(for more, please see the special issue on meta-analysis in J Ind Ecol (2012) 16:S1). Also, the 
advancement of statistical models, and introducing concepts such as statistical power, will allow for 
even stronger conclusions to be made and reintroduce the importance of sample size.

3.5 Conclusions

Increased objectivity and the inclusion of quantitative uncertainties are pressing issues in the field 
of LCA. If the community fails to address these issues, it may jeopardise its credibility and scientific 
integrity. While all the necessities today are available for the practical inclusion of uncertainties, 
greater efforts are needed to define the uncertainty parameters at the unit process level. For this, 
we have proposed a protocol for sourcing data, with the ambition of keeping the methodology 
amenable for the everyday LCA practitioner and limiting the resource investments needed. The 
protocol developed here is meant to help practitioners select the most representative and relevant 
data for their purposes and to quantify related uncertainties. To improve the quality of the data 
itself, improved reporting of primary data is necessary, as much of the under- lying information 
on inherent uncertainties currently is lost somewhere in this reporting process. Hopefully, the 
next generation of parameterised inventories will encourage the reporting of raw data, instead of 
point values. In the meantime, better reporting on the underlying characteristics of data as online 
resource to articles is encouraged. The resulting unit process parameters from the methodology 
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proposed herein, alongside other advancements in the field of LCA, will hope- fully encourage 
more statistically rigid LCA conclusions. 

Over the coming years, the here presented approach and the methodological considerations 
presented in (Henriksson et al. 2012c) will be implemented to evaluate a number of Asian 
aquaculture products exported to Europe, as part of the ongoing EU FP7-funded SEAT project. 
Additional advancements of the present methodology will also be made available in updated 
versions of the online resource of the present article (available at www.cml.leiden.edu/software/).
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