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Polarization entanglement in a crystal with threefold symmetry

J. Visser,* E. R. Eliel, and G. Nienhuis
Huygens Laboratorium, Universiteit Leiden, Postbus 9504, 2300 RA Leiden, The Netherlands

~Received 12 June 2002; published 20 September 2002!

Polarization entanglement of twin photons created in the process of parametric down-conversion is fully
determined by the pump polarization when the pump, signal, and idler beams are collinear with the symmetry
axis of the nonlinear crystal. We point out that in this situation a threefold rotational symmetry is needed for
the process to occur. We describe the polarization entanglement of the twin photons in terms of correlations on
the Poincare´ sphere. The inherent nonconservation of the intrinsic angular momentum of light in this process
is discussed.
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I. INTRODUCTION

Polarization entanglement between pairs of photons
commonly created in the process of spontaneous param
down-conversion~SPDC!, where one photon absorbed fro
a pump beam in a nonlinear crystal leads to the creation
two photons, which are called signal and idler photons. T
crystal must have a nonvanishing second-order nonlin
susceptibility, and polarization-entangled pairs are selec
by appropriate filtering of the down-converted light.

In general, the orbital and intrinsic angular momenta
the light field are not conserved in the SPDC process@1,2#.
In the special case that pump, signal, and idler beams ha
common axis, theorbital angular momentum along this ax
is conserved at the single-photon level@3–5#. This follows
basically from the overlap integral of the pump field and t
product of signal and idler, which involves the integr
*df exp@if(lp2ls2li)#, with f the azimuthal angle in the
transverse plane, andl the azimuthal mode index, which de
termines the orbital angular momentuml\ per photon@6–9#.

In the present paper we analyze the polarization entan
ment of twin photons and the correspondingintrinsic angular
momentum in a spherical basis using the Poincare´ sphere. As
an example we discuss the case of a crystal withC3v sym-
metry, where the propagation directions are chosen to c
cide with the symmetry axis of the crystal. As pointed out
Bloembergen@10# in the context of second-harmonic gener
tion, for this case a circularly polarized fundamental mode
converted into a harmonic with the opposite circular pol
ization. In a similar fashion, during SPDC, a circularly p
larized pump photon creates a signal-idler photon pair w
the opposite circular polarization. For a pump photon with
arbitrary polarization, a polarization entangled photon pai
created. Obviously, the intrinsic angular momentum is
general not conserved during this process. The chang
angular momentum of the light field is compensated by t
of the crystal medium.

In Sec. II we discuss a representation of the two-pho
polarization state on the Poincare´ sphere and we consider th
intrinsic angular momentum associated with the polarizati
We shall show that, for the process of SPDC, the polariza
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entanglement of the photon pair is determined by the po
ization of the pump and by the nonlinear susceptibility of t
crystal. In Sec. III we derive properties of the susceptibil
tensor x (2) from symmetry arguments. We do this in th
basis of spherical unit vectors, which is unusual, but pow
ful and elegant. In Sec. IV we use the results from previo
sections to study the polarization entanglement and the a
ciated intrinsic angular momentum of twins created in a cr
tal with C3v symmetry. We end with conclusions in Sec. V

II. REPRESENTATION OF THE TWO-PHOTON
POLARIZATION STATE ON THE POINCARE ´ SPHERE

A. Single-photon polarization states

The polarization vector of a light beam with a give
propagation direction can always be expressed as a li
combination of the circular polarization vectorsuW 61. We
take the propagation direction parallel to thez axis, in which
case the circular polarization vectors are given by

uW 1152
1

A2
~xW1 iyW !,

uW 215
1

A2
~xW2 iyW !, ~1!

wherexW and yW are Cartesian unit vectors. For one photo
these polarization states are denoted asu6&. When the states
u1& and u2& are mapped onto the states up and down o
spin 1/2, each polarization state is equivalent to a spec
spin state. A pure state of a spin 1/2 is uniquely determin
by the expectation valuêSW & of the spin vector, which always
has a length of 1/2. Therefore, such a state can be re
sented in a unique way as a point on a sphere, commo
called the Bloch sphere. Because of the aforementioned m
ping, a pure polarization state is also represented by a p
on a sphere; the latter is named after Poincare´. The spherical
coordinatesu andf of this point fully determine the polar
ization state. The poles of the Poincare´ sphere correspond to
opposite circular polarizations, and points on the equator r
resent states of linear polarization. The ellipticity of the p
larization is determined by the polar angleu, such that the
©2002 The American Physical Society14-1
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cross producteW3(eW )* of the polarization vector and its com
plex conjugate has the strength cosu. The angle between th
long axis of the ellipse and thex axis is equal to (p
1f)/2, wheref is the azimuthal angle. The absolute val
of the overlapueW1* •eW2u of two polarization states is given b
cos(a/2), wherea is the angular distance between the c
responding points on the Poincare´ sphere. Consequently, op
posite points on the Poincare´ sphere always correspond
orthogonal polarizations. The polarization of a photon t
corresponds to the point on the Poincare´ sphere with polar
angleu and azimuthal anglef is then given by~see Fig. 1!

uu,f&5cos~u/2!exp~2 if/2!u1&1sin~u/2!exp~1 if/2!u2&.
~2!

B. Two-photon polarization states

Now we use the Poincare´ representation for the descrip
tion of the entangled polarization stateuC&& of twin photons,
where the double ket is used to indicate that it is a tw
photon state. When one photon is detected in a selected
larization stateuc (1)&5uu1 ,f1&, the state of the remaining
photon collapses into the stateuc (2)&5uu2 ,f2&, which, apart
from a normalization factor, is given by^c (1)uC&&. The two-
photon polarization state is then represented by the
points on the Poincare´ sphere that correspond to the sta
uc (1)& and uc (2)&.

As an example we discuss the singlet and triplet B
states, which are given by

uCS&&5
1

A2
~ ux&uy&2uy&ux&)5

1

iA2
~ u1&u2&2u2&u1&),

~3!

uCT&&5
1

A2
~ ux&uy&1uy&ux&)5

1

A2
~ u2&u2&2u1&u1&),

~4!

FIG. 1. Representation of the one-photon polarization state
the Poincare´ sphere. Ifu5p/2, we have linear polarization in they
direction forf50 and in thex direction forf5p. For u50 and
u5p, we have right- and left-handed circular polarizations, resp
tively.
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where ux& and uy& form the basis of linear polarization. In
Fig. 2, the singlet and triplet Bell states are represented
the Poincare´ sphere. For the singlet state~3!, if we detect one
photon in a specific polarization state, the other photon
projected in a state that is orthogonal to it. As a conseque
the detected and projected states are antipodes on the
carésphere, that is

u11u25p,

f12f25p mod~2p!.

For the triplet state~4!, we find

u12u250,

f11f25p mod~2p!,

and we see that the detected and projected states hav
same latitude. Note that these relations are invariant if
interchange the detected and projected states.

The statesuc (1)& and uc (2)& cannot be interchanged i
general. For a stateuC&& of the combined system, inter
changeability of the detected and projected states holds
for each pair of statesuc (1)& and uc (2)& that are related by
uc (2)&}^c (1)uC&&, the opposite relationuc (1)&}^c (2)uC&& is
also satisfied. In the Appendix we prove that these conditi
do not hold unless the stateuC&& is maximally entangled.
The singlet and triplet Bell states discussed above are m
mally entangled states, and thus satisfy interchangeability
general, the two-photon polarization state is not maxima
entangled, thus the order of detected and projected stat
important.

C. Intrinsic angular momentum associated with polarization

As basis vectors for polarization we have taken the cir
lar polarization vectors of Eq.~1!. Then the expectation
value of the intrinsic angular momentum is in thez direction.
For the total intrinsic angular momentum operator in t
propagation directionS3, we have

n

-

FIG. 2. Representation of the singlet and triplet Bell states
the Poincare´ sphere. The first photon is detected in the state w
label 1. Then the second photon is projected in the state lab
with 2S and 2T for the singlet and triplet Bell states, respectively
4-2
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S35(
i

s3
i ,

where the summation runs over the photons and wheres3
i is

the third Pauli matrix for photoni. For the third Pauli matrix
we can writes35u1&^1u2u2&^2u.

The expectation value of the intrinsic angular momentu
in units of \, for the one-photon polarization state~2! is
given by cosu, whereu is the polar angle on the Poinca´
sphere. The expectation value for both the singlet and tri
Bell states vanishes. After detection of one photon in
stateuc (1)&5uu1 ,f1& the two-photon polarization stateuC&&
collapses to the product stateuc (1)&uc (2)&, with uc (2)&
}^c (1)uC&&. For the singlet Bell state, the detected and p
jected states are on opposite sides of the Poincare´ sphere, so
the expectation value of the intrinsic angular momentum
ter the detection vanishes as well. On the other hand, for
triplet Bell state the detected and projected states have
same latitude, so that after detection the expectation valu
the intrinsic angular momentum is 2 cosu1. We see that the
intrinsic angular momentum is not conserved. We will com
back to this point in Sec. IV C.

III. SYMMETRY PROPERTIES OF THE SUSCEPTIBILITY
TENSOR

A. Invariances of the susceptibility

The most common way to create a two-photon polari
tion state is by the process of SPDC. The basic proces
SPDC is the annihilation of one pump photon and the c
ation of two photons into the signal and the idler mode. T
interaction Hamiltonian arises from the nonlinear polariz
tion of the medium coupled to the pump field, and cor
sponds to three-wave mixing. The polarization depende
of the interaction Hamiltonian is described by

HI5E drWx (2)AEW EW †EW †1H.c., ~5!

where EW is the positive-frequency part of the electric-fie
operator, and the integration extends over the volume of
medium. The three dots symbolize an inner product of
second-order susceptibility tensorx (2) with the electric-field
vectors. The first part of the Hamiltonian describes dow
conversion, its Hermitian conjugate describes up-convers
The Hamiltonian can be written in the elegant form in E
~5! because we consider operation in the optical reg
wherex (2) is virtually frequency independent@11#.

The tensorx (2) has rank 3, and therefore it has 27 com
ponents. For all materials with some spatial symmetry,
all of these components are independent and nonzero.
material transforms onto itself under the application of a c
ering operation of its symmetry group. Since the tensorx (2)

is a property of the crystal material, it must be invaria
under any one of these covering operations. This is know
Von Neumann’s principle@11#. These operations form th
symmetry group of the crystal, and each covering opera
R is represented by a Cartesian matrixO(R). The suscepti-
03381
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bility tensor must be identical to its transformation for ea
covering operationR. This gives

x i jk
(2)5(

lmn
x lmn

(2) O~R! l i O~R!m jO~R!nk . ~6!

All indicated indices attain the valuesx, y, z. In this sense,
the symmetry properties of the susceptibility reflect the sy
metry of the crystal. The identities in Eq.~6! introduce rela-
tions between the different components ofx (2), thereby re-
ducing the number of independent components.

The number of independent components ofx (2) can be
found by applying group theory@12–14#. The independent
components themselves and their relations with the o
components can be obtained by using the method of di
inspection@11,15,16#. The latter method can be illustrated b
considering materials that are invariant under space in
sion. The matrix elements of the transformation matrix of t
inversion operationI are simplyO(I ) i j 52d i j . Hence, we
find from Eq.~6! thatx i jk

(2)5(21)3x i jk
(2) . This shows thatx (2)

vanishes for a material with inversion symmetry. Only t
susceptibilities of an even rank~i.e., x (1), x (3), . . . ) can be
nonzero in a medium with inversion symmetry.

B. Rotations and spherical basis

Most crystalline materials that are of relevance for SPD
are invariant under a rotation over an angle 2p/N about their
symmetry axis, which we take to be thez axis. To describe
the effect of a rotation, it is efficient to replace the basis
Cartesian unit vectorsxW , yW , andzW by the basis of spherica
unit vectors

uW 1152
1

A2
~xW1 iyW !,

uW 215
1

A2
~xW2 iyW !,

uW 05zW.

Note that we encountereduW 61 before in Eq.~1! as the basis
vectors for circular polarization. These unit vectors transfo
under rotations in the same way as the spherical harmo
Ylm with l 51. In particular, they are eigenvectors of th
rotation matrix about the symmetry axis.

When O(f) denotes the rotation matrix for a counte
clockwise rotation about thez axis over an anglef, the
transformation reads

O~f!•uW s5exp~2 ifs!uW s , s521,0,11. ~7!

This eigenvalue character makes the spherical unit vec
into the natural basis for analyzing the components of
susceptibility tensor. In particular, on this basis, it is simp
to identify the components that must vanish. The spher
components of the susceptibility are defined by the relati
4-3
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xrst
(2) 5x (2)AuW ruW suW t , r,s,t521,0,11. ~8!

C. Nonvanishing spherical components ofx „2…

For a material with anN-fold rotation axis, we apply a
counterclockwise rotation about this axis over an an
2p/N. We shall now determine the number of nonzero a
independent components ofx (2) for all values ofN. With the
invariance requirement~6!, Eq. ~7! leads to the simple iden
tity

xrst
(2) 5exp@2~r1s1t!2p i /N#xrst

(2) , r,s,t521,0,11,

so that the componentxrst
(2) must vanish whenever the expo

nential factor differs from 1. It follows that the compone
xrst

(2) can only be nonzero under the condition that

r1s1t5kN, ~9!

with k being an integer. Obviously, the sumr1s1t can
acquire the values 0,61,62,63 for the possible values ofr,
s, andt.

~1! For each value ofN, the condition~9! is satisfied when
the sum of the indices is zero. This is true when all indic
are zero, or when they are one of the six permutations of
three different values21, 0, 11. The corresponding seve
components can be nonzero for any value ofN, and also
when the system possesses full axial symmetry.

~2! For N54 and higher, the condition~9! cannot be
obeyed for any value ofk other than 0, so that all compo
nents other than these seven must vanish.

~3! For N53, the two componentsx111111
(2) and

x212121
(2) correspond to the condition~9! with k561; they

can be nonzero in addition to the seven components m
tioned above.

~4! For N52, the condition~9! with k561 is obeyed by
the six components withr1s1t562; herer,s,t are per-
mutations of11,11,0 or of21,21,0. Only these six com
ponents can be nonzero forN52, in addition to the seven
components mentioned above.

~5! Finally, there are 12 components for whichr1s1t
561. These are the ones wherer,s,t are permutations o
0,0,61 or of 71,6161. These components can only b
nonzero in the trivial case thatN51. In this case without
any symmetry, no restriction is set for any one of the
components.

In general, materials have other symmetry operations
sides anN-fold rotation axis. The requirement thatx (2) is
invariant under the additional operations introduces relati
between the nonzero components found above, thereby
ther reducing the number of independent components.

D. Transverse part of x „2…

In the case that pump, signal, and idler propagate par
to each other and to the symmetry axis, the polarization v
tors lie in thex-y plane. This we call the transverse config
ration. The only relevant part of the susceptibility in this ca
is the transverse susceptibilityxT

(2) , defined as the projection
03381
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of x (2) on this plane. Hence,xT
(2) contains the eight spherica

componentsxrst
(2) with r,s,t521,11 only. For the compo-

nents ofxT
(2) , the sumr1s1t can only attain the values

61,63.
For N52 andN54 and higher, it follows from Eq.~9!

that all components ofxT
(2) vanish. Hence a nonvanishin

transverse susceptibilityxT
(2) only occurs for materials with-

out any symmetry, or for materials with a threefold rotati
axis. In the following section, we discuss the polarizati
properties of twin photons created by SPDC in a crystal w
threefold rotational symmetry.

IV. SPDC IN A CRYSTAL WITH C3v SYMMETRY

A. Hamiltonian

We consider a crystal withC3v symmetry in the trans-
verse configuration. It has six covering operations, which
generated by a rotation over 2p/3 and a reflection in a ver
tical plane that contains thez axis, for which we take thex-z
plane. The corresponding matrixO(Rv) acting on the spheri-
cal unit vectors is represented by the transformation

O~Rv!•uW 1152uW 21 , O~Rv!•uW 2152uW 11 . ~10!

For the transverse configuration we are only interested
xT

(2) . As shown in Sec. III C, it follows from the threefold
rotation symmetry thatx111111

(2) andx212121
(2) are the only

nonzero components ofxT
(2) . According to Eq.~10!, the in-

variance relation~6! applied to reflection about thex-z plane
yields the relation

x111111
(2) 52x212121

(2) [G. ~11!

Hence, forC3v , we find thatxT
(2) is determined by a single

independent parameterG. This is in agreement with the re
sult obtained using the procedure by Bhagavantam
Suryanarayana@12#.

Now we obtain the Hamiltonian in the transverse config
ration for a crystal withC3v symmetry. For the positive-
frequency part of the electric-field operator, we write

EW ~rW,t !}E dkW(
l

Avl~kW !al~kW !«W l~kW !exp@ ikW•rW2 ivl~kW !t#,

where al(kW ) annihilates a photon with wave vectorkW and
polarization vector«W l(kW ) and where the summation overl
runs over the two basis states of polarization. In the tra
verse configuration, the index of refraction of the crys
does not depend on the polarization for the common dir
tion of propagation. We then have«W l(kW )→«W l and vl(kW )
→v(kW ), and we find that

EW ~rW,t !}E dkW Av~kW !exp@ ikW•rW2 iv~kW !t#(
l

al~kW !«W l .

~12!

We see that the electric-field operator is split into a polari
tion part and a part concerning the modes ink space. As a
4-4
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basis for polarization we use the circular polarization sta
u6&. Since we are only interested in the polarization part,
write

EW }a1uW 111a2uW 21 .

Herea1 anda2 are the annihilation operators for a photo
with right- and left-handed circular polarizations, respe
tively.

From Eq.~11! and the definition in Eq.~8!, it follows that
the transverse susceptibility can be expressed in terms o
spherical unit vectorsuW 61 as

xT
(2)5G~uW 11* uW 11* uW 11* 2uW 21* uW 21* uW 21* !.

Using the fact that the spherical basis is unitary and that

~uW 11!* 52uW 21 ,

we find that

uW 11•uW 115uW 21•uW 2150,

uW 11•uW 21521.

We substitute the expressions that we obtained above in
~5! and, apart from an irrelevant overall factor, the Ham
tonian in the transverse configuration is found as

HI}G~ap1as2
† ai 2

† 2ap2as1
† ai 1

† !1H.c., ~13!

where the labelsp, s, and i refer to the modes ink space of
the pump, signal, and idler photon, respectively. This sho
that the absorption of a left circularly polarized pump phot
is accompanied by the creation of a signal and an idler p
ton, which are both right circularly polarized, and vice ver

B. Representation on the Poincare´ sphere

We now use the Poincare´ representation for the descrip
tion of the entangled state of the two SPDC photons fo
given polarization of the pump. We consider a pump pho
in the stateuup ,fp&. The interaction Hamiltonian~13! in the
transverse configuration applied to this initial state yields
first order, the two-photon state

uC&&5cos~up/2!exp~2 ifp/2!u2&u2&2sin~up/2!

3exp~1 ifp/2!u1&u1&. ~14!

This expression gives the two-photon state as a linear su
position of two-photon states that are pairwise orthogonal
that this state is already in Schmidt-decomposed form.
cording to the definition by Abouraddyet al. @17# the degree
of entanglement is sinup . For linear polarization (up
5p/2), the created two-photon state is maximally entang
We find the triplet Bell state~4! in the case that the directio
of the linear polarization of the pump is parallel to the ve
tical reflection plane containing thex axis, so thatfp50.
The singlet Bell state~3! cannot be obtained by choosing a
appropriate pump polarization since for the stateuC&& of Eq.
03381
s
e

-

he

q.

s

o-
.

a
n

o

er-
o
-

.

-

~14!, the overlap̂ ^CSuC&& with the singlet Bell state van
ishes for all pump polarizations.

When one photon is detected in the selected polariza
stateuc (1)&5uu1 ,f1&, the state of the remaining photon co
lapses into the stateuc (2)&5uu2 ,f2&}^c (1)uC&&. The
spherical anglesu2 andf2 of uc (2)& are found to be given by
the equalities

tan~u1/2!

tan~u2/2!
5tan~up/2!, f11f21fp5p mod~2p!.

~15!

Note that the statesuc (1)& anduc (2)& cannot be interchanged
since in general the polarization state of the two created p
tons is not maximally entangled, except for the case o
linearly polarized pump. The relation between the two pol
ization statesuc (1)& anduc (2)& is illustrated in Figs. 3 and 4

FIG. 3. Representation of a two-photon state created by SP
where the projected polarization state 2 is found upon detectio
state 1. The polarization of the pump is represented by the open
and labeled withp.

FIG. 4. Representation of the two-photon state created by SP
with a linearly polarized pump. Then the polarization states 1 an
have the same latitude on the Poincare´ sphere. Forfp50, the re-
lation betweenf1 and f2 is represented by the dotted lines, fo
fp5p/2 by the broken lines, and forfp5p by the continuous line.
The double arrow below and next to the axes represents the o
tation of the long axis of the polarization ellipse.
4-5
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The relation between the azimuthal angles in Eq.~15! is
invariant when all angles are increased by an amoun
2p/3. This corresponds to a rotation in real space about
z axis, or symmetry axis, over half this angle, that is, ov
p/3, as can be seen from Eqs.~7! and~2!. This is somewhat
surprising, since the crystal is invariant only under a rotat
over 2p/3. To check consistency, we perform a rotation
the crystal over an angleb about thez axis. Using the trans-
formation property under rotations in Eq.~7!, we find that
the relation betweenx111111

(2) and x212121
(2) in Eq. ~11!

changes to

exp~23ib!x111111
(2) 52exp~13ib!x212121

(2) .

Hence, a rotation overp/3 produces a sign change forxT
(2) as

a whole, which does not change the polarization proper
of signal and idler. The same conclusion follows by noti
that a polarization state is basically unchanged by a rota
over 6p. Therefore, a rotation of all polarization vecto
over p/3 is equivalent to a rotation of the polarization sta
over22p/3, or, for that matter, a rotation of the crystal ov
2p/3.

The Hermitian conjugate of the interaction Hamiltonian
Eq. ~13! represents the nonlinear process of up-convers
This process transforms the two-photon polarization s
uc (1)&uc (2)& into the one-photon stateuup ,fp&. The spherical
anglesup andfp can then again be obtained from Eq.~15!,
but with the labels 1 andp interchanged.

C. Intrinsic angular momentum

For a pump photon in the stateuup ,fp&, the expectation
value of the intrinsic angular momentum, in units of\, is
given by cosup , while for the two-photon state~14! created
by SPDC in the crystal we find22 cosup . We see that the
intrinsic angular momentum is not conserved in the proc
of SPDC, while, in the transverse configuration, theorbital
angular momentum is conserved@3–5#. In order to satisfy
conservation of total angular momentum, we conclude t
there must be a transfer of angular momentum to the cry
@10#. The expectation value of the amount of transferred
gular momentum to the crystal is then 3 cosup . Like we saw
in Sec. II C when discussing the triplet Bell state~4!, the
actual amount of transfer of angular momentum to the cry
will depend on the detected polarization stateuc (1)&, which
shows the highly nonlocal nature of the transfer.

Conservation or nonconservation of angular moment
in SPDC depends on the transformation properties of
Hamiltonian under rotation. The orbital angular momentu
depends on the position dependence of the complex
amplitude, and its conservation results from the fact that
Hamiltonian does not depend on position. On the other ha
the intrinsic angular momentum depends on the polariza
properties of the fields, which are determined by the ten
character ofx (2). The effect of a rotation about the symmet
axis in the spherical basis is a complex phase change, s
the spherical basis vectors are eigenvectors of rotation.
C3v symmetry, the relevant elementsx111111

(2) andx212121
(2)

are only invariant under a rotation over an angle of 2p/3 and
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not under a rotation over an arbitrary angle. As a con
quence, in case of a crystal withC3v symmetry, the intrinsic
angular momentum is not conserved.

V. CONCLUSIONS

We have discussed the use of a spherical basis for des
ing polarization entanglement of twin photons as produced
the process of spontaneous parametric down-convers
This choice leads to a very transparent discussion regar
the conservation of intrinsic angular momentum in SPD
We have used the Poincare´ sphere to describe arbitrary po
larization states of pump, signal, and idler. On this sphe
the singlet Bell state corresponds to a pair of antipod
while in the triplet Bell state, the photons have equal latitu

We have employed the spherical basis to analyze the
larization entanglement of signal and idler as it arises in
process of SPDC in a crystal ofC3v symmetry when all
optical beams are collinear with the symmetry axis of t
crystal. We have shown that the threefold crystalline symm
try is a prerequisite for SPDC in this geometry. For th
crystal and geometry, we have derived simple relationsh
between the spherical coordinates of pump, signal, and i
photons on the Poincare´ sphere; these relationships provid
direct insight into the issue of conservation of intrinsic a
gular momentum.

Twin photon generation in the chosen configuration c
not be phase matched; experimental realization of SPDC
the proposed geometry will therefore be nontrivial. With
beta-barium-borate~BBO! crystal (C3v symmetry!, cut for
0° phase matching, having a length equal to the cohere
length ('13 mm at l5800 nm @18#!, such an experimen
should be feasible.
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APPENDIX: INTERCHANGEABILITY OF DETECTED
AND PROJECTED STATES

When a quantum system consisting of two subsystem
and 2 with the same dimensiond is in a stateuC&&, and
system 1 is detected in the stateuc (1)&, system 2 is projected
into the stateuc (2)& that is proportional to the partial inne
product ^c (1)uC&&. In general, the inverse statement is n
true: detection of system 2 inuc (2)& projects system 1 in a
state that is not necessarily equal touc (1)&. In this appendix
we prove that the roles ofuc (1)& and uc (2)& can be inter-
changed for all choices of the detected state if and only if
stateuC&& is maximally entangled.

Consider a stateuC&& for which the detected state and th
resulting projected state can be interchanged. For any
malized detected stateuc (1)& of system 1, the resulting nor
malized projected stateuc (2)& of system 2 obeys the identit

^c (1)uC&&5cuc (2)&,
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and the normalization constant is obviouslyc
5^c (1)u^c (2)uC&&. Because of the assumption of inte
changeability, we can also write

^c (2)uC&&5cuc (1)&,

with the same normalization constant.
We choose an orthonormal basisucn

(1)& of system 1. De-
tection of system 1 in the stateucn

(1)& projects system 2 in the
stateucn

(2)&, defined by

^cn
(1)uC&&5cnucn

(2)&. ~A1!

This allows us to express the stateuC&& in the form

uC&&5 (
n51

d

cnucn
(1)&ucn

(2)&. ~A2!

Now we use the interchangeability of the detected and p
jected states, which gives

^cn
(2)uC&&5cnucn

(1)&. ~A3!

Substituting Eq.~A2! into Eq. ~A3! shows that the state
ucn

(2)& form an orthonormal basis of system 2.
Finally, we apply the assumption of interchangeability f

an arbitrary stateuc (1)&5(n51
d anucn

(1)&. This gives for the
projected state of system 2,
n

ys

d

.

et
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cuc (2)&5 (
n51

d

an* ^cn
(1)uC&&5 (

n51

d

an* cnucn
(2)&,

where we used Eq.~A1! in the last step. Conversely, whe
we first detect system 2 in the stateuc (2)&, system 1 is pro-
jected into a state proportional to

^c (2)uC&&5
1

c*
(
n51

d

ancn* ^cn
(2)uC&&5

1

c*
(
n51

d

anucnu2ucn
(1)&.

This is proportional to the original stateucn
(1)& only when all

coefficientsucnu2 are identical. Then Eq.~A2! can be ex-
pressed as a biorthogonal expansion

uC&&5
1

Ad
(
n51

d

exp~ ifn!ucn
(1)&ucn

(2)&, ~A4!

in which each term has the same strength. This is a state
maximal entanglement.

On the other hand, when the state of the combined sys
can be expressed in the form~A4!, one easily checks that i
satisfies interchangeability.
-

e-
@1# H.H. Arnaut and G.A. Barbosa, Phys. Rev. Lett.85, 286
~2000!.

@2# G.A. Barbosa and H.H. Arnaut, Phys. Rev. A65, 053801
~2002!.

@3# S. Franke-Arnold, S.M. Barnett, M.J. Padgett, and L. Alle
Phys. Rev. A65, 033823~2002!.

@4# A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature~Lon-
don! 412, 313 ~2001!.

@5# E.R. Eliel, S.M. Dutra, G. Nienhuis, and J.P. Woerdman, Ph
Rev. Lett.86, 5208~2001!.

@6# J. Leach, M.J. Padgett, S.M. Barnett, S. Franke-Arnold, an
Courtial, Phys. Rev. Lett.88, 257901~2002!.

@7# A.T. O’Neil, I. MacVicar, L. Allen, and M.J. Padgett, Phys
Rev. Lett.88, 053601~2002!.

@8# G. Molina-Terriza, J.P. Torres, and L. Torner, Phys. Rev. L
88, 013601~2002!.

@9# L. Allen, J. Opt. B: Quantum Semiclassical Opt.4, S1 ~2002!.
,

.

J.

t.

@10# N. Bloembergen, J. Opt. Soc. Am.70, 1429~1980!.
@11# P.N. Butcher and D. Cotter,The Elements of Non-Linear Op

tics ~Cambridge University Press, Cambridge, UK, 1990!.
@12# S. Bhagavantam and D. Suryanarayana, Acta Crystallogr.2, 21

~1949!.
@13# J.S. Lomont,Applications of Finite Groups~Academic Press,

New York, 1959!.
@14# P. Erdös, Helv. Phys. Acta37, 493 ~1964!.
@15# F.G. Fumi, Acta Crystallogr.5, 44 ~1952!.
@16# S.V. Popov, Y.P. Svirko, and N.I. Zheludev,Susceptibility Ten-

sors for Non-Linear Optics~Institute of Physics, Bristol, UK,
1995!.

@17# A.F. Abouraddy, B.E.A. Saleh, A.V. Sergienko, and M.C. T
ich, Phys. Rev. A64, 050101~2001!.

@18# V.G. Dmitriev, G.G. Gurzadyan, and D.N. Nikogosyan,Hand-
book of Nonlinear Optical Crystals, 3rd ed.~Springer-Verlag,
Berlin, 1999!.
4-7


