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Polarization entanglement in a crystal with threefold symmetry

J. Visser; E. R. Eliel, and G. Nienhuis
Huygens Laboratorium, Universiteit Leiden, Postbus 9504, 2300 RA Leiden, The Netherlands
(Received 12 June 2002; published 20 September)2002

Polarization entanglement of twin photons created in the process of parametric down-conversion is fully
determined by the pump polarization when the pump, signal, and idler beams are collinear with the symmetry
axis of the nonlinear crystal. We point out that in this situation a threefold rotational symmetry is needed for
the process to occur. We describe the polarization entanglement of the twin photons in terms of correlations on
the Poincaresphere. The inherent nonconservation of the intrinsic angular momentum of light in this process

is discussed.
DOI: 10.1103/PhysRevA.66.033814 PACS nuntber42.65.An, 42.50.Ct, 03.65.Ud
[. INTRODUCTION entanglement of the photon pair is determined by the polar-

ization of the pump and by the nonlinear susceptibility of the

Polarization entanglement between pairs of photons isrystal. In Sec. Il we derive properties of the susceptibility
commonly created in the process of spontaneous parametrignsor x(?) from symmetry arguments. We do this in the
down-conversioSPDQ, where one photon absorbed from basis of spherical unit vectors, which is unusual, but power-
a pump beam in a nonlinear crystal leads to the creation dul and elegant. In Sec. IV we use the results from previous
two photons, which are called signal and idler photons. The&ections to study the polarization entanglement and the asso-
crystal must have a nonvanishing second-order nonlineatiated intrinsic angular momentum of twins created in a crys-
susceptibility, and polarization-entangled pairs are selectethl with C3, symmetry. We end with conclusions in Sec. V.
by appropriate filtering of the down-converted light.

In general, the orbital and intrinsic angular momenta of Il. REPRESENTATION OF THE TWO-PHOTON
the light field are not conserved in the SPDC prodésg]. POLARIZATION STATE ON THE POINCARE =~ SPHERE
In the special case that pump, signal, and idler beams have a
common axis, therbital angular momentum along this axis A. Single-photon polarization states
is conserved at the single-photon ley8k-5]. This follows The polarization vector of a light beam with a given

basically from the overlap integral of the pump field and thepropagation direction can always be expressed as a linear
product of signal and idler, which involves the integral ., bination of the circular polarization vectoﬁgl. We

Jd¢exdig(l,—ls—1)], with ¢ the azimuthal angle in the 510 the propagation direction parallel to thaxis, in which
transverse plane, arldhe azimuthal mode index, which de- ;<6 the circular polarization vectors are given by

termines the orbital angular momentuifnper photor{6-9].

In the present paper we analyze the polarization entangle- _ 1 . .
ment of twin photons and the correspondingginsic angular Up=— —=(x+iy),
momentum in a spherical basis using the Poinsateere. As V2

an example we discuss the case of a crystal With sym-
metry, where the propagation directions are chosen to coin- - 1 . .
cide with the symmetry axis of the crystal. As pointed out by U71=E(X— iy), 1)
Bloembergeri10] in the context of second-harmonic genera-
tion, for this case a circularly polarized fundamental mode is . . ) .
converted into a harmonic with the opposite circular polar-Wherex andy are Cartesian unit vectors. For one photon,
ization. In a similar fashion, during SPDC, a circularly po- these polarization states are denotef-as When the states
larized pump photon creates a signal-idler photon pair wit +) and|—) are mapped onto the states up and down of a
the opposite circular polarization. For a pump photon with arSPin 1/2, each polarization state is equivalent to a specific
arbitrary polarization, a polarization entangled photon pair isSPin state. A pure state of a spin 1/2 is uniquely determined
created. Obviously, the intrinsic angular momentum is inby the expectation valugS) of the spin vector, which always
general not conserved during this process. The change imas a length of 1/2. Therefore, such a state can be repre-
angular momentum of the light field is compensated by thasented in a unique way as a point on a sphere, commonly
of the crystal medium. called the Bloch sphere. Because of the aforementioned map-
In Sec. Il we discuss a representation of the two-photomping, a pure polarization state is also represented by a point
polarization state on the Poincasphere and we consider the on a sphere; the latter is named after Poinc@he spherical
intrinsic angular momentum associated with the polarizationcoordinatesd and ¢ of this point fully determine the polar-
We shall show that, for the process of SPDC, the polarizatiofization state. The poles of the Poincaghere correspond to
opposite circular polarizations, and points on the equator rep-
resent states of linear polarization. The ellipticity of the po-
*URL: http://molphys.leidenuniv.nl/go/index.html larization is determined by the polar angle such that the
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FIG. 2. Representation of the singlet and triplet Bell states on
FIG. 1. Representation of the one-photon polarization state otthe Poincaresphere. The first photon is detected in the state with

the Poincaresphere. Ifg= /2, we have linear polarization in the  label 1. Then the second photon is projected in the state labeled
direction for =0 and in thex direction for=m. For /=0 and  with 25 and 2 for the singlet and triplet Bell states, respectively.
6=, we have right- and left-handed circular polarizations, respec-
tively. where|x) and|y) form the basis of linear polarization. In

Fig. 2, the singlet and triplet Bell states are represented on
cross producéx (é)* of the polarization vector and its com- the Poincarephere. For the singlet stai®, if we detect one
plex conjugate has the strength @Jhe angle between the photon in a specific polarization state, the other photon is
long axis of the ellipse and the axis is equal to 4  projected in a state that is orthogonal to it. As a consequence,
+ ¢)/2, where¢ is the azimuthal angle. The absolute valuethe detected and projected states are antipodes on the Poin-

of the overlap|e* - &, of two polarization states is given by Ccaresphere, that is
cos(@/2), wherea is the angular distance between the cor-
responding points on the Poincasghere. Consequently, op-

osite points on the Poincasphere always correspond to -
grthogopnal polarizations. Thgppolarizatior{ of a phgton that 17 ¢o=mmod2m).
corresponds to the point on the Poincamhere with polar  For the triplet staté4), we find
angle # and azimuthal angleé is then given by(see Fig. 1

91+ 92: ar,

61_ 62: O,
|0, )=cod 6/2)exp( —i ¢/2)|+)+sin( 6/2)exp( +i pl2)| —).
) $1+ ¢pp=m mod 2),
B. Two-photon polarization states and we see that the detected and projected states have the

o, ] ~ same latitude. Note that these relations are invariant if we
Now we use the Poincanepresentation for the descrip- interchange the detected and projected states.

tion of the entangled polarization sta)) of twin photons, The states ™) and |¢(®) cannot be interchanged in
where the double ket is used to indicate that it is a tWO-general. For a staté¥)) of the combined system, inter-
photon state. When one photon is detected in a selected pErangeability of the detected and projected states holds, if,
larization state] w(l))=|61,¢1>, the state of the remaining g each pair of state{ap“’) and|<//(2)) that are related by
photon coIIaps_es _into the st@tﬁ(%: |65, b5), which, apart |y oc (D] W)), the opposite relatiopy™M) o (2| ¥)) is
from & normalization factor, is given Hy/(|W)). The two- 4156 satisfied. In the Appendix we prove that these conditions
phpton polanzatlpn state is then represented by the tw@g not hold unless the staf?)) is maximally entangled.
po(l?)ts on th(ez)Pomcarsphere that correspond to the statesthe singlet and triplet Bell states discussed above are maxi-
|p'Y) and|¢'?). i i _ mally entangled states, and thus satisfy interchangeability. In
As an example we discuss the singlet and triplet Bellyeneral, the two-photon polarization state is not maximally
states, which are given by entangled, thus the order of detected and projected states is

1 1 important.
(W) =—=(¥y) = INx)=—7=()=)=[=)+)), - . . o
\/5 I \/E C. Intrinsic angular momentum associated with polarization
©) As basis vectors for polarization we have taken the circu-
lar polarization vectors of Eq(l). Then the expectation

1 1 e L S
T = —(|x)y)+ [Y)[x)) = —=(| =)= = |+ )| +)), value of the intrinsic angular momentum is in thdirection.
¥ 2(| IFIY)Ix) \/§(| N2l For the total intrinsic angular momentum operator in the

(4) propagation directiort 5, we have
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bility tensor must be identical to its transformation for each

ESZZ <Ti31 covering operatiorR. This gives
where the summation runs over the photons and whrie XR=> X2 0(R);O(R)nO(R) nk. (6)
the third Pauli matrix for photon For the third Pauli matrix fmn
we can writeoz= |+ ){(+|—|=)}{(—]|.

All indicated indices attain the values y, z In this sense,
the symmetry properties of the susceptibility reflect the sym-
metry of the crystal. The identities in E() introduce rela-

leons between the different componentsydf, thereby re-

The expectation value of the intrinsic angular momentum
in units of 4, for the one-photon polarization sta(g) is
given by cod®, where ¢ is the polar angle on the Poincare
sphere. The expectation value for both the singlet and tripl ; i
Bell states vanishes. After detection of one photon in thé!ucing the number of independent components).
state| p) =6, , ) the two-photon polarization staf@)) The number'of independent componentS).(t()? can be
collapses to the product stafesD)|¢@), with [p@) found by applying group theor};/l2_—14|. The md_ependent
(V| W)). For the singlet Bell state, the detected and pro_components themselves _and their _relatlons with the o_ther
jected states are on opposite sides of the Poingainere, so components can be obtained by using the m?th"d of direct
the expectation value of the intrinsic angular momentum af_lnspectlorill,15,16. The latter method can be illustrated by

ter the detection vanishes as well. On the other hand, for th(épnsidering mgterials that are invariant under space inver-
triplet Bell state the detected and projected states have thaon- 'I_'he matrix _elrciaments_of tlh eotr?nsiorn;atloE' matrix of the
same latitude, so that after detection the expectation value dfVersion operatio a(rg_smp Y ((22” _ %y Hence, (\ge

the intrinsic angular momentum is 2 c@s We see that the 1ind from Eq.(6) thatxjj = (—1)xjj . This shows thak

intrinsic angular momentum is not conserved. We will comev@nishes for a material with inversion symmetry. Only the
back to this point in Sec. IV C. susceptibilities of an even rarike., y*, x(®,...) can be

nonzero in a medium with inversion symmetry.

. SYMMETRY PROPERTIES OF THE SUSCEPTIBILITY . ) )
TENSOR B. Rotations and spherical basis

Most crystalline materials that are of relevance for SPDC
are invariant under a rotation over an angte/R about their

The most common way to create a two-photon polarizasymmetry axis, which we take to be tzeaxis. To describe
tion state is by the process of SPDC. The basic process ehe effect of a rotation, it is efficient to replace the basis of
SPDC is the annihilation of one pump photon and the crecartesian unit vectors, y, andz by the basis of spherical
ation of two photons into the signal and the idler mode. The,nit vectors
interaction Hamiltonian arises from the nonlinear polariza-
tion of the medium coupled to the pump field, and corre- . 1. .
sponds to three-wave mixing. The polarization dependence U= — —=(Xx+iy),
of the interaction Hamiltonian is described by 2

A. Invariances of the susceptibility

H.=f dry®:EE'E"+H.c., (5) J_l:i()g_ig)
V2
whereE is the positive-frequency part of the electric-field G_s
0_ .

operator, and the integration extends over the volume of the

medium. The three dots symbolize an inner product of the R

second-order susceptibility tensgf?) with the electric-field ~ Note that we encountered. ; before in Eq.(1) as the basis

vectors. The first part of the Hamiltonian describes down-ectors for circular polarization. These unit vectors transform

conversion, its Hermitian conjugate describes up-conversiorinder rotations in the same way as the spherical harmonics

The Hamiltonian can be written in the elegant form in Eq.Yim With [=1. In particular, they are eigenvectors of the

(5) because we consider operation in the optical regiméotation matrix about the symmetry axis.

where x(?) is virtually frequency independeft1]. When O(¢) denotes the rotation matrix for a counter-
The tensory® has rank 3, and therefore it has 27 com-clockwise rotation about the axis over an anglep, the

ponents. For all materials with some spatial symmetry, notransformation reads

all of these components are independent and nonzero. The R R

material transforms onto itself under the application of a cov- O(¢)-u,=exp —i¢o)u,, o=—-1,0,+1. (7)

ering operation of its symmetry group. Since the tengét

is a property of the crystal material, it must be invariantThis eigenvalue character makes the spherical unit vectors

under any one of these covering operations. This is known asito the natural basis for analyzing the components of the

Von Neumann’s principlg11]. These operations form the susceptibility tensor. In particular, on this basis, it is simple

symmetry group of the crystal, and each covering operatioto identify the components that must vanish. The spherical

R is represented by a Cartesian mai@XR). The suscepti- components of the susceptibility are defined by the relations
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XEJ%‘)T:X(Z); JPGUJT’ p,o,7=—1,0+1. (g of x® on this(zp))lan_e. Henceg{? contains the eight spherical

componenty ;. with p,o, 7= —1,+1 only. For the compo-
nents ofx{?), the sump+ o+ 7 can only attain the values
+1,+3.

For a material with arN-fold rotation axis, we apply a For N=2 andN=4 and higher, it follows from Eq(9)
counterclockwise rotation about this axis over an anglahat all components oj(%_z) vanish. Hence a nonvanishing
2m/N. We shall now determine the number of nonzero andransverse susceptibility!?) only occurs for materials with-
independent components ef”) for all values ofN. With the oyt any symmetry, or for materials with a threefold rotation
invariance requiremen(®), Eq. (7) leads to the simple iden- axis. In the following section, we discuss the polarization
tity properties of twin photons created by SPDC in a crystal with

Xffr)rz exf — (p+ o+ 7)2mi/N]y 2 p o= —1,041, threefold rotational symmetry.

poT?

C. Nonvanishing spherical components of?’

2) . IV. SPDC IN A CRYSTAL WITH C;, SYMMETRY
so that the componen;,’, must vanish whenever the expo-
nential factor differs from 1. It follows that the component A. Hamiltonian
(2) iti . . .
Xpor Can only be nonzero under the condition that We consider a crystal witlC;, symmetry in the trans-

verse configuration. It has six covering operations, which are
generated by a rotation overr23 and a reflection in a ver-
tical plane that contains theaxis, for which we take thg-z
plane. The corresponding mat®(R,) acting on the spheri-
cal unit vectors is represented by the transformation

p+o+7=KkN, 9

with k being an integer. Obviously, the sumt o+ 7 can
acquire the values @,1,+2,+ 3 for the possible values @f,
o, andr.

(1) For each value o, the condition(9) is satisfied when O(R ).J — O(R,)- U ,=—0,.. (10
the sum of the indices is zero. This is true when all indices v v vt ot
are zero, or when they are one of the six permutations of theor the transverse configuration we are only interested in
three different values-1, 0, +1. The corresponding seven x$?. As shown in Sec. Il C, it follows from the threefold
components can be nonzero for any valueNpfand also | qtation symmetry thaj((fiﬂﬂ andX(fzj)Lflfl are the only

when the system possesses full axial symmetry. nonzero components qf(Tz)_ According to Eq.(10), the in-

(2) For N=4 and higher, the conditioi9) cannot be vari : . .
ariance relatior{6) applied to reflection about thez plane
obeyed for any value ok other than 0, so that all compo- yields the relation

nents other than these seven must vanish.

(3) For N=3, the two componentsy®),,., and
x%)_,_, correspond to the conditiof®) with k=+1; they
can be nonzero in addition to the seven components memHence, forCs, , we find thaty{?) is determined by a single
tioned above. independent paramet&. This is in agreement with the re-

(4) ForN=2, the condition9) with k=*1 is obeyed by sult obtained using the procedure by Bhagavantam and
the six components with+ o+ 7=*2; herep,o,7 are per-  Suryanarayanfl?].

2 2 —
X(+1+1+1:_X(—%7171=G- (13)

mutations of+1,+1,0 or of —1,—1,0. Only these six com- Now we obtain the Hamiltonian in the transverse configu-
ponents can be nonzero for=2, in addition to the seven ration for a crystal withCs, symmetry. For the positive-
components mentioned above. frequency part of the electric-field operator, we write

(5) Finally, there are 12 components for whiph-o+ 7
==*1. These are the ones wheser, 7 are permutations of - - > o e e oo -
00+1 or of 1,41+ 1. These components can only be E("D~ d"; wy(Kay(K)ey(k)exdik-r=iw,(k)t],
nonzero in the trivial case th&l=1. In this case without
any symmetry, no restriction is set for any one of the 27,yere a,(K) annihilates a photon with wave vectirand

Corlnnpogr?g:i materials have other symmetry operations begolarization vecto, () and where the summation ovar
9 ' Y y op funs over the two basis states of polarization. In the trans-

i - i i i 2) ) : X .
e e sl ot o el {E1Se ConTQualon. the nde f refacion o e crsa
P does not depend on the polarization for the common direc-

between the nonzero components found above, thereby fur- i O -
ther reducing the number of independent components, 0N Of propagation. We then hawe, (k) — ) and w) (k)

— w(Kk), and we find that

D. Transverse part of y?
In the case that pump, signal, and idler propagate parallel E(r’t)“J dk Vw(k)eXF{ik'r—iw(k)t]; a(key -
to each other and to the symmetry axis, the polarization vec- (12)
tors lie in thex-y plane. This we call the transverse configu-

ration. The only relevant part of the susceptibility in this caseWe see that the electric-field operator is split into a polariza-
is the transverse susceptibiligt?’ , defined as the projection tion part and a part concerning the modeskispace. As a
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basis for polarization we use the circular polarization states
|+). Since we are only interested in the polarization part, we
write

Exa,u,;+a_u_;.

Herea, anda_ are the annihilation operators for a photon
with right- and left-handed circular polarizations, respec-
tively.

From Eq.(11) and the definition in Eq8), it follows that
the transverse susceptibility can be expressed in terms of the

spherical unit vectorﬁﬂ as

2)_ Tk Tk Ok Tk Tk Ok
XF'=G Uk u% Uk - ar urury).

Using the fact that the spherical basis is unitary and that FIG. 3. Representation of a two-photon state created by SPDC

- - where the projected polarization state 2 is found upon detection in
(Uyg)*=—U-y, state 1. The polarization of the pump is represented by the open dot
we find that and labeled withp.
(14), the overlap({(¥g¥)) with the singlet Bell state van-
ishes for all pump polarizations.
When one photon is detected in the selected polarization
state| V) =|6,,¢,), the state of the remaining photon col-
pses into the statdy?)y=16,,4,) (V| ¥)). The
pherical angle#, and ¢, of |(?)) are found to be given by
the equalities

Uiq-u_1= —1.

We substitute the expressions that we obtained above in E
(5 and, apart from an irrelevant overall factor, the Hamil-
tonian in the transverse configuration is found as

tan 6,/2)

(13) faney/<)
tan 6,/2)

T 4t T 4f
Hi<G(ap.as-aj_—ap-ag;aj,)+H.c, =tan(0p/2), 1+ Pyt dp=mmod 27).

where the labelp, s, andi refer to the modes ik space of (19

the pump, signal, and idler photon, respectively. This shows ) @) i
that the absorption of a left circularly polarized pump photonlNote that the statdg/™) and| ') cannot be interchanged,

is accompanied by the creation of a signal and an idler pho@ince in general the polarization state of the two created pho-

ton, which are both right circularly polarized, and vice versa.lons is not maximally entangled, except for the case of a
linearly polarized pump. The relation between the two polar-

B. Representation on the Poincafesphere ization state$yV) and| ) is illustrated in Figs. 3 and 4.

We now use the Poincamepresentation for the descrip-
tion of the entangled state of the two SPDC photons for a
given polarization of the pump. We consider a pump photon
in the statd 0y .¢p). The interaction Hamiltoniafil3) in the
transverse configuration applied to this initial state yields, to
first order, the two-photon state

|W))=cog 6,/2) exp —i bp/2)| = )| — ) —sin(6,/2)
Xexp(+igp/2)[+)|+).

%,

(14)

N

This expression gives the two-photon state as a linear super-
position of two-photon states that are pairwise orthogonal, so
that this state is already in Schmidt-decomposed form. Ac-

cording to the definition by Abouraddst al.[17] the degree

of entanglement is s#y. For linear polarization 4,

!
/"
N
!
0

'~ = 7 1
¢,

2rn

FIG. 4. Representation of the two-photon state created by SPDC

= m/2), the created two-photon state is maximally entangledyith a linearly polarized pump. Then the polarization states 1 and 2
We fll’ld the tl‘lp|et Be” Stat@) |n the case tha.t the d|rect|0n have the same |atitude on the Pcﬂn’caﬁ]ere_ Fom’)pzol the re-

of the linear polarization of the pump is parallel to the ver-jation betweeng, and ¢, is represented by the dotted lines, for
tical reflection plane containing the axis, so that¢,=0. #,= /2 by the broken lines, and fek,= 7 by the continuous line.
The singlet Bell stat¢3) cannot be obtained by choosing an The double arrow below and next to the axes represents the orien-
appropriate pump polarization since for the stalfé) of Eq.  tation of the long axis of the polarization ellipse.
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The relation between the azimuthal angles in Bd) is  not under a rotation over an arbitrary angle. As a conse-
invariant when all angles are increased by an amount ofjuence, in case of a crystal wi€y, symmetry, the intrinsic
27/3. This corresponds to a rotation in real space about thangular momentum is not conserved.

Z axis, or symmetry axis, over half this angle, that is, over
/3, as can be seen from EqZ) and(2). This is somewhat V. CONCLUSIONS
surprising, since the crystal is invariant only under a rotation _ ) ) )
over 2m/3. To check consistency, we perform a rotation of Ve have discussed the use of a spherical basis for describ-
the crystal over an angl@ about thez axis. Using the trans- N9 polarization entanglement of twin pho_tons as produced_ in
formation property under rotations in E7), we find that the process of spontaneous parametric down-conversion.
the relation betweer)((f}HH and )((721717l in Eq. (12) This choice Iegds to avery transparent dlscussmn regarding
changes to the conservation of intrinsic angular momentum in SPDC.
We have used the Poincasphere to describe arbitrary po-
Y (2) _ : (2) larization states of pump, signal, and idler. On this sphere,
D I s the singlet Bell sta[t)e ch))rresponds to a pair of antigodes,
while in the triplet Bell state, the photons have equal latitude.
We have employed the spherical basis to analyze the po-
ization entanglement of signal and idler as it arises in the
rocess of SPDC in a crystal &5, symmetry when all

Hence, a rotation over/3 produces a sign change fgf’ as
a whole, which does not change the polarization propertieﬁar
of signal and idler. The same conclusion follows by noting

that a polarization state is bgsmally unchanged.by arotatio ptical beams are collinear with the symmetry axis of the
over = 7. Therefore, a rotation of all polarization vectors

. . : o crystal. We have shown that the threefold crystalline symme-
over /3 is equivalent to a rotation of the polarization states, y y y

213 for th . £h | try is a prerequisite for SPDC in this geometry. For this
gve/;— /3, or, for that matter, a rotation of the crystal over crystal and geometry, we have derived simple relationships
mlo.

The Hermiti . fthe i ion Hamiltonian i between the spherical coordinates of pump, signal, and idler
e Hermitian conjugate of the interaction Hamiltonian in 4005 on the Poincagphere; these relationships provide
Eqg. (13) represents the nonlinear process of up-conversio

; . irect insight into the issue of conservation of intrinsic an-
This process transforms the two-photon polarization stat%mar momentum
| M) (2)) into the one-photon stat@, ,¢,). The spherical '

) : Twin photon generation in the chosen configuration can-
anglesg, and ¢, can then again be obtained from BG5S, ot pe phase matched: experimental realization of SPDC in
but with the labels 1 ang interchanged.

the proposed geometry will therefore be nontrivial. With a
beta-barium-boratéBBO) crystal (C3, symmetry, cut for
C. Intrinsic angular momentum 0° phase matching, having a length equal to the coherence

For a pump photon in the stalé,,¢,), the expectation length (~13 um at A =800 nm[18]), such an experiment
value of the intrinsic angular momentum, in units 7of is should be feasible.
given by cog,, while for the two-photon statél4) created

by SPDC in the crystal we fine-2 cosf),. We see that the ACKNOWLEDGMENTS
intrinsic angular momentum is not conserved in the process ) e s
of SPDC, while, in the transverse configuration, trbital This work was supported by the “Stichting voor Funda-

angular momentum is conservé@—5]. In order to satisfy me_nteel Onderzoek der MateriéFOM), and the European

conservation of total angular momentum, we conclude thatnion under the IST-ATESIT contract.

there must be a transfer of angular momentum to the crystal

[10]. The expectation value of the amount of transferred an- APPENDIX: INTERCHANGEABILITY OF DETECTED

gular momentum to the crystal is then 3 égsLike we saw AND PROJECTED STATES

in Sec. Il C when discussing the triplet Bell stg@®, the o

actual amount of transfer of angular momentum to the crystal When a quantum system consisting of two subsystems 1

will depend on the detected polarization staté?), which ~ and 2 with the same dimensiahis in a state|¥)), and

shows the highly nonlocal nature of the transfer. system 1 is detected in the stégg"), system 2 is projected
Conservation or nonconservation of angular momentuninto the state ) that is proportional to the partial inner

in SPDC depends on the transformation properties of th@roduct(¢M|W)). In general, the inverse statement is not

Hamiltonian under rotation. The orbital angular momentumtrue: detection of system 2 ify‘®) projects system 1 in a

depends on the position dependence of the complex fielgtate that is not necessarily equall #6Y). In this appendix

amplitude, and its conservation results from the fact that thave prove that the roles dfyt")) and [¢®) can be inter-

Hamiltonian does not depend on position. On the other hand&hanged for all choices of the detected state if and only if the

the intrinsic angular momentum depends on the polarizatiogtate| ¥)) is maximally entangled.

properties of the fields, which are determined by the tensor Consider a statg¥)) for which the detected state and the

character of(?). The effect of a rotation about the symmetry resulting projected state can be interchanged. For any nor-

axis in the spherical basis is a complex phase change, sin¢ealized detected state!/(l’g of system 1, the resulting nor-

the spherical basis vectors are eigenvectors of rotation. Fanalized projected state/(?’) of system 2 obeys the identity

C3, symmetry, the relevant element§) ., ., andy®)_,_,

are only invariant under a rotation over an angle ef2 and (Y D|W))y=c|y4?),
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and the normalization constant is obviouslc
=(yV|(4?|W¥)). Because of the assumption of inter-
changeability, we can also write

()W) =cly),

with the same normalization constant.

We choose an orthonormal ba$i;5§11)> of system 1. De-
tection of system 1 in the statg")) projects system 2 in the
state| (), defined by

(e 1w)) =col vi?). (A1)
This allows us to express the stat)) in the form
d
W)= calyfHut?). (A2)

Now we use the interchangeability of the detected and pro-

jected states, which gives
(W21 =colult).

Substituting Eq.(A2) into Eq. (A3) shows that the states
|4{?)) form an orthonormal basis of system 2.

Finally, we apply the assumption of interchangeability for
an arbitrary statey)=39_,a,|4V). This gives for the
projected state of system 2,

(A3)

PHYSICAL REVIEW A 66, 033814 (2002
d d
)= 3 ar(udw)=3 arcilui?),

where we used EqA1) in the last step. Conversely, when
we first detect system 2 in the stdig®), system 1 is pro-
jected into a state proportional to

d

>

n=1

d

1 1
— 2 ach (PR =— 2 ajlcayi).
* c* n=1

C

(W) =

This is proportional to the original statg'™) only when all
coefficients|c,|? are identical. Then Eq(A2) can be ex-
pressed as a biorthogonal expansion

1 d
(V)= g 2 exmidlurlu?). (Ad)

in which each term has the same strength. This is a state with

maximal entanglement.

On the other hand, when the state of the combined system

can be expressed in the forfA4), one easily checks that it
satisfies interchangeability.
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