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Vortices in two-dimensional superconductors with broken time-reversal and spin-rotation symmetry

can bind states at zero excitation energy. These so-called Majorana bound states transform a thermal

insulator into a thermal metal and may be used to encode topologically protected qubits. We identify an

alternative mechanism for the formation of Majorana bound states, akin to the way in which Shockley

states are formed on metal surfaces: An electrostatic line defect can have a pair of Majorana bound states

at the end points. The Shockley mechanism explains the appearance of a thermal metal in vortex-free

lattice models of chiral p-wave superconductors and (unlike the vortex mechanism) is also operative in the

topologically trivial phase.
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Two-dimensional superconductors with spin-polarized-
triplet, p-wave pairing symmetry have the unusual prop-
erty that vortices in the order parameter can bind a non-
degenerate state with zero excitation energy [1–4]. Such a
midgap state is called a Majorana bound state, because the
corresponding quasiparticle excitation is a Majorana fer-
mion—equal to its own antiparticle. A pair of spatially
separated Majorana bound states encodes a qubit, in a way
which is protected from local sources of decoherence [5].
Since such a qubit might form the building block of a
topological quantum computer [6], there is an intensive
search [7–12] for two-dimensional superconductors with
the required combination of broken time-reversal and spin-
rotation symmetries (symmetry class D [13]).

The generic Bogoliubov–de Gennes Hamiltonian H of a
chiral p-wave superconductor is only constrained by
particle-hole symmetry, �xH

��x ¼ �H. At low excitation
energies E (to second order in momentum p ¼ �i@@=@r)
it has the form

H ¼ �ðpx�x þ py�yÞ þ ½UðrÞ þ p2=2m��z; (1)

for a uniform (vortex-free) pair potential �. The electro-
static potential U (measured relative to the Fermi energy)
opens up a band gap in the excitation spectrum. At U ¼ 0
the superconductor has a topological phase transition
(known as the thermal quantum Hall effect) between two
localized phases, one with and one without chiral edge
states [14–17].

Our key observation is that the Hamiltonian (1) on a
lattice has Majorana bound states at the two end points of a
linear electrostatic defect. The mechanism for the produc-
tion of these bound states goes back to Shockley [18]: The
band gap closes and then reopens upon formation of the
defect, and as it reopens a pair of states splits off from the
band edges to form localized states at the end points of the
defect [see Fig. 1]. Such Shockley states appear in systems

as varied as metals and narrow-band semiconductors [19],
carbon nanotubes [20], and photonic crystals [21]. In these
systems they are unprotected and can be pushed out of the
band gap by local perturbations. In a superconductor,
particle-hole symmetry requires the spectrum to be �E
symmetric, so an isolated bound state is constrained to lie
at E ¼ 0 and cannot be removed by a local perturbation.
We propose the name Majorana-Shockley (MS) bound

state for these topologically protected Shockley states.
Similar states have been studied in the context of lattice
gauge theory by Creutz and Horváth [22,23], for an alto-
gether different purpose (as a way to restore chiral sym-
metry in the Wilson fermion model of QCD [24]).

FIG. 1. Emergence of a pair of zero-energy MS states as the
defect potential U0 þ �U is made more and more negative, at
fixed positive background potential U0 ¼ 0:3. (All energies are
in units of � � @�=a.) The energy levels are the eigenvalues of
the Hamiltonian (1) on a square lattice (dimension 100a� 100a,
� � @

2=2ma2 ¼ 0:4�, periodic boundary conditions). The line
defect has length 50a. The dense spectrum at top and bottom
consists of bulk states.
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Consider a square lattice (lattice constant a), at uniform
potential U0. The Hamiltonian (1) on the lattice has dis-
persion relation

E2 ¼ ½U0 þ 2�ð2� cosakx � cosakyÞ�2
þ �2sin2akx þ �2sin2aky: (2)

(We have defined the energy scales � ¼ @
2=2ma2, � ¼

@�=a.) The spectrum becomes gapless for U0 ¼ 0, �4�,
and �8�, signaling a topological phase transition [25].
The number of edge states is zero for U0 > 0 and U0 <
�8�, while it is unity otherwise (with a reversal of the
direction of propagation at U0 ¼ �4�). The topologically
nontrivial regime is therefore reached for �8�<U0 < 0.

We now introduce the electrostatic line defect by chang-
ing the potential to U0 þ �U on the N lattice points at r ¼
ðna; 0Þ, n ¼ 1; 2; . . . ; N. In Figs. 1 and 2, we show the
closing and reopening of the band gap as the defect is
introduced, accompanied by the emergence of a pair of
states at zero energy. The eigenstates for which the gap
closes and reopens have wave vector kx parallel to the line
defect equal to either 0 or ��=a.

We have calculated that the gap closing at kx ¼ 0 hap-
pens at a critical potential �U ¼ �U0 given by [26]

�U0 ¼
8><
>:
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U0ðU0 þ 4�Þ þ �2
p

for U0 > 0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U0ðU0 þ 4�Þ þ �2

p
for U0 <�4�;

no finite value otherwise:

(3)

The critical potential �U� for closing of the gap at kx ¼
��=a is obtained from Eq. (3) by the replacement of U0

with U0 þ 4�. The MS states appear for defect potentials

U0 þ �U in between two subsequent gap closings, as
indicated in the inset of Fig. 2. We conclude that MS states
exist for any value of U0. In contrast, Majorana bound
states in vortices exist only in the topologically nontrivial
regime [3,27,28].
Our reasoning so far has relied on the assumption of a

constant pair potential �, unperturbed by the defect. In
order to demonstrate the robustness of the Majorana-
Shockley mechanism, we have performed numerical cal-
culations that determine the pair potential self-consistently
by means of the gap equation [26,29]. In Fig. 3 we show a
comparison of the closing and reopening of the band gap as
obtained from calculations with and without self-
consistency, in the relevant weak pairing regime (U0 <
0). The self-consistency does not change the qualitative
behavior. In particular, the gap only closes at kx ¼ �=a for
the parameters chosen.
In Fig. 4 we demonstrate that the MS states are localized

at the end points of the line defect. The exponentially
small, but nonzero overlap of the pair of states displaces
their energy from 0 to�E (with corresponding eigenstates
c� ¼ �xc

�þ related by particle-hole symmetry). The un-
paired Majorana bound states c 1 and c 2 are given by the
linear combinations

c 1 ¼ 1
2ð1� iÞcþ þ 1

2ð1þ iÞc�; (4a)

c 2 ¼ 1
2ð1þ iÞcþ þ 1

2ð1� iÞc�; (4b)

shown also in Fig. 4. These states are particle-hole sym-
metric, c 1;2 ¼ �xc

�
1;2, so the quasiparticle in such a state

is indeed equal to its own antiparticle (hence, it is a
Majorana fermion).
If the line defect has a width W which extends over

several lattice sites, multiple gap closings and reopenings

FIG. 2 (color online). Main plot: Closing and reopening of the
excitation gap at U0 ¼ 0:3, � ¼ 0:4 (in units of �), for states
with kx ¼ 0 (black solid curve) and kx ¼ �=a (black dashed
curve). The MS states exist for defect potentials in between two
gap closings, indicated as a function of U0 by the shaded regions
in the inset. [The (red) solid and (blue) dashed curves show,
respectively U0 þ �U0 and U0 þ �U�. The label T indicates the
topologically trivial phase.]

FIG. 3 (color online). Closing and reopening of the excitation
gap atU0 ¼ �0:3, � ¼ 0:4 (in units of �), for states with kx ¼ 0
[grey (red) curves] and kx ¼ �=a (black curves). The results
were obtained from numerical calculations using a constant
isotropic pair potential � (solid lines) as in Fig. 2 as well as a
spatially dependent, anisotropic pair potential [�xðrÞ, �yðrÞ]
determined self-consistently from the gap equation (dashed
lines).
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appear at kx ¼ 0 upon increasing the defect potentialU0 þ
�U � �ð@kFÞ2=2m to more and more negative values at
fixed positive background potential U0. In the continuum
limit W=a ! 1, the gap closes when [26] qW ¼ n�þ �,

n ¼ 0; 1; 2; . . . , with q ¼ ½k2F � ðm�Þ2�1=2 the real part of
the transverse wave vector and � 2 ð0; �Þ a phase shift that
depends weakly on the potential. (Similar oscillatory cou-
pling energies of zero-modes have been found in
Refs. [30,31].) The MS states at the two ends of the line
defect alternatingly appear and disappear at each subse-
quent gap closing.

So far we constructed MS states for a linear electrostatic
defect. More generally, we expect a randomly varying
electrostatic potential to create a random arrangement of
MS states. To test this, we pick UðrÞ at each lattice point
uniformly from the interval ( �U� �U, �Uþ�U) and cal-
culate the average density of states �ðEÞ. The result in
Fig. 5 shows the expected peak at E ¼ 0. This peak is
characteristic of a thermal metal, studied previously in
models where the Majorana bound states are due to vorti-
ces [32–34]. The peak in the density of states of a thermal
metal has a logarithmic profile [15], �ðEÞ / lnjEj, consis-
tent with our data.

Without Majorana bound states, the chiral p-wave su-
perconductor would be in the thermal insulator phase, with
an exponentially small thermal conductivity at any nonzero
�U [3,32,35,36]. Our findings imply that electrostatic dis-
order can convert the thermal insulator into a thermal
metal, thereby destroying the thermal quantum Hall effect.
Numerical results for this insulator-metal transition will be
reported elsewhere [37].

These results are all for a specific model of a chiral
p-wave superconductor. We will now argue that our find-
ings are generic for symmetry class D (along the lines of a
similar analysis of solitons in a polymer chain [38]). Let p
be the momentum along the line defect and � a parameter
that controls the strength of the defect. Assume that the gap

closes at � ¼ �0 and at p ¼ 0. (Because of particle-hole
symmetry the gap can only close at p ¼ 0 or p ¼ �@�=a
and these two cases are equivalent.) For � near �0 and p
near 0 the Hamiltonian in the basis of left-movers and
right-movers has the generic form

Hð�Þ ¼ ðv0 þ v1Þp �ið�� �0Þ
ið�� �0Þ �ðv0 � v1Þp

� �
; (5)

with velocities 0< v1 < v0. No other terms to first order in
p ¼ �i@@=@x and �� �0 are allowed by particle-hole
symmetry, Hð�Þ ¼ �H�ð�Þ.
The line defect is initially formed by letting � depend on

x on a scale much larger than the lattice constant. We set
one end of the defect at x ¼ 0 and increase � from
�ð�1Þ<�0 to �ðþ1Þ>�0. Integration of
H½�ðxÞ�c ðxÞ ¼ 0 then gives the wave function of a zero-
energy state bound to this end point,

c ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v0=v1 � 1

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v0=v1 þ 1

p
 !

exp

�
�
Z x

0

�ðx0Þ � �0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
0 � v2

1

q dx0
�
: (6)

This is one of the two MS states, the second being at the
other end of the line defect. We may now relax the as-
sumption of a slowly varying �ðxÞ, since a pair of un-
coupled zero-energy states cannot disappear without
violating particle-hole symmetry.
In conclusion, we have identified a purely electrostatic

mechanism for the creation of Majorana bound states in
chiral p-wave superconductors. The zero-energy (midgap)
states appear in much the same way as Shockley states in
nonsuperconducting materials, but now protected from any
local perturbation by particle-hole symmetry. A conse-
quence of our findings is that the thermal quantum Hall
effect is destroyed by electrostatic disorder (in marked
contrast to the electrical quantum Hall effect). The recent

FIG. 5 (color online). Average density of states for a potential
that fluctuates randomly from site to site ( �U ¼ 0:01�, �U ¼ 2�,
� ¼ 0:2�). The lattice has size 400a� 400a. The right inset
shows the same data as in the main plot, over a larger energy
range. The left inset has a logarithmic energy scale, to show the
dependence � / lnjEj expected for a thermal metal [(red) dashed
line].

FIG. 4 (color online). Probability density of the paired (cþ)
and unpaired (c 1, c 2) Majorana bound states at the end points
of a line defect of length 50a, calculated for U0 ¼ 0:1�, U0 þ
�U ¼ �1:3�, � ¼ 0:4�.
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proposal to realize Wilson fermions in optical lattices [39]
also opens the possibility to observe Majorana-Shockley
states using cold atoms.

Our analysis is based on a generic model of a two-
dimensional class-D superconductor (broken time-reversal
and spin-rotation symmetry). An interesting direction for
future research is to explore whether Majorana-Shockley
bound states exist as well in the other symmetry classes
[13]. Since an electrostatic defect preserves time-reversal
symmetry, we expect the Majorana-Shockley mechanism
to be effective also in class DIII (when only spin-rotation
symmetry is broken). That class includes proximity-
induced s-wave superconductivity at the surface of a topo-
logical insulator [40] and other topological superconduc-
tors [41–43].

It would also be interesting to investigate the braiding of
two electrostatic defect lines, in order to see whether one
obtains the same non-Abelian statistics as for the braiding
of vortices [4].

We have benefited from discussions with B. Béri, L. Fu,
and C.-Y. Hou. This research was supported by the
Deutscher Akademischer Austausch Dienst DAAD, the
Dutch Science Foundation NWO/FOM, an ERC
Advanced Investigator Grant, and the EU network,
NanoCTM.
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